Interaction and Metabolic Function of Microbiota during Tibetan Tea Fermentation through Bioaugmentation with Aspergillus niger
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Annotation of Aspergillus niger K1
2.2. Fermentation of Tibetan Tea
2.3. Determination of Characteristic Compositions of Tea Leaves and Sensory Evaluation
2.4. Illumina MiSeq Sequencing
2.5. Metabolomics Analysis
2.6. Statistical Analysis
2.7. Accession Numbers
3. Results and Discussion
3.1. Identification of Isolated Strain K1
3.2. Sensory Evaluation and Characteristic Compositions of Tea Leaves
3.3. Influence of Aspergillus niger K1 on Microbiota
3.4. Metabolomic Analysis of Metabolites in BF and NF
3.5. Correlation between Microorganisms, Characteristic Compositions and DCMs in BF and NF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, H.; Li, X.; Ren, Z.; Qiu, W.; Chen, J.; Jiang, Q.; Chen, B.; Chen, D. Antioxidant and cytoprotective effects of Tibetan tea and its phenolic components. Molecules 2018, 23, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Yang, Z.; He, L.; Lu, X.; Tang, J.; Laghi, L. The longer the storage time, the higher the price, the better the quality? A1H-NMR based metabolomic investigation of aged Ya’an tibetan tea (Camellia sinensis). Foods 2022, 11, 2986. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Ren, H.; Liu, R.; Da Silva, R.R.; Aksenov, A.A.; Melnik, A.V.; Zhao, M.; Le, M.; Ren, Z.; Xu, F.; et al. Microbial and nonvolatile chemical diversities of Chinese dark teas are differed by latitude and pile fermentation. J. Agric. Food Chem. 2022, 70, 5701–5714. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.K.; Foo, K.Y. Recent advances on the beneficial use and health implications of Pu-erh tea. Food Res. Int. 2013, 53, 619–628. [Google Scholar] [CrossRef]
- Lin, F.J.; Wei, X.L.; Liu, H.Y.; Li, H.; Xia, Y.; Wu, D.T.; Zhang, P.Z.; Gandhi, G.R.; Hua, B.L.; Gan, R.Y. State-of-the-art review of dark tea: From chemistry to health benefits. Trends Food Sci. Technol. 2021, 109, 126–138. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, B.; He, J.L.; Wei, T.; Liu, D.J.; Yang, W.J.; Guo, C.Y.; Nie, X.Q. Combinations of Tibetan tea and medicine food homology herbs: A new strategy for obesity prevention. Food Sci. Nutr. 2023, 11, 504–515. [Google Scholar] [CrossRef]
- Li, L.; Shi, M.; Salerno, S.; Tang, M.; Guo, F.; Liu, J.; Feng, Y.; Fu, M.; Huang, Q.; Ma, L.; et al. Microbial and metabolomic remodeling by a formula of Sichuan dark tea improves hyperlipidemia in apoE-deficient mice. PLoS ONE 2019, 14, e219010. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Huang, W.; Zhang, C.; Li, C.; Fang, Z.; Zeng, Z.; Hu, B.; Chen, H.; Wu, W.; Wang, T.; et al. Targeted and untargeted metabolomic analyses and biological activity of Tibetan tea. Food Chem. 2022, 384, 132517. [Google Scholar] [CrossRef]
- Wang, N.; Wu, T.; Du, D.; Mei, J.; Luo, H.; Liu, Z.; Saleemi, M.K.; Zhang, R.; Chang, C.; Mehmood, M.A.; et al. Transcriptome and gut microbiota profiling revealed the protective effect of Tibetan tea on ulcerative colitis in mice. Front. Microbiol. 2022, 12, 748594. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, Q.; Chen, Z.; Zhang, J.; Chen, Q.; Wang, Y.; Wei, X. Distinct changes of metabolic profile and sensory quality during Qingzhuan tea processing revealed by LC-MS-Based metabolomics. J. Agric. Food Chem. 2020, 68, 4955–4965. [Google Scholar] [CrossRef]
- Gong, Z.; Ouyang, J.; Wu, X.; Zhou, F.; Lu, D.; Zhao, C.; Liu, C.; Zhu, W.; Zhang, J.; Li, N.; et al. Dark tea extracts: Chemical constituents and modulatory effect on gastrointestinal function. Biomed. Pharmacother. 2020, 130, 110514. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, J.; Li, Z.; Li, Q.; Lai, X.; Sun, L.; Chen, R.; Wen, S.; Sun, S.; Lai, Z. HS-SPME and GC/MS volatile component analysis of Yinghong No. 9 dark tea during the pile fermentation process. Food Chem. 2021, 357, 129654. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Zeng, H.; Qin, L. Physicochemical, taste, and functional changes during the enhanced fermentation of low-salt Sufu paste, a Chinese fermented soybean food. Int. J. Food Prop. 2018, 21, 2714–2729. [Google Scholar] [CrossRef]
- Mu, Y.; Huang, J.; Zhou, R.; Zhang, S.; Qin, H.; Tang, H.; Pan, Q.; Tang, H. Bioaugmented Daqu-induced variation in community succession rate strengthens the interaction and metabolic function of microbiota during strong-flavor Baijiu fermentation. LWT 2023, 182, 114806. [Google Scholar] [CrossRef]
- Mu, Y.; Huang, J.; Zhou, R.; Zhang, S.; Qin, H.; Dong, Y.; Wang, C.; Wang, X.; Pan, Q.; Tang, H. Comprehensive analysis for the bioturbation effect of space mutation and biofortification on strong-flavor Daqu by high-throughput sequencing, volatile analysis and metabolomics. Food Chem. 2023, 403, 134440. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Zhang, Y.; Lu, N.; Shi, C.; Yan, S. Yeasts from Chinese strong flavour Daqu samples: Isolation and evaluation of their potential for fortified Daqu production. AMB Express 2021, 11, 176. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, V.; Gao, L.; Sheng, T.; Liu, C.; Chen, C.; Liu, W.; Wang, A. Bioaugmented hydrogen production from lignocellulosic substrates using co-cultures of Shigella flexneri str. G3 and Clostridium acetobutylicum X9. J. Technol. Innov. Renew. Energy 2014, 3, 36–43. [Google Scholar]
- Liu, K.; Wang, L.; Jiang, B.; An, J.; Nian, B.; Wang, D.; Chen, L.; Ma, Y.; Wang, X.; Fan, J.; et al. Effect of inoculation with Penicillium chrysogenum on chemical components and fungal communities in fermentation of Pu-erh tea. Food Res. Int. 2021, 150, 110748. [Google Scholar] [CrossRef]
- Wu, S.; Wang, W.; Zhu, W.; Chen, W.; Xu, W.; Sui, M.; Jiang, G.; Xiao, J.; Ning, Y.; Ma, C.; et al. Microbial community succession in the fermentation of Qingzhuan tea at various temperatures and their correlations with the quality formation. Int. J. Food Microbiol. 2022, 382, 109937. [Google Scholar] [CrossRef]
- Wang, Q.; Gong, J.; Chisti, Y.; Sirisansaneeyakul, S. Fungal isolates from a Pu-erh type tea fermentation and their ability to convert tea polyphenols to theabrownins. J. Food Sci. 2015, 80, M809–M817. [Google Scholar] [CrossRef]
- Zhou, B.; Ma, C.; Ren, X.; Xia, T.; Li, X.; Wu, Y. Production of theophylline via aerobic fermentation of Pu-erh tea using tea-derived fungi. BMC Microbiol. 2019, 19, 261. [Google Scholar] [CrossRef]
- Zhou, B.; Ma, C.; Wang, H.; Xia, T. Biodegradation of caffeine by whole cells of tea-derived fungi Aspergillus sydowii, Aspergillus niger and optimization for caffeine degradation. BMC Microbiol. 2018, 18, 53. [Google Scholar] [CrossRef]
- Zhou, B.; Ma, C.; Zheng, C.; Xia, T.; Ma, B.; Liu, X. 3-Methylxanthine production through biodegradation of theobromine by Aspergillus sydowii PT-2. BMC Microbiol. 2020, 20, 269. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Jiang, B.; Liu, K.; Li, R.; Chen, L.; Liu, Z.; Xiang, G.; An, J.; Luo, H.; Wu, J.; et al. Multi-omics analysis of the metabolism of phenolic compounds in tea leaves by Aspergillus luchuensis during fermentation of Pu-erh tea. Food Res. Int. 2022, 162, 111981. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhang, M.; An, T.; Zu, Z.; Song, P.; Chen, M.; Yue, P.; Gao, X. Preparation of instant dark tea by liquid-state fermentation using sequential inoculation with Eurotium cristatum and Aspergillus niger: Processes optimization, physiochemical characteristics and antioxidant activity. LWT 2022, 162, 113379. [Google Scholar] [CrossRef]
- Ma, Y.; Ling, T.; Su, X.; Jiang, B.; Nian, B.; Chen, L.; Liu, M.; Zhang, Z.; Wang, D.; Mu, Y.; et al. Integrated proteomics and metabolomics analysis of tea leaves fermented by Aspergillus niger, Aspergillus tamarii and Aspergillus fumigatus. Food Chem. 2021, 334, 127560. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Wang, W.; Li, J.; Guo, X.; Zhao, M.; Jiang, Y.; Tu, P. Influence of the post-fermentation by four Aspergillus strains on the aroma of Pu-erh tea. J. Chin. Pharm. Sci. 2016, 25, 284–290. [Google Scholar]
- Edgar, R.C. Muscle: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudhir, K.; Glen, S.; Koichiro, T. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar]
- Wang, Q.; Peng, C.; Gong, J. Effects of enzymatic action on the formation of theabrownin during solid state fermentation of Pu-erh tea. J. Sci. Food Agric. 2011, 91, 2412–2418. [Google Scholar] [CrossRef]
- Wang, Q.; Gong, J.; Chisti, Y.; Sirisansaneeyakul, S. Production of theabrownins using a crude fungal enzyme concentrate. J. Biotechnol. 2016, 231, 250–259. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Huang, X.; Zhang, H.; Liu, M. Simultaneous determination of total polyphenols and caffeine contents of green tea by near-infrared reflectance spectroscopy. Microchem. J. 2006, 83, 42–47. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Jiang, R.; Ouyang, J.; Liu, Q.; Li, J.; Wen, H.; Li, Q.; Chen, J.; Xiong, L.; et al. Characterization of aroma differences on three drying treatments in Rucheng Baimao (Camellia pubescens) white tea. LWT 2023, 179, 114659. [Google Scholar] [CrossRef]
- Li, P.; Lin, W.; Liu, X.; Wang, X.; Luo, L. Environmental factors affecting microbiota dynamics during traditional solid-state fermentation of Chinese Daqu starter. Front. Microbiol. 2016, 7, 1237. [Google Scholar] [CrossRef]
- Li, P.; Su, R.; Wang, Q.; Liu, K.; Yang, H.; Du, W.; Li, Z.; Chen, S.; Xu, B.; Yang, W. Comparison of fungal communities and nonvolatile flavor components in black Huangjiu formed using different inoculation fermentation methods. Front. Microbiol. 2022, 13, 955825. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Q.; Luo, H.; Li, R.; Chen, L.; Jiang, B.; Liang, Z.; Wang, T.; Ma, Y.; Zhao, M. An in Vitro catalysis of tea polyphenols by polyphenol oxidase. Molecules 2023, 28, 1722. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zheng, X.; Ma, X.; Jiang, R.; Zhou, W.; Zhou, S.; Zhang, Y.; Lei, S.; Wang, S.; Kuang, J.; et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat. Commun. 2019, 10, 4971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Hijum, S.A.; Vaughan, E.E.; Vogel, R.F. Application of state-of-art sequencing technologies to indigenous food fermentations. Curr. Opin. Biotechnol. 2013, 24, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, B.E.; Dutton, R.J. Fermented foods as experimentally tractable microbial ecosystems. Cell 2015, 161, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Nicola, S.; Sahar, A.; Johannes, G.; Alyxandria, M.S.; Jacques, I.; Brandi, L.C.; Beltran, R.; Levi, W.; Jeremy, Z.; Mathangi, T.; et al. Microbial community function and biomarker discovery in the human microbiome. Genome Biol. 2011, 12, 47. [Google Scholar]
- Kennedy, R.; Lappin, D.F.; Dixon, P.M.; Buijs, M.J.; Zaura, E.; Crielaard, W.; O’Donnell, L.; Bennett, D.; Brandt, B.W.; Riggio, M.P. The microbiome associated with equine periodontitis and oral health. Vet. Res. 2016, 47, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsano, I.; Talapatra, S.; Ma, X.; Tsige, M. Adsorptive structure and mobility on carbon nanotube exteriors using benzoic acid as a molecular probe of amphiphilic water contaminants. J. Phys. Chem. B 2022, 126, 4956–4966. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wan, X.; He, X.; Rong, C.; Liu, S. Impacts of external fields on aromaticity and acidity of benzoic acid: A density functional theory, conceptual density functional theory and information-theoretic approach study. Phys. Chem. Chem. Phys. 2023, 25, 2595–2605. [Google Scholar] [CrossRef] [PubMed]
- Lubbers, R.; de Vries, R.P. Production of protocatechuic acid from p-hydroxyphenyl (H) units and related aromatic compounds using an Aspergillus niger cell factory. MBio 2021, 12, e39121. [Google Scholar] [CrossRef]
- Li, J.; Xu, R.; Zong, L.; Brake, J.; Cheng, L.; Wu, J.; Wu, X. Dynamic evolution and correlation between metabolites and microorganisms during manufacturing process and storage of Fu Brick tea. Metabolites 2021, 11, 703. [Google Scholar] [CrossRef]
- Li, Q.; Huang, J.; Li, Y.; Zhang, Y.; Luo, Y.; Chen, Y.; Lin, H.; Wang, K.; Liu, Z. Fungal community succession and major components change during manufacturing process of Fu brick tea. Sci. Rep. 2017, 7, 6947. [Google Scholar] [CrossRef]
- Li, J.; Wu, J.; Xu, N.; Yu, Y.; Brake, J.; Xu, R.; Wu, X. Dynamic evolution and correlation between microorganisms and metabolites during manufacturing process and storage of Pu-erh tea. LWT 2022, 158, 113128. [Google Scholar] [CrossRef]
Samples | Tea Appearance | Color of Infusions | Aroma of Infusions | Taste of Infusions | Brewed Leaves |
---|---|---|---|---|---|
BF | Even, neat, tight, brownish auburn | Bright, brownish red | Strong and lasting, woody aroma | Mellow and thick, smooth | Soft and open, brownish auburn |
NF | Even, neat, tight, auburnish black | Bright, deep red | Pure and normal, woody aroma | Sweet and mellow, smooth | Soft and open, auburnish black |
Samples | Simpson | Shannon | Chao1 | ACE | ||||
---|---|---|---|---|---|---|---|---|
Bacteria | Fungi | Bacteria | Fungi | Bacteria | Fungi | Bacteria | Fungi | |
BF | 0.98 ± 0.01 * 1 | 0.55 ± 0.04 * | 8.11 ± 0.26 * | 2.05 ± 0.05 * | 605.67 ± 9.29 * | 113.67 ± 4.16 * | 621.00 ± 7.94 * | 115.67 ± 5.51 * |
NF | 0.89 ± 0.05 | 0.78 ± 0.03 | 4.96 ± 1.05 | 3.03 ± 0.03 | 461.33 ± 33.65 | 138.33 ± 4.51 | 465.33 ± 32.65 | 141.67 ± 4.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Han, L.; Wang, Q.; Yang, L.; Liu, X.; Jiang, B.; Zeng, X.; Liu, Y.; Li, M.; Jiao, W.; et al. Interaction and Metabolic Function of Microbiota during Tibetan Tea Fermentation through Bioaugmentation with Aspergillus niger. Fermentation 2023, 9, 690. https://doi.org/10.3390/fermentation9070690
Liu K, Han L, Wang Q, Yang L, Liu X, Jiang B, Zeng X, Liu Y, Li M, Jiao W, et al. Interaction and Metabolic Function of Microbiota during Tibetan Tea Fermentation through Bioaugmentation with Aspergillus niger. Fermentation. 2023; 9(7):690. https://doi.org/10.3390/fermentation9070690
Chicago/Turabian StyleLiu, Kunyi, Liyan Han, Qi Wang, Liran Yang, Xiangyu Liu, Bin Jiang, Xu Zeng, Yun Liu, Mingyong Li, Wenwen Jiao, and et al. 2023. "Interaction and Metabolic Function of Microbiota during Tibetan Tea Fermentation through Bioaugmentation with Aspergillus niger" Fermentation 9, no. 7: 690. https://doi.org/10.3390/fermentation9070690
APA StyleLiu, K., Han, L., Wang, Q., Yang, L., Liu, X., Jiang, B., Zeng, X., Liu, Y., Li, M., Jiao, W., & Liu, M. (2023). Interaction and Metabolic Function of Microbiota during Tibetan Tea Fermentation through Bioaugmentation with Aspergillus niger. Fermentation, 9(7), 690. https://doi.org/10.3390/fermentation9070690