Effect of Mixing Peanut Vine on Fermentation Quality, Nitrogen Fraction and Microbial Community of High-Moisture Alfalfa Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Silage Preparation
2.2. Analysis
2.3. Data Statistics and Analysis
3. Results
3.1. Characteristics of Fresh Alfalfa and Peanut Vine before Ensiling
3.2. Fermentation Quality and Chemical Composition of Silage
3.3. Nitrogen Fractions and CNCPS Composition of Silage
3.4. Analysis of Microbial Diversity Results
3.4.1. Microbial Composition at Phyla Level
3.4.2. Microbial Composition at the Taxonomic Level of the Genus
3.5. Correlation between Fermentation Characteristics and Microbial Communities in Mixed-Alfalfa-and-Peanut-Straw Silage
4. Discussion
4.1. Characteristics of Fresh Alfalfa and Peanut Vine before Ensiling
4.2. Fermentation Quality and Chemical Composition of Silage
4.3. Effects of Different Proportions of Alfalfa and Peanut Vine on the Nutritional Quality of Silage
4.4. Effects of Different Proportions of Alfalfa and Peanut Vine on Nitrogen Composition and CNCPS of Silage
4.5. Effects of Different Proportions of Alfalfa and Peanut Vine on the Microbial Composition of Silage
4.6. Analysis of the Correlation between Fermentation Quality and Microbial Communities of Mixed Silage with Different Ratios of Alfalfa and Peanut Seedlings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, A.Y.; Yuan, X.J.; Jian, W.; Desta, S.T.; Shao, T. Effects of four short-chain fatty acids or salts on dynamics of fermentation and microbial characteristics of alfalfa silage. Anim. Feed Sci. Technol. 2016, 223, 141–148. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Wang, X.; Yu, Z.; Na, R. Ensiling alfalfa with whole crop corn improves the silage quality and in vitro digestibility of the silage mixtures. Grassl. Sci. 2017, 63, 211–217. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.; Wu, S.; Zou, X.; Chen, X.; Ge, L.; Zhang, Q. Effects of Gallic Acid on Fermentation Parameters, Protein Fraction, and Bacterial Community of Whole Plant Soybean Silage. Front. Microbiol. 2021, 12, 962–975. [Google Scholar] [CrossRef]
- Denek, N.; Can, A.; Avci, M.; Aksu, T.; Durmaz, H. The effect of molasses-based pre-fermented juice on the fermentation quality of first-cut lucerne silage. Grass Forage Sci. J. Br. Grassl. Soc. 2011, 66, 243–250. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F. Microbiology of ensiling. Silage Sci. Technol. 2003, 42, 31–93. [Google Scholar]
- Bing, W.; Zhu, Y. Effects of moisture content and additives on the ensiling quality and vitamins changes of alfalfa silage with or without rain damage. Anim. Sci. J. 2020, 91, 1344–1353. [Google Scholar]
- Wang, Q.; Wang, R.; Wang, C.; Dong, W.; Zhang, Z.; Zhao, L.; Zhang, X. Effects of cellulase and Lactobacillus plantarum on fermentation quality, chemical composition, and microbial community of mixed silage of whole-plant corn and peanut vines. Appl. Biochem. Biotechnol. 2022, 194, 2465–2480. [Google Scholar] [CrossRef] [PubMed]
- Romero, F.; Van Horn, H.H.; Prine, G.M.; French, E.C. Effect of Cutting Interval upon Yield, Composition and Digestibility of Florida 77 Alfalfa and Florigraze Rhizoma Peanut. J. Anim. Sci. 1987, 65, 786–796. [Google Scholar] [CrossRef]
- Qin, M.; Shen, Y. Effect of application of a bacteria inoculant and wheat bran on fermentation quality of peanut vine ensiled alone or with corn stover. J. Integr. Agric. 2013, 12, 556–560. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Xue, X.; Zhang, X.; Wang, H.; Gao, T.; Clive, P. Effect of feeding a diet comprised of various corn silages inclusion with peanut vine or whea t straw on performance, digestion, serum parameters and meat nutrients in finishing beef cattle. Anim. Biosci. 2022, 35, 29–38. [Google Scholar] [CrossRef]
- Wang, M.; Gao, R.; Franco, M.; David, B.H.; Ke, W.; Ding, Z.; Yu, Z.; Guo, X. Effect of mixing alfalfa with whole-plant corn in different proportions on fermentation characteristics and bacterial community of silage. Agriculture 2021, 11, 174–185. [Google Scholar] [CrossRef]
- Mao, K.; Yu, Z.; Huang, S.; Wang, M.; Hannaway, D.B. Effect of storage period on the fermentation profile and bacterial community of silage prepared with alfalfa, whole-plant corn and their mixture. Fermentation 2022, 8, 486. [Google Scholar] [CrossRef]
- Tian, J.; Li, Z.; Yu, Z.; Zhang, Q.; Li, X. Interactive effect of inoculant and dried jujube powder on the fermentation quality and nitrogen fraction of alfalfa silage. Anim. Sci. J. 2017, 88, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tian, J.; Zhang, Q.; Jing, Y.; Wu, Z. Effects of mixing red clover with alfalfa at different ratios on dynamics of proteolysis and protease activities during ensiling. J. Dairy Sci. 2018, 101, 8954–8964. [Google Scholar] [CrossRef]
- Wang, C.; He, L.; Xing, Y.; Zhou, W.; Yang, F. Fermentation quality and microbial community of alfalfa and stylo silage mixed with Moringa oleifera leaves. Bioresour. Technol. 2019, 284, 240–247. [Google Scholar] [CrossRef]
- Wang, C.; He, L.; Xing, Y.; Zhou, W.; Yang, F. Effects of mixing Neolamarckia cadamba leaves on fermentation quality, microbial community of high moisture alfalfa and stylo silage. Microb. Biotechnol. 2019, 12, 869–878. [Google Scholar] [CrossRef]
- Eikmeyer, F.G.; Köfinger, P.; Poschenel, A.; Sebastian, J.; Martha, Z.; Stefan, H.; Elisabeth, M.; Reingard, G.; Alfred, P.; Helmut, S.; et al. Metagenome analyses reveal the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community involved in grass ensiling. J. Biotechnol. 2013, 167, 334–343. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Z.; Wang, X.; Tian, J. Effects of inoculants and environmental temperature on fermentation quality and bacterial diversity of alfalfa silage. Anim. Sci. J. 2018, 89, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Song, S. Research on Silage Modulation Technology of Natural Grassland on Hebei Dam. Master’s Thesis, Agricultural University of Hebei, Baoding, China, 2019. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Murphy, R.P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J. Sci. Food Agric. 1958, 9, 714–717. [Google Scholar] [CrossRef]
- Baur, F.J.; Ensminger, L.G. Official Methods of Analysis; Association of Official Analytical Chemist: Washington, DC, USA, 1990. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Wang, X. “Dong Nong No.1” CNCPS Nutrients and Rumen Degradation Rate. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2016. [Google Scholar]
- Wang, J.; Zhang, Z.; Liu, H.; Xu, J.; Liu, T.; Wang, C.; Zheng, C. Evaluation of gas production, fermentation parameters, and nutrient degradability in different proportions of sorghum straw and ammoniated wheat straw. Fermentation 2022, 8, 415–431. [Google Scholar] [CrossRef]
- Guo, T.; Dai, L.; Yan, B.; Lan, G.; Li, F.; Li, F.; Pan, F.; Wang, F. Measurements of chemical compositions in corn stover and wheat straw by near-infrared reflectance spectroscopy. Animals 2021, 11, 3328–3340. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhou, Y.; Liu, S.; Yang, D.; Li, J.; Sun, L.; Cui, Z. The Effect of Oat Hay, Alfalfa Hay, and Their Combined Diets on the Morphology and Function of the Pancreas in Preweaning Yak Calves. Animals 2023, 13, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E. Factors influencing silage quality and their implications for management. J. Dairy Sci. 1988, 71, 2992–3002. [Google Scholar] [CrossRef]
- Selmer-Olsen, I. Enzymes as silage additives for grass–clover mixtures. Grass Forage Sci. 1994, 49, 305–315. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, H.; Liu, Y. Effects of moisture and Additives on silage quality of Alfalfa. In Proceedings of the 16th (2019) China Sheep Industry Development Conference and Qingyang Farming Culture Festival, China, 18 September 2019; pp. 209–213. [Google Scholar]
- Xu, C. Modern Silage Theory and Technology; Science Publishing House: New York, NY, USA, 2013. [Google Scholar]
- Fairbairn, R.; Alli, I.; Baker, B.E. Proteolysis associated with the ensiling of chopped alfalfa. J. Dairy Sci. 1988, 71, 152–158. [Google Scholar] [CrossRef]
- Asian, A.; Okamoto, M.; Yoshihira, T.; Ataku, K.; Narasaki, N. Effect of ensiling with acremonium cellulase, lactic acid bacterial and formic acid on tissue structure of timothy and alfalfa. Asian-Australas. J. Anim. Sci. 1997, 10, 593–598. [Google Scholar] [CrossRef]
- Cheng, F.; Yang, J.; Xia, M.; Guo, R.; Ren, Q.; Ci, R.; Li, L.; Yu, H. Effects of Water content and Additives of different Raw Materials on the quality of Alfalfa silage. Feed Res. 2020, 43, 106–109. [Google Scholar]
- Yang, Y.; Wang, M.; Yu, Z.; Wang, X.; Xue, H. Interaction effects of different Additives and Raw material Water content on the quality of Alfalfa silage. J. Grassl. 2017, 25, 1138–1144. [Google Scholar]
- Wan, D. Study on the Effect of Lactobacillus Brucelli on the Quality of Corn Silage with Different Water Content. Master’s Thesis, Shanxi Agricultural University, Taiyuan, China, 2016. [Google Scholar]
- Zhou, H. Regulation and control techniques of forage silage. Shandong Anim. Husb. Vet. 2020, 41, 24–26. [Google Scholar]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.M.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [PubMed]
- Zhao, M.; Tang, Z.; Li, M.; Cao, X.; Di, L.; Li, C. Effect of mixed silage with different proportion of alfalfa and corn straw on fermentation quality. J. Agric. Yanbian Univ. 2018, 40, 35–41. [Google Scholar]
- Mou, A.; Zhang, L.; Zi, X.; Li, M.; Lv, R.; Hu, H.; Tang, J.; Zhou, H. Effects of sucrose addition on quality and nutritional composition of cassava leaf silage. J. Livest. Ecol. 2022, 43, 65–68. [Google Scholar]
- Wang, Z.; He, J.; Lv, J.; Qin, L. Nutritional analysis of different varieties of corn straw silage in Harbin. Heilongjiang Anim. Husb. Vet. 2018, 307, 138–142. [Google Scholar]
- Wei, C.; You, W.; Wan, F.; Zhao, H.; Tan, X.; Liu, X. Nutritional value and Rumen degradation of Wheat Straw in different regions. Feed Ind. 2018, 39, 13–17. [Google Scholar]
- Wang, M.; Wang, L.; Yu, Z. Fermentation dynamics and bacterial diversity of mixed lucerne and sweet corn stalk silage ensiled at six ratios. Grass Forage Sci. 2019, 74, 264–273. [Google Scholar] [CrossRef]
- Martens, S.D.; Korn, U.; Roscher, S.; Pieper, B.; Steinhfel, O. Effect of tannin extracts on protein degradation during ensiling of ryegrass or lucerne. Grass Forage Sci. 2019, 74, 284–296. [Google Scholar] [CrossRef]
- Dentinho, M.T.; Paulos, K.; Paula, P.V.; Moreira, O.C.; Santos-Silva, J.; Bessa, R.J. Proteolysis and in situ ruminal degradation of lucerne ensiled with Cistus ladanifer tannins. Grass Forage Sci. 2019, 74, 78–85. [Google Scholar] [CrossRef]
- Zhou, J. Evaluation of Nutritional Value of Roughage Commonly Used in Buffalo by CNCPS. Master’s Thesis, Guangxi University, Nanning, China, 2012. [Google Scholar]
- Sun, H.; Chu, H.; Ding, W.; Zang, Q.; Qin, J.; Shi, H. Using CNCPS system to evaluate the nutritional value of roughage commonly used in Green Goat in Heze Agricultural area. Mod. Livest. Vet. 2021, 2, 16–20. [Google Scholar]
- Spatharis, S.; Roelke, D.L.; Dimitrakopoulos, P.G.; Kokkoris, G.D. Analyzing the (mis) behavior of Shannon index in eutrophication studies field and simulated phytoplankton assemblages. Ecol. Indic. 2011, 11, 697–703. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhou, W.; Kokkoris, G.D. Effects of wilting and Lactobacillus plantarum addition on the fermentation quality and microbial community of Moringa oleifera leaf silage. Front. Microbiol. 2018, 9, 1817–1825. [Google Scholar] [CrossRef]
- Sa, D.W.; Lu, Q.; Wang, Z.; Ge, G.; Sun, L.; Jia, Y. The potential and effects of saline-alkali alfalfa microbiota under salt stress on the fermentation quality and microbial. BMC Microbiol. 2021, 21, 149. [Google Scholar] [CrossRef]
- Spoelstra, S.F. Degradation of nitrate by enterobacteria during silage fermentation of grass. Neth. J. Agric. Sci. 1987, 35, 43–54. [Google Scholar] [CrossRef]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Dellaglio, F.; Torriani, S. DNA-DNA homology, physiological characteristics and distribution of lactic acid bacteria isolated from maize silage. J. Appl. Microbiol. 1986, 60, 83–92. [Google Scholar]
- Graf, K.; Ulrich, A.; Idler, C.; Klock, M. Bacterial community dynamics during ensiling of perennial ryegrass at two compaction levels monitored by terminal restriction fragment length polymorphism. J. Appl. Microbiol. 2016, 120, 1479–1491. [Google Scholar]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef]
Item | Alfalfa | Peanut Vine |
---|---|---|
DM (g/kg FW) | 233.67 ± 1.86 | 928.57 ± 0.75 |
CP (g/kg DM) | 205.84 ± 0.48 | 72.36 ± 0.77 |
NDF (g/kg DM) | 434.25 ± 8.76 | 575.20 ± 7.69 |
ADF (g/kg DM) | 342.72 ± 5.54 | 466.70 ± 2.73 |
WSC (g/kg DM) | 35.90 ± 0.22 | 39.28 ± 1.09 |
Ash (g/kg DM) | 145.39 ± 2.07 | 86.52 ± 0.87 |
TP (g/kg CP) | 685.81 ± 2.08 | 852.58 ± 1.15 |
NPN/(g/kg CP) | 314.19 ± 2.08 | 147.42 ± 1.15 |
SP (g/kg CP) | 402.10 ± 1.62 | 240.55 ± 0.92 |
NDIP (g/kg CP) | 197.21 ± 0.44 | 273.03 ± 1.17 |
ADIP (g/kg CP) | 191.05 ± 0.15 | 231.88 ± 2.61 |
PA (g/kg CP) | 314.19 ± 2.08 | 147.42 ± 1.15 |
PB1 (g/kg CP) | 87.92 ± 0.64 | 93.13 ± 1.95 |
PB2 (g/kg CP) | 400.69 ± 1.93 | 486.42 ± 1.30 |
PB3 (g/kg CP) | 6.16 ± 0.31 | 41.15 ± 1.72 |
PC (g/kg CP) | 191.05 ± 0.15 | 231.88 ± 2.61 |
Lactic acid bacteria (log10 cfu/g FW) | 5.25 ± 0.01 | 3.76 ± 0.09 |
Aerobic bacteria (log10 cfu/g FW) | 6.00 ± 0.05 | 4.94 ± 0.05 |
Yeast (log10 cfu/g FW) | 4.43 ± 0.07 | 4.06 ± 0.09 |
Item | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
pH | 7.36 ± 0.03 a | 5.56 ± 0.05 b | 5.26 ± 0.01 c | 5.06 ± 0.03 d | 4.86 ± 0.01 e |
AA (g/kg DM) | 20.11 ± 0.41 c | 18.47 ± 0.17 d | 23.25 ± 0.22 b | 24.78 ± 0.75 a | 25.77 ± 1.45 a |
PA (g/kg DM) | 10.50 ± 0.49 a | 2.30 ± 0.03 b | 0.75 ± 0.01 c | 0.27 ± 0.09 d | 0 d |
BA (g/kg DM) | 17.69 ± 0.30 a | 3.37 ± 0.10 b | 0.40 ± 0 c | 0 c | 0 c |
LA (g/kg DM) | 10.36 ± 0.30 d | 12.86 ± 0.36 c | 26.74 ± 0.33 b | 29.72 ± 0.82 a | 31.05 ± 0.64 a |
NH3-N (g/kg TN) | 65.02 ± 2.20 a | 36.38 ± 1.02 b | 23.96 ± 0.95 c | 22.75 ± 1.03 c | 21.27 ± 1.53 c |
Lactic acid bacteria (log10 cfu/g FW) | 4.86 ± 0.04 d | 5.57 ± 0.02 a | 5.38 ± 0.03 b | 5.35 ± 0.01 b | 4.97 ± 0.03 c |
Aerobic bacteria (log10 cfu/g FW) | 4.87 ± 0.01 d | 5.12 ± 0.06 a | 4.75 ± 0.01 b | 4.07 ± 0.08 d | 4.42 ± 0.05 c |
Yeast (log10 cfu/g FW) | 4.67 ± 0.05 d | 5.56 ± 0.02 a | 5.31 ± 0.02 b | 5.34 ± 0.01 b | 5.00 ± 0.03 c |
Item | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
DM (g/kg FW) | 205.16 ± 3.63 e | 349.59 ± 2.16 d | 424.14 ± 2.68 c | 516.37 ± 7.36 b | 594.76 ± 9.12 a |
CP (g/kg DM) | 171.65 ± 0.44 a | 151.23 ± 2.15 b | 136.22 ± 1.24 c | 133.32 ± 2.30 c | 124.68 ± 2.29 d |
NDF (g/kg DM) | 492.84 ± 2.92 d | 549.88 ± 6.82 bc | 541.52 ± 5.13 c | 562.23 ± 7.86 b | 582.88 ± 3.70 a |
ADF (g/kg DM) | 379.55 ± 15.30 c | 435.44 ± 12.71 b | 441.85 ± 7.47 ab | 458.88 ± 10.03 ab | 476.15 ± 5.64 a |
WSC (g/kg DM) | 12.19 ± 0.50 d | 13.27 ± 0.46 d | 15.74 ± 0.60 c | 20.83 ± 0.65 b | 29.80 ± 1.11 a |
Ash (g/kg DM) | 137.86 ± 1.47 a | 120.61 ± 0.99 b | 115.61 ± 0.93 c | 117.46 ± 2.56 bc | 109.93 ± 0.54 d |
Item | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
TP (g/kg CP) | 396.39 ± 2.39 d | 373.92 ± 5.60 e | 428.55 ± 5.17 c | 492.08 ± 2.74 b | 524.33 ± 7.56 a |
NPN (g/kg CP) | 603.61 ± 2.39 b | 626.08 ± 2.42 a | 571.45 ± 5.17 c | 507.92 ± 2.73 d | 475.67 ± 7.56 e |
SP (g/kg CP) | 603.58 ± 3.33 b | 643.00 ± 2.28 a | 596.11 ± 5.80 b | 542.46 ± 5.23 c | 519.79 ± 7.37 d |
NDIP (g/kg CP) | 142.49 ± 3.50 c | 170.51 ± 4.93 b | 171.26 ± 1.27 b | 179.34 ± 4.36 b | 209.86 ± 8.76 a |
ADIP (g/kg CP) | 144.85 ± 4.42 a | 127.35 ± 1.56 b | 147.49 ± 1.52 a | 152.55 ± 6.06 a | 156.99 ± 6.26 a |
Item | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
PA (g/kg CP) | 603.61 ± 2.39 b | 626.08 ± 2.42 a | 571.45 ± 5.17 c | 507.92 ± 2.73 d | 475.67 ± 7.56 e |
PB1(g/kg CP) | 0.58 ± 0 e | 15.18 ± 0.39 d | 29.62 ± 1.48 c | 35.63 ± 0.78 b | 40.07 ± 0.45 a |
PB2 (g/kg CP) | 250.46 ± 5.24 b | 190.64 ± 8.48 c | 229.58 ± 8.17 b | 277.12 ± 7.12 a | 280.01 ± 9.42 a |
PB3 (g/kg CP) | 0.50 ± 0.04 d | 37.39 ± 1.16 b | 24.72 ± 0.45 c | 26.75 ± 1.39 c | 47.26 ± 6.64 a |
PC (g/kg CP) | 144.85 ± 4.42 a | 127.35 ± 1.65 b | 147.49 ± 1.52 a | 152.55 ± 6.06 a | 156.99 ± 6.26 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wu, C.; Zu, X.; Wang, X.; Yu, X.; Chen, H.; Xu, L.; Wang, M.; Li, Q. Effect of Mixing Peanut Vine on Fermentation Quality, Nitrogen Fraction and Microbial Community of High-Moisture Alfalfa Silage. Fermentation 2023, 9, 713. https://doi.org/10.3390/fermentation9080713
Sun Y, Wu C, Zu X, Wang X, Yu X, Chen H, Xu L, Wang M, Li Q. Effect of Mixing Peanut Vine on Fermentation Quality, Nitrogen Fraction and Microbial Community of High-Moisture Alfalfa Silage. Fermentation. 2023; 9(8):713. https://doi.org/10.3390/fermentation9080713
Chicago/Turabian StyleSun, Yu, Chunhui Wu, Xiaowei Zu, Xiaolin Wang, Xiaomeng Yu, Huan Chen, Ling Xu, Mingya Wang, and Qiufeng Li. 2023. "Effect of Mixing Peanut Vine on Fermentation Quality, Nitrogen Fraction and Microbial Community of High-Moisture Alfalfa Silage" Fermentation 9, no. 8: 713. https://doi.org/10.3390/fermentation9080713
APA StyleSun, Y., Wu, C., Zu, X., Wang, X., Yu, X., Chen, H., Xu, L., Wang, M., & Li, Q. (2023). Effect of Mixing Peanut Vine on Fermentation Quality, Nitrogen Fraction and Microbial Community of High-Moisture Alfalfa Silage. Fermentation, 9(8), 713. https://doi.org/10.3390/fermentation9080713