By-Product from Livestock Waste Recovery System Used as Fertilizer: Bioactive Compounds and Antioxidant Activity of Tomato Fruit as Affected by Fertilization under Field and Greenhouse Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fertilizer Sources
2.2. Field Experiment
2.3. Greenhouse Experiment
2.4. Sampling and Analytical Methods
2.4.1. Tomato Fruit Yield
2.4.2. Analysis of Sugars
2.4.3. Analysis of Organic Acids
2.4.4. Analysis of Phenolic Compounds
2.4.5. Analysis of Chemical Parameters
2.5. Statistical Analysis
3. Results and Discussion
3.1. Tomato Yield
3.2. Sugar Contents
3.3. Organic Acid Contents
3.4. Phenolic Compound Contents
3.5. Total Phenolic and Flavonoid Contents
3.6. Antioxidant Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vijay, V.K. Biogas enrichment and bottling technology for vehicular use. Biogas Forum 2011, 1, 12–15. [Google Scholar]
- Haga, K. Development of composting technology in animal waste treatment review. Asian Aus. J. Anim. Sci. 1991, 12, 604–606. [Google Scholar] [CrossRef]
- Boldrin, A.; Andersen, J.K.; Møller, J.; Christensen, T.H.; Favoino, E. Composting and compost utilization: Accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 2009, 27, 800–812. [Google Scholar] [PubMed] [Green Version]
- Zhang, M.; Heaney, D.; Henriquez, B.; Solberg, E.; Bittner, E. A four-year study on influence of biosolids/MSW cocompost application in less productive soils in Alberta: Nutrient dynamics. Compos. Sci. Util. 2006, 14, 68–80. [Google Scholar]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Sorathiya, L.M.; Fulsoundar, A.B.; Tyagi, K.K.; Patel, M.D.; Singh, R.R. Eco-friendly and modern methods of livestock waste recycling for enhancing farm profitability. Int. J. Recycl. Org. Waste Agric. 2014, 3, 50. [Google Scholar]
- Qi, G.; Pan, Z.; Sugawa, Y.; Andriamanohiarisoamanana, F.J.; Yamashiro, T.; Iwasaki, M.; Umetsu, K. Comparative fertilizer properties of digestates from mesophilic and thermophilic anaerobic digestion of dairy manure: Focusing on plant growth promoting bacteria (PGPB) and environmental risk. J. Mater. Cycles Waste Manag. 2018, 20, 1448–1457. [Google Scholar]
- Sambusiti, C.; Monlau, F.; Ficara, E.; Carrère, H.; Malpei, F. A comparison of different pre-treatments to increase methane production from two agricultural substrates. Appl. Energy 2013, 104, 62–70. [Google Scholar]
- Baryga, A.; Połeć, B.; Klasa, A. The Effects of Soil Application of Digestate Enriched with P, K, Mg and B on Yield and Processing Value of Sugar Beets. Fermentation 2021, 7, 241. [Google Scholar]
- Antoniou, N.; Monlau, F.; Sambusiti, C.; Ficara, E.; Barakat, A.; Zabaniotou, A. Contribution to Circular Economy options of mixed agricultural wastes management: Coupling anaerobic digestion with gasification for enhanced energy and material recovery. J. Clean. Prod. 2019, 209, 505–514. [Google Scholar]
- Cristina, G.; Camelin, E.; Pugliese, M.; Tommasi, T.; Fino, D. Evaluation of anaerobic digestates from sewage sludge as a potential solution for improvement of soil fertility. Waste Manag. 2019, 99, 122–134. [Google Scholar] [PubMed]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar]
- Bolzonella, D.; Fatone, F.; Gottardo, M.; Frison, N. Nutrients recovery from anaerobic digestate of agro-waste: Techno–economic assessment of full scale applications. J. Environ. Manag. 2018, 216, 111–119. [Google Scholar]
- Li, F.; Yuan, Y.; Gong, P.; Imazumi, Y.; Na, R.; Shimuzu, N. Comparative effects of mineral fertilizer and digestate on growth, antioxidant system, and physiology of lettuce under salt stress. Hortic. Environ. Biotechnol. 2023, 64, 379–391. [Google Scholar]
- Marzouk, H.A.; Kassem, H.A. Improving fruit quality, nutritional value and yield of Zaghloul dates by the application of organic and/or mineral fertilizers. Sci. Hortic. 2011, 127, 249–254. [Google Scholar]
- Ilahy, R.; Hdider, C.; Lenucci, M.S.; Tlili, I.; Dalessandro, G. Phytochemical composition and antioxidant activity of high-lycopene tomato (Solanum lycopersicum L.) cultivars grown in Southern Italy. Sci. Hortic. 2011, 127, 255–261. [Google Scholar]
- Asadollahi, A.; Abbaszadeh, B.; Torkashvand, A.M.; Jahromi, M.G. Effect of levels and types of organic, biological, and chemical fertilizers on morphological traits, yield, and uptake rate of elements in Satureja mutica. Ind. Crop. Prod. 2022, 181, 114763. [Google Scholar]
- Luthria, D.; Singh, A.P.; Wilson, T.; Vorsa, N.; Banuelos, G.S.; Vinyard, B.T. Influence of conventional and organic agricultural practices on the phenolic content in eggplant pulp: Plant-to-plant variation. Food Chem. 2010, 121, 406–411. [Google Scholar]
- Wang, L.; Guo, S.; Wang, Y.; Yi, D.; Wang, J. Poultry biogas slurry can partially substitute for mineral fertilizers in hydroponic lettuce production. Environ. Sci. Pollut. Res. 2019, 26, 659–671. [Google Scholar]
- Zhang, M.; Sun, D.; Niu, Z.; Yan, J.; Zhou, X.; Kang, X. Effects of combined organic/inorganic fertilizer application on growth, photosynthetic characteristics, yield and fruit quality of Actinidia chinesis cv ‘Hongyang’. Glob. Ecol. Conserv. 2020, 22, e00997. [Google Scholar]
- Hernández, T.; Chocano, C.; Moreno, J.L.; García, C. Towards a more sustainable fertilization: Combined use of compost and inorganic fertilization for tomato cultivation. Agric. Ecosyst. Environ. 2014, 196, 178–184. [Google Scholar]
- Bilalis, D.; Krokida, M.; Roussis, I.; Papastylianou, P.; Travlos, I.; Cheimona, N.; Dede, A. Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill.). Folia Hortic. 2018, 30, 321–332. [Google Scholar]
- Anton, D.; Matt, D.; Pedastsaar, P.; Bender, I.; Kazimierczak, R.; Roasto, M.; Kaart, T.; Luik, A.; Püssa, T. Three-year comparative study of polyphenol contents and antioxidant capacities in fruits of tomato (Lycopersicon esculentum Mill.) cultivars grown under organic and conventional conditions. J. Agric. Food Chem. 2014, 62, 5173–5180. [Google Scholar] [PubMed]
- Xi, W.; Zhang, Q.; Lu, X.; Wei, C.; Yu, S.; Zhou, Z. Improvement of flavour quality and consumer acceptance during postharvest ripening in greenhouse peaches by carbon dioxide enrichment. Food Chem. 2014, 164, 219–227. [Google Scholar] [PubMed]
- Wang, X.X.; Zhao, F.; Zhang, G.; Zhang, Y.; Yang, L. Vermicompost improves tomato yield and quality and the biochemical properties of soils with different tomato planting history in a greenhouse study. Front. Plant Sci. 2017, 8, 1978. [Google Scholar]
- Rajapaksha, D.S.W.; Shimizu, N. Valorization of spent black tea by recovery of antioxidant polyphenolic compounds: Subcritical solvent extraction and microencapsulation. Food Sci. Nutr. 2020, 8, 4297–4307. [Google Scholar]
- Yuan, Y.; Shimizu, N.; Li, F.; Magaña, J.; Li, X. Buckwheat waste depolymerization using a subcritical ethanol solution for extraction of bioactive components: From the laboratory to pilot scale. J. Environ. Chem. Eng. 2023, 11, 109807. [Google Scholar]
- Zhang, D.; Hamauzu, Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004, 88, 503–509. [Google Scholar]
- Zhao, Y.; Wang, P.; Li, J.; Chen, Y.; Ying, X.; Liu, S. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat–maize cropping system. Eur. J. Agron. 2009, 31, 36–42. [Google Scholar]
- Wu, W.; Lin, Z.; Zhu, X.; Li, G.; Zhang, W.; Chen, Y.; Ren, L.; Luo, S.; Lin, H.; Zhou, H.; et al. Improved tomato yield and quality by altering soil physicochemical properties and nitrification processes in the combined use of organic-inorganic fertilizers. Eur. J. Soil Biol. 2022, 109, 103384. [Google Scholar]
- Cristina, G.; Camelin, E.; Tommasi, T.; Fino, D.; Pugliese, M. Anaerobic digestates from sewage sludge used as fertilizer on a poor alkaline sandy soil and on a peat substrate: Effects on tomato plants growth and on soil properties. J. Environ. Manag. 2020, 269, 110767. [Google Scholar]
- Chew, K.W.; Chia, S.R.; Yen, H.W.; Nomanbhay, S.; Ho, Y.C.; Show, P.L. Transformation of biomass waste into sustainable organic fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef] [Green Version]
- Riahi, A.; Hdiner, C.; Sanaa, M.; Tarchoun, N.; Kheder, M.B.; Guezal, N. Effect of conventional and organic production system on the yield and quality of field tomato cultivars grown in Tunisia. J. Sci. Food Agric. 2009, 89, 2275–2282. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, J.; Ren, R.; Fan, B.; Hou, L.; Li, J. Effects of different organic nutrient solution formulations and supplementation on tomato fruit quality and aromatic volatiles. Arch. Agron. Soil Sci. 2021, 67, 563–575. [Google Scholar] [CrossRef]
- Li, W.X.; Lu, X.; Li, J.M. The effect of organic nutrient solution on flavor in ripe cherry tomato fruit—Transcriptome and metabolomic analyses. Environ. Exp. Bot. 2022, 194, 104721. [Google Scholar] [CrossRef]
- Hu, K.; Xu, S.; Gao, Y.; He, Y.; Wang, X. Choline chloride and rhamnolipid combined with organic manures improve salinity tolerance, yield, and quality of tomato. J. Plant Growth Regul. 2022, 42, 4118–4130. [Google Scholar] [CrossRef]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef] [PubMed]
- Pieper, J.R.; Barrett, D.M. Effects of organic and conventional production systems on quality and nutritional parameters of processing tomatoes. J. Sci. Food Agric. 2009, 89, 177–194. [Google Scholar] [CrossRef]
- Liao, L.; Dong, T.; Qiu, X.; Rong, Y.; Wang, Z.; Zhu, J. Nitrogen nutrition is a key modulator of the sugar and organic acid content in citrus fruit. PLoS ONE 2019, 14, e0223356. [Google Scholar]
- Dong, M.; Xin, R.; Li, Z.Y.; Li, Y.L.; Huang, X.H.; Dong, X.P.; Zhu, B.; Qin, L. Simultaneously quantification of organic acids metabolites by HPLC mass spectrometry to reveal the postharvest quality change in cherry tomato. J. Food Compos. Anal. 2023, 117, 105105. [Google Scholar] [CrossRef]
- Frías-Moreno, M.N.; Parra-Quezada, R.A.; González-Aguilar, G.; Ruíz-Canizales, J.; Molina-Corral, F.J.; Sepulveda, D.R.; Olivas, G.I. Quality, bioactive compounds, antioxidant capacity, and enzymes of raspberries at different maturity stages, effects of organic vs. Conventional fertilization. Foods 2021, 10, 953. [Google Scholar]
- Erdinc, C.; Ekincialp, A.; Gundogdu, M.; Eser, F.; Sensoy, S. Bioactive components and antioxidant capacities of different miniature tomato cultivars grown by altered fertilizer applications. J. Food Meas. Charact. 2018, 12, 1519–1529. [Google Scholar] [CrossRef]
- Erba, D.; Casiraghi, M.C.; Ribas-Agustí, A.; Cáceres, R.; Marfà, O.; Castellari, M. Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by different agronomic techniques. J. Food Compos. Anal. 2013, 31, 245–251. [Google Scholar] [CrossRef]
- Panuccio, M.R.; Papalia, T.; Attinà, E.; Giuffrè, A.; Muscolo, A. Use of digestate as an alternative to mineral fertilizer: Effects on growth and crop quality. Arch. Agron. Soil Sci. 2019, 65, 700–711. [Google Scholar]
- Lee, M.E.; Steiman, M.W.; Angelo, S.K.S. Biogas digestate as a renewable fertilizer: Effects of digestate application on crop growth and nutrient composition. Renew. Agr. Food Syst. 2021, 36, 173–181. [Google Scholar]
- Naguib, A.E.M.M.; El-Baz, F.K.; Salama, Z.A.; Hanaa, H.A.E.B.; Ali, H.F.; Gaafar, A.A. Enhancement of phenolics, flavonoids and glucosinolates of Broccoli (Brassica olaracea, var. Italica) as antioxidants in response to organic and bio-organic fertilizers. J. Saudi Soc. Agric. Sci. 2012, 11, 135–142. [Google Scholar]
- Gündogdu, M.; Muradoglu, F.; Gazioglu Sensoy, R.I.; Yilmaz, H. Determination of fruit chemical properties of Morus nigra L. Morus alba L. and Morus rubra L. by HPLC. Sci. Hortic. 2011, 132, 37–41. [Google Scholar]
- Bhandari, S.R.; Cho, M.C.; Lee, J.G. Genotypic variation in carotenoid, ascorbic acid, total phenolic, and flavonoid contents, and antioxidant activity in selected tomato breeding lines. Hortic. Environ. Biotechnol. 2016, 57, 440–452. [Google Scholar] [CrossRef]
- Vinha, A.F.; Alves, R.C.; Barreira, S.V.; Castro, A.; Costa, A.S.; Oliveira, M.B.P. Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT-Food Sci. Technol. 2014, 55, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Panuccio, M.R.; Mallamaci, C.; Attinà, E.; Muscolo, A. Using digestate as fertilizer for a sustainable tomato cultivation. Sustainability 2021, 13, 1574. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, R.; Sharopov, F.; Namiesnik, J.; Roointan, A.; Kamle, M.; Sharifi-Rad, J. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition 2019, 62, 201–208. [Google Scholar]
- Lenucci, M.S.D.; Cadinu, M.; Taurino, G.; Piro, G. Dalessandro, Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem. 2006, 54, 2606–2613. [Google Scholar] [CrossRef] [PubMed]
- Kroon, P.A.; Williamson, G. Hydroxycinnamates in plants and food: Current and future perspectives. J. Sci. Food Agric. 1999, 79, 355–361. [Google Scholar] [CrossRef]
- Zanfini, A.; Corbini, G.; La Rosa, C.; Dreassi, E. Antioxidant activity of tomato lipophilic extracts and interactions between carotenoids and α-tocopherol in synthetic mixtures. LWT-Food Sci. Technol. 2010, 43, 67–72. [Google Scholar] [CrossRef]
- Kaushal, N.; Singh, M.; Sangwan, R.S. Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res. Int. 2022, 157, 111442. [Google Scholar] [PubMed]
Moisture | C | N | P | K | Ca | Mg | Fe | Mn | Zn | Cu | |
---|---|---|---|---|---|---|---|---|---|---|---|
% | % dm | % dm | % dm | % dm | % dm | % dm | % dm | ppm dm | ppm dm | ppm dm | |
Digestate | 94.93 | 40.45 | 2.133 | 1.463 | 4.469 | 2.306 | 0.963 | 0.195 | 183.6 | 337.0 | 55.4 |
Compost | 65.10 | 40.51 | 2.502 | 0.673 | 3.055 | 1.496 | 0.552 | 0.574 | 349.4 | 136.5 | 21.5 |
Parameter | Unit | Field | Greenhouse |
---|---|---|---|
Attributes | Sandy soil | Loamy soil | |
P-absorption coefficient | 480 | 1099 | |
CEC | cmol kg−1 | 0.97 | 2.93 |
TN | g kg−1 | 0.89 | 1.982 |
Olsen-P | mg 100 g−1 | 6.4 | 38.1 |
K exchangeable | mg 100 g−1 | 22 | 61.0 |
Ca exchangeable | mg 100 g−1 | 157.8 | 401.1 |
Mg exchangeable | mg 100 g−1 | 15.8 | 39.4 |
Cu | ppm | 3.93 | 2.86 |
Zn | ppm | 3.17 | 25.75 |
Mn | ppm | 19.18 | 156.11 |
B | ppm | 0.30 | 0.73 |
Treatment | Citric Acid | Fumaric Acid | Malic Acid | Oxalic Acid | Succinic Acid | Tartaric Acid |
---|---|---|---|---|---|---|
Field | (mg 100 g−1) | (mg 100 g−1) | (mg 100 g−1) | (mg 100 g−1) | (mg 100 g−1) | (mg 100 g−1) |
CK | 404.87 ± 17.51 c | 0.64 ± 0.07 c | 25.94 ± 1.27 c | 0.36 ± 0.05 c | 22.73 ± 3.34 b | 22.94 ± 3.68 b |
NPK | 621.73 ± 31.67 a | 2.33 ± 0.39 b | 53.56 ± 3.05 b | 0.85 ± 0.04 b | 50.90 ± 5.75 a | 49.63 ± 8.42 a |
Digestate | 489.29 ± 20.60 b | 4.10 ± 0.47 a | 72.52 ± 2.45 a | 1.08 ± 0.05 a | 54.14 ± 4.98 a | 53.51 ± 8.65 a |
Compost | 476.5 ± 16.74 b | 3.56 ± 0.42 a | 68.20 ± 2.91 a | 1.06 ± 0.04 a | 51.86 ± 6.74 a | 51.60 ± 7.44 a |
Greenhouse | ||||||
CK | 626.48 ± 7.81 c | 1.29 ± 0.17 c | 41.10 ± 1.40 c | 0.65 ± 0.01 c | 43.66 ± 4.04 b | 32.69 ± 7.11 b |
NPK | 747.30 ± 17.16 a | 3.17 ± 0.41 b | 63.98 ± 1.42 b | 1.36 ± 0.01 b | 66.45 ± 7.05 a | 64.36 ± 4.20 a |
Digestate | 652.42 ± 9.34 bc | 4.52 ± 0.28 a | 75.76 ± 2.80 a | 1.48 ± 0.02 a | 66.09 ± 5.21 a | 66.93 ± 7.09 a |
Compost | 658.63 ± 18.95 b | 4.22 ± 0.32 a | 75.79 ± 1.06 a | 1.49 ± 0.01 a | 62.81 ± 5.15 a | 65.31 ± 8.85 a |
F-value | ||||||
CE | 510.80 *** | 21.46 ** | 103.77 *** | 974.54 *** | 45.16 *** | 19.42 *** |
FT | 86.43 *** | 115.08 *** | 436.75 *** | 778.90 *** | 33.62 *** | 27.77 *** |
CE × FT | 6.81 * | 0.40 ns | 7.83 * | 12.33 ** | 1.04 ns | 0.14 ns |
Treatment | Chlorogenic Acid | Gallic Acid | Rutin | Quercetin | Syringic Acid |
---|---|---|---|---|---|
Field | (ug g−1) | (ug g−1) | (ug g−1) | (ug g−1) | (ug g−1) |
CK | 9.36 ± 1.35 c | 4.18 ± 0.25 c | 2.62 ± 0.14 c | 0.92 ± 0.08 c | 4.18 ± 0.21 c |
NPK | 14.57 ± 1.63 b | 6.33 ± 0.36 b | 4.15 ± 0.13 b | 1.46 ± 0.06 b | 5.55 ± 0.27 b |
Digestate | 34.90 ± 1.72 a | 9.88 ± 1.00 a | 5.40 ± 0.11 a | 1.83 ± 0.07 a | 8.61 ± 0.33 a |
Compost | 33.24 ± 1.38 a | 9.58 ± 0.81 a | 5.45 ± 0.06 a | 1.82 ± 0.04 a | 8.52 ± 0.22 a |
Greenhouse | |||||
CK | 18.36 ± 1.30 c | 6.87 ± 0.35 c | 9.28 ± 0.61 c | 2.30 ± 0.04 c | 9.15 ± 0.17 b |
NPK | 29.83 ± 1.54 b | 10.84 ± 0.38 b | 11.18 ± 0.75 b | 2.73 ± 0.10 b | 9.63 ± 0.15 ab |
Digestate | 41.04 ± 2.92 a | 14.06 ± 0.45 a | 14.76 ± 0.94 a | 3.16 ± 0.11 a | 9.92 ± 0.17 a |
Compost | 43.48 ± 1.54 a | 13.68 ± 0.37 a | 13.68 ± 0.65 a | 3.21 ± 0.06 a | 9.91 ± 0.55 a |
F-value | |||||
CE | 204.05 *** | 292.15 *** | 1282.77 *** | 1970.24 *** | 630.76 *** |
FT | 289.91 *** | 177.20 *** | 74.74 *** | 197.97 *** | 119.348 *** |
CE × FT | 7.156 * | 3.21 ns | 7.91 ** | 0.79 ns | 63.79 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Yuan, Y.; Han, N.; Li, X.; Bai, R.; Magaña, J.; Shimizu, N. By-Product from Livestock Waste Recovery System Used as Fertilizer: Bioactive Compounds and Antioxidant Activity of Tomato Fruit as Affected by Fertilization under Field and Greenhouse Conditions. Fermentation 2023, 9, 714. https://doi.org/10.3390/fermentation9080714
Li F, Yuan Y, Han N, Li X, Bai R, Magaña J, Shimizu N. By-Product from Livestock Waste Recovery System Used as Fertilizer: Bioactive Compounds and Antioxidant Activity of Tomato Fruit as Affected by Fertilization under Field and Greenhouse Conditions. Fermentation. 2023; 9(8):714. https://doi.org/10.3390/fermentation9080714
Chicago/Turabian StyleLi, Faqinwei, Yongheng Yuan, Nanding Han, Xiaojue Li, Ruijie Bai, Jorge Magaña, and Naoto Shimizu. 2023. "By-Product from Livestock Waste Recovery System Used as Fertilizer: Bioactive Compounds and Antioxidant Activity of Tomato Fruit as Affected by Fertilization under Field and Greenhouse Conditions" Fermentation 9, no. 8: 714. https://doi.org/10.3390/fermentation9080714
APA StyleLi, F., Yuan, Y., Han, N., Li, X., Bai, R., Magaña, J., & Shimizu, N. (2023). By-Product from Livestock Waste Recovery System Used as Fertilizer: Bioactive Compounds and Antioxidant Activity of Tomato Fruit as Affected by Fertilization under Field and Greenhouse Conditions. Fermentation, 9(8), 714. https://doi.org/10.3390/fermentation9080714