Effects of Administration of Prebiotics Alone or in Combination with Probiotics on In Vitro Fermentation Kinetics, Malodor Compound Emission and Microbial Community Structure in Swine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Preparation of Freeze-Dried Fattening Diet (Fermentation Substrate)
2.3. Preparation of the Fecal Inoculant
2.4. Composition of the Additives
2.5. In Vitro Fermentation
2.6. Analysis of In Vitro Fermentation Parameters
2.7. Odor Gas Measurement
2.8. Volatile Fatty Acid Analysis
2.9. Genomic DNA Extraction
2.10. Quantitative Real-Time Polymerase-Chain Reaction Analysis
2.11. 16S rRNA Amplification and iSeq Sequencing
2.12. Statistical Analysis
3. Results
3.1. Changes in Total Gas Production and pH in the In Vitro Fermentation
3.2. Changes of the Odorous Compounds in the In Vitro Fermentation
3.3. Volatile Fatty Acid (VFA) Production after 24 h of In Vitro Fermentation
3.4. Quantification of the Number of Bacterial Communities (Copies/g)
3.5. Dynamics of the Bacterial Community during the Whole Fermentation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piva, A.; Galvano, F.; Biagi, G.; Casadei, G. Intestinal fermentation: Dietary and microbial interactions. In Biology of Growing Animals; Elsevier: Amsterdam, The Netherlands, 2006; pp. 3–31. [Google Scholar]
- Piccardo, M.; Geretto, M.; Pulliero, A.; Izzotti, A. Odor emissions: A public health concern for health risk perception. Environ. Res. 2022, 204, 112121. [Google Scholar] [CrossRef] [PubMed]
- Hayes, E.T.; Leek, A.; Curran, T.P.; Dodd, V.; Carton, O.T.; Beattie, V.; O’Doherty, J.V. The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses. Bioresour. Technol. 2004, 91, 309–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, R.; Berrocoso, J.F. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Anim. Feed Sci. Technol. 2016, 212, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Zervas, S.; Zijlstra, R. Effects of dietary protein and fermentable fiber on nitrogen excretion patterns and plasma urea in grower pigs. J. Anim. Sci. 2002, 80, 3247–3256. [Google Scholar] [CrossRef] [PubMed]
- Cortus, E.; Lemay, S.; Barber, E.; Hill, G.; Godbout, S. A dynamic model of ammonia emission from urine puddles. Biosyst. Eng. 2008, 99, 390–402. [Google Scholar] [CrossRef]
- Gibson, G.R.; Probert, H.M.; Van Loo, J.; Rastall, R.A.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef] [Green Version]
- Sako, T.; Matsumoto, K.; Tanaka, R. Recent progress on research and applications of non-digestible galacto-oligosaccharides. Int. Dairy J. 1999, 9, 69–80. [Google Scholar] [CrossRef]
- Tzortzis, G.; Vulevic, J. Galacto-oligosaccharide prebiotics. In Prebiotics and Probiotics Science and Technology; Springer: Berlin/Heidelberg, Germany, 2009; p. 207. [Google Scholar]
- Grimaldi, R.; Swann, J.R.; Vulevic, J.; Gibson, G.R.; Costabile, A. Fermentation properties and potential prebiotic activity of Bimuno® galacto-oligosaccharide (65% galacto-oligosaccharide content) on in vitro gut microbiota parameters. Br. J. Nutr. 2016, 116, 480–486. [Google Scholar] [CrossRef] [Green Version]
- Dewi, G.; Kollanoor Johny, A. Lactobacillus in food animal production—A forerunner for clean label prospects in animal-derived products. Front. Sustain. Food Syst. 2022, 6, 831195. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.; Kim, J.; Choi, I.; Ahn, H.; Dong, J.I.; Kim, H. Microbial additives in controlling odors from stored swine slurry. Water Air Soil Pollut. 2015, 226, 104. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Ahmed, S.T.; Islam, M.M.; Yang, C.-J. Evaluation of Bacillus amyloliquefaciens as manure additive for control of odorous gas emissions from pig slurry. Afr. J. Microbiol. Res. 2014, 8, 2540–2546. [Google Scholar]
- Wang, Y.; Cho, J.H.; Chen, Y.J.; Yoo, J.S.; Huang, Y.; Kim, H.J.; Kim, I.H. The effect of probiotic BioPlus 2B® on growth performance, dry matter and nitrogen digestibility and slurry noxious gas emission in growing pigs. Livest. Sci. 2009, 120, 35–42. [Google Scholar] [CrossRef]
- Zhu, J. A review of microbiology in swine manure odor control. Agric. Ecosyst. Environ. 2000, 78, 93–106. [Google Scholar] [CrossRef]
- Huang, C.; Li, J.; Kang, W.-L.; Tang, X.-Y. Effect of adding Lactobacillus plantarum and soluble carbohydrates to swine manure on odorous compounds, chemical composition and indigenous flora. J. Environ. Sci. 2006, 18, 201–206. [Google Scholar]
- Nykänen, A.M.; Hämäläinen, N.; Kostia, S.; Mikola, J.; Romantschuk, M. Reduction of odorants in swine manure by carbohydrate and bacterial amendments. J. Environ. Qual. 2010, 39, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Boisen, S.; Fernández, J.A. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Anim. Feed Sci. Technol. 1997, 68, 277–286. [Google Scholar] [CrossRef]
- McDougall, E.I. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.; Rakhisi, Z.; Ahmady, A.Z. Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties. Avicenna J. Clin. Microbiol. Infect. 2015, 2, 23233. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhu, Y.H.; Li, D.F.; Wang, Z.; Jensen, B.B. In vitro fermentation of various fiber and starch sources by pig fecal inocula. J. Anim. Sci. 2004, 82, 2615–2622. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- van Winsen, R.L.; Lipman, L.J.A.; Biesterveld, S.; Urlings, B.A.P.; Snijders, J.M.A.; van Knapen, F. Mechanism of Salmonella reduction in fermented pig feed. J. Sci. Food Agric. 2001, 81, 342–346. [Google Scholar] [CrossRef]
- Wang, Y.; Ametaj, B.N.; Ambrose, D.J.; Ganzle, M.G. Characterisation of the bacterial microbiota of the vagina of dairy cows and isolation of pediocin-producing Pediococcus acidilactici. BMC Microbiol. 2013, 13, 19. [Google Scholar] [CrossRef] [Green Version]
- Kook, S.Y.; Kim, Y.; Kang, B.; Choe, Y.H.; Kim, Y.H.; Kim, S. Characterization of the fecal microbiota differs between age groups in Koreans. Intest. Res. 2018, 16, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Shen, C.J.; Jia, G.; Wang, K.N. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism. Genet. Mol. Res. 2013, 12, 1766–1776. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Jackson, J.A.; Vilgalys, R.; Jackson, R.B. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 2005, 71, 4117–4120. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Xia, X.; Tang, R.; Zhou, J.; Zhao, H.; Wang, K. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett. Appl. Microbiol. 2008, 47, 367–373. [Google Scholar] [CrossRef]
- Bartosch, S.; Fite, A.; Macfarlane, G.T.; McMurdo, M.E. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol. 2004, 70, 3575–3581. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Farias, C.; Slezak, K.; Fuller, Z.; Duncan, A.; Holtrop, G.; Louis, P. Effect of inulin on the human gut microbiota: Stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 2008, 101, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Dubernet, S.; Desmasures, N.; Guéguen, M. A PCR-based method for identification of lactobacilli at the genus level. FEMS Microbiol. Lett. 2002, 214, 271–275. [Google Scholar] [CrossRef]
- Cleusix, V.; Lacroix, C.; Dasen, G.; Leo, M.; Le Blay, G. Comparative study of a new quantitative real-time PCR targeting the xylulose-5-phosphate/fructose-6-phosphate phosphoketolase bifidobacterial gene (xfp) in faecal samples with two fluorescence in situ hybridization methods. J. Appl. Microbiol. 2010, 108, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, M.; Martín-Orúe, S.M.; Manzanilla, E.G.; Badiola, I.; Martín, M.; Gasa, J. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Vet. Microbiol. 2006, 114, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Agrawala, M.; Cohen, M.F. Soft scissors: An interactive tool for realtime high quality matting. In Proceedings of the ACM Transactions on Graphics (TOG), San Diego, CA, USA, 5–9 August 2007. [Google Scholar]
- Cole, J.R.; Wang, Q.; Chai, B.; Tiedje, J.M. The ribosomal database project: Sequences and software for high-throughput rRNA analysis. In Handbook of Molecular Microbial Ecology I: Metagenomics Complementary Approaches; Wiley: Hoboken, NJ, USA, 2011; pp. 313–324. [Google Scholar]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2021, 50, D20–D26. [Google Scholar] [CrossRef]
- Devulder, G.; Perriere, G.; Baty, F.; Flandrois, J.-P. BIBI, a bioinformatics bacterial identification tool. J. Clin. Microbiol. 2003, 41, 1785–1787. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Australia, 2013. [Google Scholar]
- Kolde, R. pheatmap: Pretty Heatmaps, R Package Version. 2012, Volume 1, p. 726. Available online: https://cran.r-project.org/web/packages/pheatmap/index.html (accessed on 12 June 2023).
- Ernst, F.G.M.; Shetty, S.A.; Borman, T.; Lahti, L. mia: Microbiome Analysis. 2023. Available online: https://github.com/microbiome/mia (accessed on 12 June 2023).
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef] [Green Version]
- Penas, E.; Frias, J.; Sidro, B.; Vidal-Valverde, C. Chemical evaluation and sensory quality of sauerkrauts obtained by natural and induced fermentations at different NaCl levels from Brassica oleracea Var. capitata Cv. Bronco grown in eastern Spain. Effect of storage. J. Agric. Food Chem. 2010, 58, 3549–3557. [Google Scholar] [CrossRef]
- Le, P.D.; Aarnink, A.J.; Ogink, N.W.; Becker, P.M.; Verstegen, M.W. Odour from animal production facilities: Its relationship to diet. Nutr. Res. Rev. 2005, 18, 3–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zicarelli, F.; Calabro, S.; Cutrignelli, M.I.; Infascelli, F.; Tudisco, R.; Bovera, F.; Piccolo, V. In vitro fermentation characteristics of diets with different forage/concentrate ratios: Comparison of rumen and faecal inocula. J. Sci. Food Agric. 2011, 91, 1213–1221. [Google Scholar] [CrossRef] [Green Version]
- Mauricio, R.M.; Owen, E.; Mould, F.L.; Givens, I.; Theodorou, M.K.; France, J.; Davies, D.R.; Dhanoa, M.S. Comparison of bovine rumen liquor and bovine faeces as inoculum for an in vitro gas production technique for evaluating forages. Anim. Feed Sci. Technol. 2001, 89, 33–48. [Google Scholar] [CrossRef]
- Váradyová, Z.; Baran, M.; Zeleňák, I. Comparison of two in vitro fermentation gas production methods using both rumen fluid and faecal inoculum from sheep. Anim. Feed Sci. Technol. 2005, 123, 81–94. [Google Scholar] [CrossRef]
- Awati, A.; Williams, B.A.; Bosch, M.W.; Li, Y.C.; Verstegen, M.W. Use of the in vitro cumulative gas production technique for pigs: An examination of alterations in fermentation products and substrate losses at various time points. J. Anim. Sci. 2006, 84, 1110–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.J.; Mamuad, L.L.; Kim, S.H.; Jeong, C.D.; Sung, H.G.; Cho, S.B.; Jeon, C.O.; Lee, K.; Lee, S.S. Effect of Phytogenic Feed Additives in Soybean Meal on In vitro Swine Fermentation for Odor Reduction and Bacterial Community Comparison. Asian-Australas. J. Anim. Sci. 2013, 26, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gibson, G.R.; Sailer, M.; Theis, S.; Rastall, R.A. Prebiotics inhibit proteolysis by gut bacteria in a host diet-dependent manner: A three-stage continuous in vitro gut model experiment. Appl. Environ. Microbiol. 2020, 86, e02730-19. [Google Scholar] [CrossRef]
- Naidu, A.S.; Xie, X.; Leumer, D.A.; Harrison, S.; Burrill, M.J.; Fonda, E.A. Reduction of sulfide, ammonia compounds, and adhesion properties of Lactobacillus casei strain KE99 in vitro. Curr. Microbiol. 2002, 44, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Bianco-Miotto, T.; Craig, J.M.; Gasser, Y.P.; van Dijk, S.J.; Ozanne, S.E. Epigenetics and DOHaD: From basics to birth and beyond. J. Dev. Orig. Health Dis. 2017, 8, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Neri-Numa, I.A.; Pastore, G.M. Novel insights into prebiotic properties on human health: A review. Food Res. Int. 2020, 131, 108973. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, E.; Grootaert, C.; Verstraete, W.; Van de Wiele, T. Propionate as a health-promoting microbial metabolite in the human gut. Nutr. Rev. 2011, 69, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Barcenilla, A.; Pryde, S.E.; Martin, J.C.; Duncan, S.H.; Stewart, C.S.; Henderson, C.; Flint, H.J. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Env. Microbiol. 2000, 66, 1654–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Wichienchot, S.; He, X.; Fu, X.; Huang, Q.; Zhang, B. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci. Technol. 2019, 88, 1–9. [Google Scholar] [CrossRef]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [Green Version]
- Levine, U.Y.; Looft, T.; Allen, H.K.; Stanton, T.B. Butyrate-producing bacteria, including mucin degraders, from the swine intestinal tract. Appl. Environ. Microbiol. 2013, 79, 3879–3881. [Google Scholar] [CrossRef] [Green Version]
- Lan, G.; Ho, Y.; Abdullah, N. Mitsuokella jalaludinii sp. nov., from the rumens of cattle in Malaysia. Int. J. Syst. Evol. Microbiol. 2002, 52, 713–718. [Google Scholar]
- Smith, E.A.; Macfarlane, G.T. Enumeration of amino acid fermenting bacteria in the human large intestine: Effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol. Ecol. 1998, 25, 355–368. [Google Scholar] [CrossRef]
- Sridharan, G.V.; Choi, K.; Klemashevich, C.; Wu, C.; Prabakaran, D.; Pan, L.B.; Steinmeyer, S.; Mueller, C.; Yousofshahi, M.; Alaniz, R.C. Prediction and quantification of bioactive microbiota metabolites in the mouse gut. Nat. Commun. 2014, 5, 5492. [Google Scholar] [CrossRef] [Green Version]
- Kersters, K.; De Vos, P.; Gillis, M.; Swings, J.; Vandamme, P.; Stackebrandt, E. Introduction to the Proteobacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria; Springer: Berlin/Heidelberg, Germany, 2006; pp. 3–37. [Google Scholar]
- Welch, R.A. The genus Escherichia. Prokaryotes 2006, 6, 60–71. [Google Scholar]
- Iino, T.; Mori, K.; Tanaka, K.; Suzuki, K.-I.; Harayama, S. Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int. J. Syst. Volutionary Microbiol. 2007, 57, 1840–1845. [Google Scholar] [CrossRef] [Green Version]
- Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep. 2017, 7, 43412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magee, R.J.; Kosaric, N. The microbial production of 2, 3-butanediol. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 1987; pp. 89–161. [Google Scholar]
- Pajarillo, E.A.B.; Chae, J.P.; Balolong, M.P.; Kim, H.B.; Seo, K.-S.; Kang, D.-K. Characterization of the fecal microbial communities of Duroc pigs using 16S rRNA gene pyrosequencing. Asian-Australas. J. Anim. Sci. 2015, 28, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muyzer, G.; Stams, A.J. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 2008, 6, 441–454. [Google Scholar] [CrossRef]
- Grech-Mora, I.; Fardeau, M.-L.; Patel, B.; Ollivier, B.; Rimbault, A.; Prensier, G.; Garcia, J.-L.; Garnier-Sillam, E. Isolation and characterization of Sporobacter termitidis gen. nov., sp. nov., from the digestive tract of the wood-feeding termite Nasutitermes lujae. Int. J. Syst. Evol. Microbiol. 1996, 46, 512–518. [Google Scholar] [CrossRef] [Green Version]
- Alakomi, H.-L.; Skytta, E.; Saarela, M.; Mattila-Sandholm, T.; Latva-Kala, K.; Helander, I. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 2000, 66, 2001–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Holy, M.A.; Castro, L.F.; Al-Qadiri, H. Inactivation of Cronobacter spp. (Enterobacter sakazakii) in infant formula using lactic acid, copper sulfate and monolaurin. Lett. Appl. Microbiol. 2010, 50, 246–251. [Google Scholar] [CrossRef]
- Quintero, M.; Maldonado, M.; Perez-Munoz, M.; Jimenez, R.; Fangman, T.; Rupnow, J.; Wittke, A.; Russell, M.; Hutkins, R. Adherence inhibition of Cronobacter sakazakii to intestinal epithelial cells by prebiotic oligosaccharides. Curr. Microbiol. 2011, 62, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Ke, A.; Parreira, V.R.; Goodridge, L.; Farber, J.M. Current and future perspectives on the role of probiotics, prebiotics, and synbiotics in controlling pathogenic Cronobacter spp. in infants. Front. Microbiol. 2021, 12, 755083. [Google Scholar] [CrossRef]
Category | Treatment * |
---|---|
Control | Fecal inoculum only (no additives) |
T1 | Fecal inoculum + Lactobacillus amylovorus 107 (1 mL) |
T2 | Fecal inoculum + Lactobacillus plantarum 107 (1 mL) |
T3 | Fecal inoculum + Oligo-galactans (0.5 g) |
T4 | Fecal inoculum + Oligo-galactans (0.5 g) + L. amylovorus 107 (1 mL) |
T5 | Fecal inoculum + Oligo-galactans (0.5 g) + L. plantarum 107 (1 mL) |
Target | Primer Name 1 | Primer Sequence (5′ to 3′) | Amplicon Length | Annealing Temp (°C) | Reference |
---|---|---|---|---|---|
All bacteria | Eub338 F | ACTCCTACGGGAGGCAGCAG | 200 | 60 | [28] |
Eub518 R | ATTACCGCGGCTGCTGG | ||||
Firmicutes | Firm934 F | GGAGYATGTGGTTTAATTCGAAGCA | 126 | 60 | [29] |
Firm1060 R | AGCTGACGACAACCATGCAC | ||||
Bacteroides | Bac303 F | GAAGGTCCCCCACATTG | 103 | 60 | [30] |
Bfr-Fm R | CGCKACTTGGCTGGTTCAG | [31] | |||
Lactobacillus | LBLMA1 F | CTCAAAACTAAACAAAGTTTC | 210 | 57 | [32] |
16-1 R | CTTGTACACCGCCCGTCA | ||||
Bifidobacterium | xfp F | ATCTTCGGACCBGAYGAGAC | 235 | 60 | [33] |
xfp R | CGATVACGTGVACGAAGGAC | ||||
Faecalibacterium prausnitzii | FPR-2 F | GGAGGAAGAAGGTCTTCGG | 248 | 60 | [31] |
Fprau645 R | AATTCCGCCTACCTCTGCACT | ||||
Enterobacteriaceae | ent-F | ATGGCTGTCGTCAGCTCGT | 385 | 59 | [34] |
ent-R | CCTACTTCTTTTGCAACCCACTC |
Time (24 h) | Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Con | T1 | T2 | T3 | T4 | T5 | |||
Total bacteria | 10.00 c | 10.25 c | 10.13 c | 10.73 ab | 10.78 a | 10.32 bc | 0.126 | 0.0085 |
Firmicutes | 9.33 c | 9.54 c | 9.43 c | 9.94 ab | 9.98 a | 9.59 bc | 0.106 | 0.0092 |
Bacteroides | 8.32 b | 8.63 b | 8.28 b | 9.28 ab | 9.80 a | 9.03 ab | 0.265 | 0.0375 |
Lactobacillus | 8.90 b | 8.53 b | 8.78 b | 10.52 ab | 11.69 a | 9.34 b | 0.555 | 0.0260 |
Bifidobacterium | 6.93 | 6.97 | 6.86 | 6.97 | 7.18 | 7.11 | 0.084 | 0.3074 |
Faecalibacterium prausnitzii | 7.22 a | 7.27 a | 7.04 b | 7.24 a | 7.29 a | 7.28 a | 0.050 | 0.0413 |
Enterobacteriaceae | 8.80 ab | 9.20 a | 8.61 abc | 8.18 bc | 8.27 bc | 8.04 c | 0.189 | 0.0177 |
Taxon | Control | T1 | T2 | T3 | T4 | T5 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
Phylum | ||||||||
Firmicutes | 42.49 c | 44.14 c | 37.76 c | 77.79 a | 70.41 a | 55.84 b | 2.877 | <0.0001 |
Bacteroidetes | 32.02 a | 32.31 a | 36.22 a | 16.73 b | 22.30 b | 33.48 a | 2.262 | 0.0005 |
Proteobacteria | 20.92 a | 19.53 a | 21.13 a | 3.83 b | 3.97 b | 5.71 b | 1.178 | <0.0001 |
Fusobacteria | 1.26 ab | 1.42 ab | 2.14 a | 0.27 c | 0.80 bc | 1.16 b | 0.246 | 0.0095 |
Actinobacteria | 0.75 c | 0.36 c | 0.40 c | 0.84 c | 1.54 b | 2.43 a | 0.198 | <0.0001 |
Genus | ||||||||
Bacteroides | 17.07 bc | 18.10 ab | 21.09 ab | 12.12 d | 13.22 cd | 22.50 a | 1.433 | 0.0020 |
Mitsuokella | 9.25 c | 9.57 c | 8.43 c | 26.67 a | 27.50 a | 18.31 b | 1.298 | <0.0001 |
Megasphaera | 6.70 c | 6.25 c | 5.81 c | 27.39 a | 25.39 a | 18.93 b | 1.634 | <0.0001 |
Prevotella | 8.91 a | 9.24 a | 8.83 a | 2.79 b | 7.26 a | 8.44 a | 0.686 | 0.0008 |
Lactobacillus | 3.32 c | 3.55 c | 2.51 c | 4.87 b | 6.57 a | 6.36 a | 0.396 | <0.0001 |
Escherichia | 4.79 b | 5.11 b | 8.70 a | 1.51 c | 1.29 c | 2.16 c | 0.639 | 0.0002 |
Serratia | 6.03 a | 6.21 a | 4.35 a | 0.61 b | 0.70 b | 0.95 b | 0.508 | 0.0001 |
Sporobacter | 3.83 b | 4.35 b | 5.76 a | 1.85 c | 1.04 c | 1.74 c | 0.355 | <0.0001 |
Cronobacter | 4.77 a | 4.47 a | 2.58 b | 0.73 c | 0.40 c | 0.44 c | 0.276 | <0.0001 |
Acidaminococcus | 3.60 | 3.92 | 1.26 | 1.12 | 1.75 | 1.32 | 0.668 | 0.2040 |
Succinivibrio | 2.71 a | 1.25 de | 2.28 ab | 0.86 e | 1.46 cd | 1.97 bc | 0.161 | <0.0001 |
Phascolarctobacterium | 1.31 | 1.19 | 1.35 | 1.25 | 0.97 | 1.14 | 0.250 | 0.9392 |
PAC001115_g | 1.81 b | 2.76 a | 2.31 ab | 0.89 c | 0.59 c | 0.71 c | 0.212 | 0.0002 |
Oscillibacter | 1.72 a | 2.06 a | 1.53 a | 0.64 b | 0.46 b | 0.72 b | 0.222 | 0.0037 |
Fusobacterium | 1.26 ab | 1.30 ab | 2.04 a | 0.27 c | 0.80 bc | 1.16 abc | 0.251 | 0.0206 |
Unclassified Selenomonadaceae | 1.36 b | 0.84 b | 0.42 b | 3.83 a | 0.14 b | 0.16 b | 0.295 | 0.0001 |
Clostridium | 0.30 c | 0.18 c | 0.33 c | 2.38 a | 2.07 ab | 1.39 b | 0.209 | 0.0004 |
Desulfovibrio | 2.21 a | 1.83 a | 1.92 a | 0.04 b | 0.04 b | 0.05 b | 0.157 | <0.0001 |
Unclassified Veillonellaceae | 0.65 b | 1.19 b | 0.54 b | 3.58 a | 0.04 b | 0.03 b | 0.334 | 0.0015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Choi, Y.; Bayo, J.; Bugenyi, A.W.; Kim, Y.; Heo, J. Effects of Administration of Prebiotics Alone or in Combination with Probiotics on In Vitro Fermentation Kinetics, Malodor Compound Emission and Microbial Community Structure in Swine. Fermentation 2023, 9, 716. https://doi.org/10.3390/fermentation9080716
Lee M, Choi Y, Bayo J, Bugenyi AW, Kim Y, Heo J. Effects of Administration of Prebiotics Alone or in Combination with Probiotics on In Vitro Fermentation Kinetics, Malodor Compound Emission and Microbial Community Structure in Swine. Fermentation. 2023; 9(8):716. https://doi.org/10.3390/fermentation9080716
Chicago/Turabian StyleLee, Maro, Yeonjae Choi, Joel Bayo, Andrew Wange Bugenyi, Yangseon Kim, and Jaeyoung Heo. 2023. "Effects of Administration of Prebiotics Alone or in Combination with Probiotics on In Vitro Fermentation Kinetics, Malodor Compound Emission and Microbial Community Structure in Swine" Fermentation 9, no. 8: 716. https://doi.org/10.3390/fermentation9080716
APA StyleLee, M., Choi, Y., Bayo, J., Bugenyi, A. W., Kim, Y., & Heo, J. (2023). Effects of Administration of Prebiotics Alone or in Combination with Probiotics on In Vitro Fermentation Kinetics, Malodor Compound Emission and Microbial Community Structure in Swine. Fermentation, 9(8), 716. https://doi.org/10.3390/fermentation9080716