Effects of Different Primary Processing Methods on the Flavor of Coffea arabica Beans by Metabolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemical Standards
2.2. Analysis of Non-Volatile Compounds
2.3. Analysis of Volatile Compounds
2.4. Sensory Evaluation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Differentially Changed Non-Volatile Compounds (DCnVCs)
3.2. Analysis of Differentially Changed Volatile Compounds (DCVCs)
3.3. Analysis of Sensory Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Febrianto, N.A.; Zhu, F. Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chem. 2023, 412, 135489. [Google Scholar] [CrossRef]
- Pereira, G.V.D.M.; Neto, D.P.D.C.; Júnior, A.I.M.; Vásquez, Z.S.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Soccol, C.R. Exploring the impacts of postharvest processing on the aroma formation of coffee beans—A review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Worku, M.; Astatkie, T.; Boeckx, P. Effect of growing conditions and postharvest processing on arabica coffee bean physical quality features and defects. Heliyon 2022, 8, e09201. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Park, S.J.; Yu, J.S.; Lee, D.Y. Interactive effect of post-harvest processing method, roasting degree, and brewing method on coffee metabolite profiles. Food Chem. 2022, 397, 133749. [Google Scholar] [CrossRef]
- Barbin, D.F.; Felicio, A.L.D.S.M.; Sun, D.W.; Nixdorf, S.L.; Hirooka, E.Y. Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview. Food Res. Int. 2014, 61, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.S.; Ferreira, M.M.C.; Salva, T.J.G. Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy. Talanta 2011, 83, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- Várady, M.; Tauchen, J.; Fraňková, A.; Klouček, P.; Popelka, P. Effect of method of processing specialty coffee beans (natural, washed, honey, fermentation, maceration) on bioactive and volatile compounds. LWT 2022, 172, 114245. [Google Scholar] [CrossRef]
- Huch, M.; Franz, C.M.A.P. Coffee: Fermentation and microbiota. In Advances in Fermented Foods and Beverages; Woodhead Publishing: Sawston, UK, 2015; pp. 501–513. [Google Scholar]
- Vilela, D.M.; Pereira, G.V.D.M.; Silva, C.F.L.; Batista, R.; Schwan, R.F. Molecular ecology and polyphasic characterization of the microbiota associated with semi-dry processed coffee (Coffea arabica L.). Food Microbiol. 2010, 27, 1128–1135. [Google Scholar] [CrossRef]
- Widodo, P.B.; Yulianto, M.E.; Ariyanto, H.D.; Paramita, V. Efficacy of natural and full washed post-harvest processing variations on arabica coffee characteristics. Mater. Proc. 2023. [Google Scholar] [CrossRef]
- Xie, M.; Chen, W.; Lai, X.; Dai, H.; Sun, H.; Zhou, X.; Chen, T. Metabolic responses and their correlations with phytochelatins in Amaranthus hypochondriacus under cadmium stress. Environ. Pollut. 2019, 252, 1791–1800. [Google Scholar] [CrossRef]
- Han, C.; Zheng, Y.; Wang, L.; Zhou, C.; Wang, J.; He, J.; Sun, Y.; Cao, J.; Pang, D.; Xia, Q. Contribution of process-induced molten-globule state formation in duck liver protein to the enhanced binding ability of (E,E)-2,4-heptadienal. J. Sci. Food Agric. 2023, 103, 3334–3345. [Google Scholar] [CrossRef]
- Liu, K.; Liu, X.; Wang, T.; Wang, Q.; Feng, L.; Su, R.; Zhang, M.; Xu, B.; Chen, F.; Li, P. Optimization of main ingredient ratio, metabolomics analysis, and antioxidant activity analysis of lycopene-enriched compound fruit wine. Fermentation 2023, 9, 591. [Google Scholar] [CrossRef]
- Ongo, E.A.; Montevecchi, G.; Antonelli, A.; Sberveglieri, V.; Lii, F.S. Metabolomics fingerprint of philiooine coffee by SPME-GC-MS for geographical and varietal classification. Food Res. Int. 2020, 134, 109227. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, B.; Zheng, T.; Zhao, C.; Shen, X.; Wang, X.; Qiu, M.; Fan, J. Integrating metabolomics and proteomics technologies provides insights into the flavor precursor changes at different maturity stages of arabica coffee cherries. Foods 2023, 12, 1432. [Google Scholar] [CrossRef]
- Vezzulli, F.; Rocchetti, G.; Lambri, M.; Lucini, L. Metabolomics combined with sensory analysis reveals the import of different extraction methods on coffee beverages from Coffea arabica and Coffea canephora var. Robusta. Foods 2022, 11, 807. [Google Scholar] [CrossRef]
- Montis, A.; Souard, F.; Delporate, C.; Stoffelen, P.; Stevigny, C.; Antwerpen, P.V. Targeted and untargeted mass spectrometry-based metabolomics for chemical profiling of three coffee species. Molecules 2022, 27, 3152. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.J.; Nie, F.Q.; Fang, H.X.; Liu, K.Y.; Li, Z.L.; Li, X.Y.; Chen, R.M.; Chen, R.; Zheng, T.T.; Fan, J.P. Comparison of chemical compositions, antioxidant activities, and acetylcholinesterase inhibitory activities between coffee flowers and leaves as potential novel foods. Food Sci. Nutr. 2022, 11, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Sittipod, S.; Schwartz, E.; Paravisini, L.; Peterson, D.G. Identification of flavor modulating compounds that positively impact coffee quality. Food Chem. 2019, 301, 125250. [Google Scholar] [CrossRef]
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Silva, A.C.R.; Silva, C.C.D.; Garrett, R.; Rezende, C.M. Comprehensive lipid analysis of green Arabica coffee beans by LC-HRMS/MS. Food Res. Int. 2020, 137, 109727. [Google Scholar] [CrossRef]
- Silva, A.C.R.; Garrett, R.; Rezende, C.M.; Meckelmann, S.W. Lipid characterization of arabica and robusta coffee beans by liquid chromatography-ion mobility-mass spectrometry. J. Food Compos. Anal. 2022, 111, 104587. [Google Scholar] [CrossRef]
- Williamson, K.; Hatzakis, E. Evaluating the effect of roasting on coffee lipids using a hybrid targeted-untargeted NMR approach in combination with MRI. Food Chem. 2019, 299, 125039. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Tello, E.; Simons, C.T.; Peterson, D.G. Identification of subthreshold chlorogenic acid lactones that contribute to flavor instability of ready-to-drink coffee. Food Chem. 2022, 395, 133555. [Google Scholar] [CrossRef] [PubMed]
- Asamenew, G.; Kim, H.; Lee, M.; Lee, S.; Lee, S.; Cha, Y.; Lee, S.H.; Yoo, S.M.; Kim, J. Comprehensive characterization of hydroxycinnamoyl derivatives in green and roasted coffee beans: A new group of methyl hydroxycinnamoyl quinate. Food Chem. X 2019, 2, 100033. [Google Scholar] [CrossRef]
- Amalia, F.; Aditiawati, P.; Yusinto; Putri, S.P.; Fukusaki, E. Gas chromatography/mass spectrometry-based metabolite profiling of coffee beans obtained from different altitudes and origins with various postharvest processing. Metabolomics 2021, 17, 69. [Google Scholar] [CrossRef]
- Bruyn, F.D.; Zhang, S.J.; Pothakos, V.; Torres, J.; Lambot, C.; Moroni, A.; Callanan, M.; Sybesma, W.; Weckx, S.; Vuyst, L. Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. App. Environ. Microbiol. 2016, 83, e02398-16. [Google Scholar] [CrossRef] [Green Version]
- Yulianti, Y.; Adawiyah, D.R.; Herawati, D.; Indrasti, D.; Andarwulan, N. Detection of markers in green beans and roasted beans of Kalosi-enrekang arabica coffee with different postharvest processing using LC-MS/MS. Int. J. Food Sci. 2023, 2023, 6696808. [Google Scholar] [CrossRef] [PubMed]
- Getachew, A.T.; Chun, B. Coffee flavor. In Encylopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 48–53. [Google Scholar]
- Wang, Y.B.; Wang, X.Y.; Hu, G.L.; Hong, D.F.; Bai, X.H.; Guo, T.Y.; Zhou, H.; Li, J.H.; Qiu, M.H. Chemical ingredients characterization basing on 1H NMR and SHS-GC/MS in twelve cultivars of Coffea arabica roasted beans. Food Res. Int. 2021, 147, 110544. [Google Scholar] [CrossRef]
- Wang, Y.B.; Wang, X.Y.; Hu, G.L.; Zhang, Z.R.; Al-Romaima, A.; Bai, X.H.; Li, J.H.; Zhou, L.; Li, Z.R.; Qiu, M.H. Comparative studies of fermented coffee fruits post-treatments on chemical and sensory properties of roasted beans in Yunnan, China. Food Chem. 2023, 423, 136332. [Google Scholar] [CrossRef]
- Hu, G.L.; Peng, X.R.; Gao, Y.; Huang, Y.J.; Li, X.; Su, H.G.; Qiu, M.H. Effect of roasting degree of coffee beans on sensory evaluation: Research from the perspective of major chemical ingredients. Food Chem. 2020, 331, 127329. [Google Scholar] [CrossRef]
- Zhao, L.F.; Wang, Y.H.; Wang, D.Y.; He, Z.J.; Gong, J.S.; Tan, C. Effects of different probiotics on the volatile compounds of fermented coffee were analyzed based on headspace-gas chromatography-ion mobility spectrometry. Foods 2023, 12, 2015. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Macías, E.T.; López, C.F.; Gentile, P.; Girón-Hernández, J.; López, A.F. Impact of post-harvest treatments on physicochemical and sensory characteristics of coffee beans in Huila, Colombia. Postharvest Biol. Technol. 2022, 187, 111852. [Google Scholar] [CrossRef]
- Mullem, J.J.V.; Filho, J.S.D.S.B.; Dias, D.R.; Schwan, R.F. Chemical and sensory characterization of coffee from Coffea arabica cv. Mundo Novo and cv. Catuai Vermelho obtained by four different post-harvest processing methods. J. Sci. Food Agric. 2022, 102, 6687–6695. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Zhao, J. Coffee fermentation: Expedition from traditional to controlled process and perspectives for industrialization. Appl. Food Res. 2023, 3, 100253. [Google Scholar] [CrossRef]
- Cassiniro, D.M.D.J.; Bastista, N.N.; Fonseca, H.C.; Naves, J.A.O.; Coelho, J.M.; Bernardes, P.C.; Dias, D.R.; Schwan, R.F. Wet fermentation of Coffea canephora by lactic acid bacteria and yeasts using the self-induced anaerobic fermentation (SIAF) method enhances the coffee quality. Food Microbiol. 2023, 110, 104161. [Google Scholar] [CrossRef]
- Velásquez, S.; Banchón, C. Influence pf pre-and-harvest factors on the organoleptic and physicochemical quality of coffee: A short revew. J. Food Sci. Technol. 2022, 15, 1–13. [Google Scholar]
- Joët, T.; Lafargue, A.; Descroix, F.; Doulbeau, S.; Bertrand, B.; Kochko, A.D.; Dussert, S. Infuence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica cofee beans. Food Chem. 2010, 118, 693–701. [Google Scholar] [CrossRef]
- Gumecindo-Alejo, A.L.; Sánchez-Landero, L.A.; Ortiz-Ceballos, G.C.; Cabrera, C.R.C.; Alvarado-Castillo, G. Factors related to coffee quality, based on the “Cup of Excellence” contest in Mexico. Cofee Sci. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Bastian, F.; Hutabarat, O.S.; Dirpan, A.; Nainu, F.; Harapan, H.; Emran, T.B.; Simal-Gandara, J. From plantation to cup: Changes in bioactive compounds during cofee processing. Foods 2021, 10, 2827. [Google Scholar] [CrossRef]
No. | Volatile Compounds | Class | RI | RT/min | Relative Level/% | ||
---|---|---|---|---|---|---|---|
WC | SC | MC | |||||
1 | 4-hydroxy-Butanoic acid | acids | 922.76 | 6.23 | 0.03% ± 0.00% | 0.01% ± 0.00% | 0.01% ± 0.00% |
2 | N,N,O-Triacetyl hydroxylamine | amines | 930.41 | 6.33 | 0.09% ± 0.01% | 0.05% ± 0.01% | 0.09% ± 0.02% |
3 | N,N-diethyl-Formamide | amides | 945.39 | 6.54 | 0.05% ± 0.01% | 0.04% ± 0.01% | 0.03% ± 0.00% |
4 | Dihydro-3-methylene-2,5-Furandione | furanones | 950.99 | 6.62 | 0.03% ± 0.00% | 0.03% ± 0.01% | 0.03% ± 0.01% |
5 | Methanediimine | amines | 954.36 | 6.66 | 0.21% ± 0.07% | 0.27% ± 0.09% | 0.31% ± 0.02% |
6 | Methoxyimino acetic acid | acids | 959.09 | 6.73 | 0.41% ± 0.02% | 0.36% ± 0.05% | 0.38% ± 0.02% |
7 | 3-ethyl-Pyridine | pyridines | 974.13 | 6.95 | 0.01% ± 0.00% | 0.01% ± 0.00% | 0.01% ± 0.00% |
8 | N-methyl-N-(2-methoxyethoxycarbonyl)-Alanine undecyl ester | esters | 987.08 | 7.15 | 0.04% ± 0.02% | 0.05% ± 0.01% | 0.05% ± 0.00% |
9 | Propanoic acid,2-methyl-,3-phenylpropyl ester | esters | 994.39 | 7.26 | 0.04% ± 0.00% | 0.03% ± 0.00% | 0.03% ± 0.00% |
10 | Furfuryl alcohol | alcohols | 996.44 | 7.29 | 1.82% ± 0.17% | 0.80% ± 0.17% | 1.54% ± 0.27% |
11 | 3,3-Dimethylacrylic acid | acids | 1009.54 | 7.50 | 0.02% ± 0.00% | 0.01% ± 0.00% | 0.02% ± 0.00% |
12 | 2-Aminoethanol | alcohols | 1023.06 | 7.72 | 0.03% ± 0.05% | 0.01% ± 0.01% | 0.00% ± 0.00% |
13 | 2,3-Butanediol | alcohols | 1037.43 | 7.97 | 0.04% ± 0.00% | 0.36% ± 0.02% | 0.10% ± 0.01% |
14 | 2-Hydroxypyridine | pyridines | 1038.13 | 7.98 | 0.84% ± 0.66% | 1.31% ± 0.38% | 1.51% ± 0.11% |
15 | Methyl leucinate | esters | 1038.78 | 7.99 | 0.02% ± 0.00% | 0.01% ± 0.00% | 0.02% ± 0.00% |
16 | Pyruvic acid | acids | 1048.13 | 8.15 | 0.23% ± 0.05% | 0.43% ± 0.01% | 0.26% ± 0.05% |
17 | Lactic acid | acids | 1057.58 | 8.32 | 3.57% ± 0.19% | 3.13% ± 0.07% | 3.36% ± 0.07% |
18 | Glycolic acid | acids | 1074.89 | 8.63 | 3.83% ± 0.30% | 3.56% ± 0.06% | 3.86% ± 0.06% |
19 | 2-Pyrrolidinone | ketones | 1080.90 | 8.74 | 0.01% ± 0.00% | 0.04% ± 0.01% | 0.01% ± 0.00% |
20 | 1-(5-Dimethylethyl)pyrazin-2-yl-ethan-1-one | ketones | 1085.67 | 8.83 | 0.00% ± 0.00% | 0.00% ± 0.00% | 0.00% ± 0.00% |
21 | 4-Oxo-4,5,6,7-tetrahydrobenzofuroxan | others | 1095.32 | 9.02 | 0.03% ± 0.01% | 0.02% ± 0.01% | 0.03% ± 0.01% |
22 | 2-Hydroxybutyric acid | acids | 1122.19 | 9.48 | 0.15% ± 0.01% | 0.11% ± 0.01% | 0.16% ± 0.01% |
23 | 2-Furoic acid | acids | 1136.53 | 9.73 | 0.40% ± 0.05% | 0.34% ± 0.03% | 0.44% ± 0.03% |
24 | 3-Pyridinol | alcohols | 1141.15 | 9.81 | 3.69% ± 0.18% | 2.93% ± 0.16% | 3.65% ± 0.09% |
25 | 3-Hydroxypropionic acid | acids | 1141.72 | 9.82 | 0.64% ± 0.01% | 0.78% ± 0.02% | 0.66% ± 0.04% |
26 | Methyl nicotinate | esters | 1150.51 | 9.97 | 0.02% ± 0.00% | 0.01% ± 0.00% | 0.02% ± 0.01% |
27 | 1-Piperidinecarboxaldehyde | aldehydes | 1154.52 | 10.05 | 0.03% ± 0.00% | 0.01% ± 0.01% | 0.00% ± 0.00% |
28 | Acetaldehyde, tetramer | aldehydes | 1163.98 | 10.22 | 0.01% ± 0.00% | 0.00% ± 0.00% | 0.01% ± 0.00% |
29 | Butan-1-ol | alcohols | 1167.68 | 10.29 | 0.19% ± 0.01% | 0.15% ± 0.01% | 0.16% ± 0.00% |
30 | 3-(1-Hydroxy-1-methylethyl)benzonitrile | benzenoids | 1173.66 | 10.40 | 0.05% ± 0.01% | 0.02% ± 0.04% | 0.00% ± 0.00% |
31 | 1-methoxy-4-phenoxy-Benzene | benzenoids | 1183.02 | 10.57 | 0.01% ± 0.00% | 0.01% ± 0.00% | 0.01% ± 0.00% |
32 | 1,3-benzodioxole-5-carboxylic acid | acids | 1185.07 | 10.61 | 0.01% ± 0.00% | 0.02% ± 0.00% | 0.02% ± 0.00% |
33 | 1H-pyrimidine-2,4-dione | ketones | 1200.12 | 10.90 | 0.05% ± 0.00% | 0.03% ± 0.01% | 0.03% ± 0.00% |
34 | 5-Hydroxy-2-methylpyridine | pyridines | 1201.35 | 10.92 | 0.25% ± 0.01% | 0.19% ± 0.01% | 0.24% ± 0.01% |
35 | Phloroglucinol | alcohols | 1207.11 | 11.02 | 0.07% ± 0.00% | 0.08% ± 0.01% | 0.05% ± 0.00% |
36 | 1-t-Butyldioxymethyl-4-methylpiperidine | piperidines | 1210.09 | 11.07 | 0.03% ± 0.00% | 0.01% ± 0.01% | 0.00% ± 0.00% |
37 | M-Aminophenylacetylene | others | 1217.76 | 11.19 | 0.26% ± 0.02% | 0.32% ± 0.01% | 0.25% ± 0.02% |
38 | Guaicol | alcohols | 1227.35 | 11.35 | 0.02% ± 0.01% | 0.01% ± 0.00% | 0.01% ± 0.00% |
39 | 4-Hydroxybutanoic acid | acids | 1232.42 | 11.44 | 0.08% ± 0.01% | 0.08% ± 0.01% | 0.09% ± 0.00% |
40 | 2-Ketoadipic acid | acids | 1242.56 | 11.61 | 0.06% ± 0.01% | 0.04% ± 0.00% | 0.07% ± 0.01% |
41 | N-ethyl-3,5-di(hydroxymethyl)-Aniline | amines | 1243.48 | 11.63 | 0.05% ± 0.01% | 0.04% ± 0.00% | 0.04% ± 0.00% |
42 | Benzoic acid | acids | 1250.20 | 11.75 | 0.01% ± 0.00% | 0.01% ± 0.00% | 0.01% ± 0.00% |
43 | N-Acetyl Alanine | amino acids | 1261.54 | 11.95 | 0.02% ± 0.00% | 0.02% ± 0.00% | 0.02% ± 0.00% |
44 | Glycerol | alcohols | 1266.42 | 12.03 | 0.36% ± 0.05% | 1.31% ± 0.12% | 0.40% ± 0.01% |
45 | 4-(Hydrazinylmethyl)-1-methylpyrazole | pyrazoles | 1270.59 | 12.11 | 0.02% ± 0.00% | 0.01% ± 0.00% | 0.02% ± 0.02% |
46 | Maltol | alcohols | 1288.05 | 12.43 | 0.63% ± 0.06% | 0.14% ± 0.18% | 0.05% ± 0.01% |
47 | 2-fluoro-3-hydroxy-4-methoxy-Benzaldehyde | aldehydes | 1288.87 | 12.44 | 0.03% ± 0.00% | 0.03% ± 0.00% | 0.03% ± 0.00% |
48 | 2-Oxovaleric acid | acids | 1294.19 | 12.54 | 0.16% ± 0.01% | 0.14% ± 0.01% | 0.14% ± 0.00% |
49 | Nicotinic acid | acids | 1295.26 | 12.56 | 2.18% ± 0.00% | 2.32% ± 0.10% | 2.21% ± 0.11% |
50 | Succinic acid | acids | 1308.61 | 12.79 | 0.29% ± 0.11% | 0.34% ± 0.04% | 0.36% ± 0.02% |
51 | Catechol | alcohols | 1313.67 | 12.87 | 0.64% ± 0.08% | 0.42% ± 0.04% | 0.61% ± 0.04% |
52 | Glyceric acid | acids | 1322.07 | 13.00 | 0.52% ± 0.13% | 0.62% ± 0.06% | 0.71% ± 0.02% |
53 | Fumaric acid | acids | 1331.01 | 13.14 | 0.07% ± 0.01% | 0.08% ± 0.02% | 0.06% ± 0.01% |
54 | Itaconic acid | acids | 1337.71 | 13.25 | 0.73% ± 0.06% | 0.62% ± 0.04% | 0.75% ± 0.02% |
55 | Citraconic acid | acids | 1345.20 | 13.38 | 0.93% ± 0.33% | 0.84% ± 0.21% | 1.17% ± 0.09% |
56 | 2′-Hydroxy-5′-methylacetophenone | ketones | 1356.64 | 13.57 | 0.01% ± 0.00% | 0.01% ± 0.00% | 0.01% ± 0.00% |
57 | 1-(2-hydroxyphenyl)-2-phenylethanone | ketones | 1359.98 | 13.62 | 0.04% ± 0.00% | 0.04% ± 0.00% | 0.04% ± 0.00% |
58 | 2-Cyano-5-(4-fluorophenyl)pyrimidine | pyrimidines | 1374.09 | 13.86 | 0.01% ± 0.00% | 0.03% ± 0.01% | 0.01% ± 0.00% |
59 | 4-Methylcatechol | alcohols | 1385.71 | 14.06 | 0.07% ± 0.06% | 0.32% ± 0.24% | 0.07% ± 0.01% |
60 | 5-Hydroxymethylfurfural | furanone | 1398.92 | 14.29 | 0.61% ± 0.02% | 0.98% ± 0.07% | 0.63% ± 0.08% |
61 | Pentane-1,2,5-triol | alcohols | 1407.64 | 14.43 | 0.20% ± 0.02% | 0.07% ± 0.01% | 0.01% ± 0.01% |
62 | (Z)-Erythrono-1,4-lactone | lactones | 1424.24 | 14.68 | 0.04% ± 0.01% | 0.08% ± 0.00% | 0.05% ± 0.01% |
63 | 4′-Hydroxy-3′-methoxyacetophenone | ketones | 1445.73 | 15.01 | 0.01% ± 0.00% | 0.01% ± 0.00% | 0.01% ± 0.00% |
64 | 6-Cyano-5-methyl-1,3-diazaadamantan-6-ol | alcohols | 1454.84 | 15.16 | 0.01% ± 0.00% | 0.01% ± 0.00% | 0.41% ± 0.02% |
65 | 3-Methylorsellinic acid | acids | 1456.54 | 15.18 | 0.13% ± 0.02% | 0.09% ± 0.02% | 0.12% ± 0.01% |
66 | Methylhydroquinone | ketones | 1457.93 | 15.21 | 0.03% ± 0.00% | 0.02% ± 0.00% | 0.03% ± 0.00% |
67 | 2,2′-Bipyridine | pyridines | 1459.31 | 15.23 | 0.03% ± 0.00% | 0.04% ± 0.01% | 0.04% ± 0.00% |
68 | Pipecolic acid | acids | 1470.15 | 15.40 | 0.33% ± 0.01% | 0.22% ± 0.02% | 0.23% ± 0.01% |
69 | Malic acid | acids | 1480.39 | 15.57 | 1.99% ± 0.73% | 2.67% ± 0.42% | 2.84% ± 0.11% |
70 | Tropic Acid | acids | 1503.23 | 15.94 | 0.86% ± 0.36% | 0.89% ± 0.17% | 0.74% ± 0.39% |
71 | Pyroglutamic acid | acids | 1509.09 | 16.02 | 2.92% ± 0.23% | 1.94% ± 0.06% | 2.49% ± 0.10% |
72 | 4-pentyl-1,1′-Biphenyl | benzenoids | 1512.50 | 16.07 | 0.04% ± 0.00% | 0.04% ± 0.00% | 0.04% ± 0.00% |
73 | Acetoisovanillone | ketones | 1520.04 | 16.18 | 0.01% ± 0.00% | 0.01% ± 0.00% | 0.01% ± 0.00% |
74 | 2-Aminobenzophenone | ketones | 1535.38 | 16.40 | 0.30% ± 0.01% | 0.43% ± 0.02% | 0.29% ± 0.02% |
75 | Pyrogallol | alcohols | 1536.20 | 16.41 | 0.49% ± 0.03% | 0.39% ± 0.03% | 0.43% ± 0.01% |
76 | Methylsuccinic acid | acids | 1542.43 | 16.51 | 0.11% ± 0.13% | 0.14% ± 0.17% | 0.03% ± 0.00% |
77 | 5-Hydroxymethyl-2-furoic acid | acids | 1546.75 | 16.57 | 0.25% ± 0.04% | 0.33% ± 0.02% | 0.31% ± 0.01% |
78 | 3-Hydroxybenzoate | benzenoids | 1563.86 | 16.83 | 0.16% ± 0.02% | 0.16% ± 0.01% | 0.16% ± 0.01% |
79 | 4-(2-Hydroxy-5-Nitrophenyl)Pyrimidine | pyrimidines | 1587.80 | 17.19 | 0.03% ± 0.00% | 0.02% ± 0.00% | 0.03% ± 0.00% |
80 | 1,2,4-Benzenetriol | alcohols | 1594.59 | 17.30 | 0.66% ± 0.10% | 0.51% ± 0.06% | 0.60% ± 0.03% |
81 | Arabinofuranose | hydrocarbons | 1599.55 | 17.37 | 0.20% ± 0.04% | 0.20% ± 0.01% | 0.19% ± 0.03% |
82 | D-(−)-Ribofuranose | hydrocarbons | 1608.25 | 17.49 | 0.10% ± 0.01% | 0.16% ± 0.02% | 0.11% ± 0.02% |
83 | 6-Hydroxynicotinic acid | acids | 1621.94 | 17.68 | 0.09% ± 0.00% | 0.10% ± 0.02% | 0.07% ± 0.01% |
84 | 3,4-dihydroxy-5-(hydroxymethyl)-3-methyloxolan-2-one | ketones | 1632.19 | 17.83 | 0.03% ± 0.02% | 0.06% ± 0.02% | 0.03% ± 0.01% |
85 | Ribose | hydrocarbons | 1643.92 | 17.99 | 0.03% ± 0.01% | 0.29% ± 0.42% | 0.04% ± 0.00% |
86 | Vanillin | aldehydes | 1646.19 | 18.02 | 0.01% ± 0.00% | 0.02% ± 0.00% | 0.02% ± 0.00% |
87 | D-Lyxose | hydrocarbons | 1651.05 | 18.09 | 0.44% ± 0.02% | 0.73% ± 0.12% | 0.49% ± 0.01% |
88 | Methylalpha-Lyxofuranoside | esters | 1654.92 | 18.15 | 0.17% ± 0.02% | 0.10% ± 0.02% | 0.17% ± 0.01% |
89 | D-Xylulose | hydrocarbons | 1664.70 | 18.29 | 0.49% ± 0.02% | 0.70% ± 0.07% | 0.54% ± 0.05% |
90 | Xylose | hydrocarbons | 1665.54 | 18.30 | 0.17% ± 0.01% | 0.27% ± 0.02% | 0.18% ± 0.02% |
91 | D-(+)-Ribono-1,4-lactone | lactones | 1674.41 | 18.43 | 0.29% ± 0.10% | 0.25% ± 0.07% | 0.24% ± 0.05% |
92 | 1,6-Anhydro-Glucose | hydrocarbons | 1695.11 | 18.73 | 0.23% ± 0.01% | 0.17% ± 0.01% | 0.21% ± 0.00% |
93 | Fucose | hydrocarbons | 1704.90 | 18.86 | 0.06% ± 0.00% | 0.07% ± 0.01% | 0.06% ± 0.01% |
94 | Gallacetophenone-4′-methylether | others | 1705.66 | 18.87 | 0.13% ± 0.04% | 0.15% ± 0.02% | 0.15% ± 0.01% |
95 | Udp-Glucuronic acid | acids | 1732.16 | 19.22 | 0.11% ± 0.00% | 0.10% ± 0.00% | 0.11% ± 0.00% |
96 | Glycerol 1-Phosphate | esters | 1755.15 | 19.53 | 0.12% ± 0.05% | 0.10% ± 0.01% | 0.12% ± 0.01% |
97 | 5-(1,2-dihydroxyethyl)-3-hydroxyoxolan-2-one | ketones | 1769.99 | 19.74 | 1.58% ± 0.13% | 1.35% ± 0.10% | 1.59% ± 0.03% |
98 | Hexonic acid,3-deoxy-gamma-lactone | lactones | 1775.68 | 19.81 | 4.67% ± 0.50% | 3.32% ± 0.43% | 4.18% ± 0.61% |
99 | L-Iditol | alcohols | 1787.21 | 19.97 | 1.90% ± 0.15% | 1.48% ± 0.10% | 2.00% ± 0.06% |
100 | Shikimic acid | acids | 1798.42 | 20.13 | 0.15% ± 0.02% | 0.13% ± 0.01% | 0.14% ± 0.01% |
101 | 1,2,4,5-Cyclohexanetetrol | alcohols | 1804.75 | 20.21 | 0.17% ± 0.02% | 0.14% ± 0.02% | 0.20% ± 0.01% |
102 | Citric acid | acids | 1809.00 | 20.26 | 0.23% ± 0.17% | 0.50% ± 0.30% | 0.73% ± 0.18% |
103 | 3′-Methyl-2-benzylidene-coumaran-3-one | ketones | 1813.56 | 20.32 | 0.10% ± 0.01% | 0.09% ± 0.00% | 0.08% ± 0.01% |
104 | Protocatechuic acid | acids | 1814.60 | 20.33 | 0.10% ± 0.01% | 0.11% ± 0.01% | 0.11% ± 0.01% |
105 | Quinic acid | acids | 1827.25 | 20.49 | 0.18% ± 0.02% | 0.12% ± 0.05% | 0.20% ± 0.02% |
106 | Cyclo(L-prolyl-L-valine) | others | 1832.07 | 20.55 | 0.03% ± 0.00% | 0.04% ± 0.00% | 0.03% ± 0.00% |
107 | Quininic acid | acids | 1850.07 | 20.78 | 6.15% ± 1.13% | 6.94% ± 0.18% | 7.56% ± 0.31% |
108 | 2-Ethylhexanal ethylene glycol acetal | aldehydes | 1853.42 | 20.82 | 5.53% ± 0.67% | 5.53% ± 0.18% | 6.06% ± 0.33% |
109 | Methyl-Urea | amino acids | 1853.73 | 20.83 | 0.52% ± 0.05% | 0.43% ± 0.18% | 0.57% ± 0.02% |
110 | Fructose | hydrocarbons | 1857.71 | 20.88 | 0.14% ± 0.06% | 0.19% ± 0.04% | 0.05% ± 0.01% |
111 | Tagatose | hydrocarbons | 1861.12 | 20.92 | 0.09% ± 0.08% | 0.45% ± 0.12% | 0.10% ± 0.03% |
112 | Sorbose | hydrocarbons | 1869.17 | 21.03 | 0.11% ± 0.02% | 0.38% ± 0.09% | 0.11% ± 0.02% |
113 | Galactose | hydrocarbons | 1874.19 | 21.09 | 0.09% ± 0.00% | 0.28% ± 0.07% | 0.10% ± 0.01% |
114 | 3-[(tetrahydro-2H-pyran-2-yl)oxy]-Benzenamine | amines | 1877.11 | 21.13 | 6.06% ± 3.43% | 5.47% ± 2.27% | 2.29% ± 0.24% |
115 | D-Allose | hydrocarbons | 1878.88 | 21.15 | 0.24% ± 0.01% | 0.31% ± 0.02% | 0.24% ± 0.02% |
116 | D-(+)-Altrose | hydrocarbons | 1884.93 | 21.23 | 0.21% ± 0.03% | 0.78% ± 0.22% | 0.17% ± 0.04% |
117 | 4,N-dipropyl-Benzamide | amides | 1901.50 | 21.45 | 0.05% ± 0.00% | 0.06% ± 0.00% | 0.06% ± 0.02% |
118 | D-Mannitol | alcohols | 1918.22 | 21.65 | 2.17% ± 0.04% | 2.12% ± 0.21% | 2.38% ± 0.59% |
119 | Ethylalpha-D-glucopyranoside | hydrocarbons | 1922.52 | 21.70 | 0.10% ± 0.03% | 0.76% ± 0.02% | 0.07% ± 0.01% |
120 | N-propargyloxycarbonyl-L-Norvaline pentyl ester | esters | 1928.78 | 21.78 | 0.02% ± 0.02% | 0.02% ± 0.00% | 0.02% ± 0.00% |
121 | Hexahydro-3-(2-methylpropyl)-Pyrrolo[1,2-a]pyrazine-1,4-dione | ketones | 1955.16 | 22.10 | 0.14% ± 0.01% | 0.11% ± 0.01% | 0.11% ± 0.00% |
122 | D-Glucose | hydrocarbons | 1962.12 | 22.19 | 0.08% ± 0.01% | 0.09% ± 0.02% | 0.09% ± 0.01% |
123 | Mannonic acid, gamma-lactone | lactones | 1968.97 | 22.27 | 0.08% ± 0.01% | 0.22% ± 0.03% | 0.20% ± 0.02% |
124 | 5-Hydroxy-7-methoxy-2-methyl-3-phenyl-4-chromenone | ketones | 1974.52 | 22.34 | 0.10% ± 0.01% | 0.13% ± 0.01% | 0.09% ± 0.02% |
125 | Hexitol | alcohols | 1982.52 | 22.44 | 0.04% ± 0.00% | 0.02% ± 0.00% | 0.04% ± 0.01% |
126 | 17-Methoxy-d-homo-18-norandrosta-4,8,13,15,17-pentaen-3-one | ketones | 2016.32 | 22.85 | 0.01% ± 0.00% | 0.01% ± 0.00% | 0.01% ± 0.00% |
127 | Palmitic acid | acids | 2043.35 | 23.16 | 1.36% ± 0.22% | 1.26% ± 0.09% | 1.54% ± 0.08% |
128 | Myo-Inositol | alcohols | 2080.99 | 23.60 | 3.22% ± 0.28% | 3.22% ± 0.05% | 3.23% ± 0.09% |
129 | Caffeic acid | acids | 2131.93 | 24.18 | 0.55% ± 0.35% | 0.81% ± 0.09% | 0.80% ± 0.10% |
130 | Hexadecanamide | amides | 2183.03 | 24.75 | 0.23% ± 0.03% | 0.20% ± 0.03% | 0.22% ± 0.02% |
131 | 5-Propoxy-2,2′-bipyridyl | pyridines | 2199.56 | 24.94 | 0.01% ± 0.00% | 0.01% ± 0.00% | 0.01% ± 0.00% |
132 | Linoleic acid | acids | 2209.15 | 25.04 | 0.26% ± 0.10% | 0.23% ± 0.10% | 0.36% ± 0.03% |
133 | (Z)-Oleic acid | acids | 2214.84 | 25.10 | 0.18% ± 0.02% | 0.14% ± 0.04% | 0.14% ± 0.04% |
134 | Stearic acid | acids | 2240.22 | 25.37 | 0.25% ± 0.02% | 0.24% ± 0.01% | 0.26% ± 0.01% |
135 | 2,3,6,7,8,8a-hexahydro-1,4-dioxo-Pyrrolo[1,2-a]pyrazine-3-propanamide, | amides | 2272.20 | 25.71 | 0.16% ± 0.00% | 0.13% ± 0.01% | 0.12% ± 0.02% |
136 | Hexahydro-3-(phenylmethyl)-Pyrrolo[1,2-a]pyrazine-1,4-dione | ketones | 2360.27 | 26.63 | 0.04% ± 0.01% | 0.03% ± 0.01% | 0.03% ± 0.00% |
137 | (E,E)-9,12-Octadecadienoic acid, methyl ester | esters | 2362.49 | 26.65 | 0.05% ± 0.00% | 0.04% ± 0.00% | 0.04% ± 0.00% |
138 | (Z)-9-Octadecenamide | amides | 2368.57 | 26.71 | 0.41% ± 0.01% | 0.33% ± 0.12% | 0.33% ± 0.07% |
139 | (Z)-13-Docosenamide | amides | 2373.58 | 26.76 | 0.19% ± 0.05% | 0.31% ± 0.28% | 0.15% ± 0.02% |
140 | 9-(2-p-Tolylethyl)-3,4,5,6,7,9-hexahydro-2H-xanthene-1,8-dione | ketones | 2384.53 | 26.88 | 0.24% ± 0.07% | 0.19% ± 0.02% | 0.25% ± 0.02% |
141 | Octadecanamide | amides | 2391.42 | 26.95 | 0.11% ± 0.02% | 0.09% ± 0.03% | 0.09% ± 0.02% |
142 | D-Erythro-Sphingosine | alcohols | 2413.58 | 27.17 | 0.08% ± 0.01% | 0.05% ± 0.01% | 0.07% ± 0.01% |
143 | Arachidic acid | acids | 2437.35 | 27.40 | 0.09% ± 0.01% | 0.09% ± 0.00% | 0.10% ± 0.00% |
144 | Uridine | others | 2444.21 | 27.47 | 0.23% ± 0.04% | 0.18% ± 0.01% | 0.23% ± 0.03% |
145 | 1beta,12,12-trimethyl-7,11-Dioxapentacyclo[15.3.0.0(4,16).0(5,13).0(5,10)]eicos-13-en-20-ol-8-one | ketones | 2463.98 | 27.66 | 0.07% ± 0.00% | 0.06% ± 0.00% | 0.06% ± 0.00% |
146 | 8-Benzylquinoline | others | 2521.86 | 28.23 | 0.04% ± 0.00% | 0.04% ± 0.00% | 0.04% ± 0.00% |
147 | Estrone | ketones | 2546.41 | 28.46 | 0.06% ± 0.01% | 0.05% ± 0.02% | 0.05% ± 0.01% |
148 | Arbutin | others | 2565.43 | 28.64 | 0.03% ± 0.01% | 0.03% ± 0.00% | 0.03% ± 0.00% |
149 | Nonanamide | amides | 2600.22 | 28.97 | 0.02% ± 0.00% | 0.02% ± 0.00% | 0.02% ± 0.00% |
150 | D-(+)-Trehalose | hydrocarbons | 2604.85 | 29.01 | 4.20% ± 0.06% | 4.87% ± 0.22% | 3.80% ± 0.44% |
151 | 2,2-Bis(3-allyl-4-hydroxyphenyl)propane | alkanes | 2620.91 | 29.16 | 0.76% ± 0.04% | 0.90% ± 0.03% | 0.69% ± 0.08% |
152 | Sucrose | hydrocarbons | 2621.57 | 29.17 | 4.27% ± 0.08% | 4.96% ± 0.28% | 3.84% ± 0.46% |
153 | Terephthalic acid,cyclobutyl decyl ester | esters | 2626.50 | 29.21 | 0.11% ± 0.08% | 0.12% ± 0.08% | 0.05% ± 0.03% |
154 | Trehalose | hydrocarbons | 2672.92 | 29.64 | 0.05% ± 0.00% | 0.05% ± 0.01% | 0.04% ± 0.00% |
155 | 1-(5-ethyl-2-hydroxy-4-methoxyphenyl)-2-(3,4-methylenedioxyphenyl)-Ethanone | ketones | 2688.21 | 29.78 | 0.05% ± 0.00% | 0.05% ± 0.00% | 0.04% ± 0.00% |
156 | 2-linoleoylglycerol | alcohols | 2709.56 | 29.97 | 0.03% ± 0.00% | 0.03% ± 0.00% | 0.03% ± 0.00% |
157 | Gentiobiose | hydrocarbons | 2728.82 | 30.14 | 0.02% ± 0.00% | 0.04% ± 0.00% | 0.02% ± 0.00% |
158 | 2-Oleoylglycerol | alcohols | 2746.27 | 30.29 | 0.12% ± 0.05% | 0.09% ± 0.02% | 0.08% ± 0.01% |
159 | Beta-D-Lactose | hydrocarbons | 2787.32 | 30.66 | 1.52% ± 0.26% | 1.03% ± 0.21% | 1.69% ± 0.25% |
160 | Beta-Gentiobiose | hydrocarbons | 2828.99 | 31.01 | 0.04% ± 0.01% | 0.04% ± 0.01% | 0.03% ± 0.01% |
161 | Galactinol | alcohols | 2970.75 | 32.21 | 3.60% ± 0.14% | 2.43% ± 0.14% | 3.47% ± 0.25% |
162 | 3-Methylbenzoic acid,2,5-dichlorophenyl ester | esters | 2972.52 | 32.23 | 0.05% ± 0.00% | 0.05% ± 0.00% | 0.06% ± 0.00% |
163 | Beta-Tocopherol | alcohols | 2984.46 | 32.33 | 0.36% ± 0.01% | 0.32% ± 0.03% | 0.30% ± 0.01% |
164 | 4-O-Coumaroyl-D-quinic acid | acids | 3034.08 | 32.77 | 0.07% ± 0.01% | 0.09% ± 0.01% | 0.08% ± 0.01% |
165 | 3-O-Coumaroyl-D-quinic acid | acids | 3057.44 | 32.99 | 0.07% ± 0.03% | 0.08% ± 0.01% | 0.07% ± 0.00% |
166 | Cis-5-O-Feruloylquinic acid | acids | 3085.02 | 33.25 | 2.37% ± 0.20% | 2.50% ± 0.05% | 2.65% ± 0.04% |
167 | Pentamethylbenzene | benzenoids | 3110.04 | 33.49 | 0.32% ± 0.02% | 0.34% ± 0.01% | 0.33% ± 0.01% |
168 | 2-PhenY1Pyrrolo(2,1-B)benzothiazol | alcohols | 3128.51 | 33.69 | 0.73% ± 0.02% | 0.63% ± 0.05% | 0.73% ± 0.02% |
169 | A-Tocopherol | alcohols | 3140.47 | 33.81 | 0.04% ± 0.00% | 0.04% ± 0.00% | 0.03% ± 0.00% |
170 | 4-O-Feruloylquinic acid | acids | 3151.82 | 33.93 | 0.82% ± 0.22% | 1.04% ± 0.03% | 1.03% ± 0.01% |
171 | 3-O-Feruloylquinic acid | acids | 3180.34 | 34.23 | 0.69% ± 0.12% | 0.96% ± 0.10% | 0.86% ± 0.07% |
172 | Isochlorogenic acid | acids | 3194.27 | 34.38 | 4.13% ± 1.56% | 3.87% ± 1.92% | 5.51% ± 0.11% |
173 | Trans Caftaric acid | acids | 3223.01 | 34.72 | 0.05% ± 0.03% | 0.01% ± 0.00% | 0.02% ± 0.01% |
174 | Campesterol | alcohols | 3264.99 | 35.23 | 0.09% ± 0.01% | 0.07% ± 0.01% | 0.08% ± 0.00% |
175 | Phenanthro[9,10-b]quinoxaline-11-carboxylic acid | acids | 3268.41 | 35.27 | 0.48% ± 0.04% | 0.50% ± 0.07% | 0.49% ± 0.01% |
176 | Benzalaniline | amines | 1737.05 | 35.76 | 0.01% ± 0.00% | 0.01% ± 0.00% | 0.01% ± 0.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Zi, C.; Yang, Y.; Wang, Q.; Zhang, Z.; Shao, J.; Zhao, P.; Liu, K.; Li, X.; Fan, J. Effects of Different Primary Processing Methods on the Flavor of Coffea arabica Beans by Metabolomics. Fermentation 2023, 9, 717. https://doi.org/10.3390/fermentation9080717
Shen X, Zi C, Yang Y, Wang Q, Zhang Z, Shao J, Zhao P, Liu K, Li X, Fan J. Effects of Different Primary Processing Methods on the Flavor of Coffea arabica Beans by Metabolomics. Fermentation. 2023; 9(8):717. https://doi.org/10.3390/fermentation9080717
Chicago/Turabian StyleShen, Xiaojing, Chengting Zi, Yuanjun Yang, Qi Wang, Zhenlai Zhang, Junwen Shao, Pincai Zhao, Kunyi Liu, Xingyu Li, and Jiangping Fan. 2023. "Effects of Different Primary Processing Methods on the Flavor of Coffea arabica Beans by Metabolomics" Fermentation 9, no. 8: 717. https://doi.org/10.3390/fermentation9080717
APA StyleShen, X., Zi, C., Yang, Y., Wang, Q., Zhang, Z., Shao, J., Zhao, P., Liu, K., Li, X., & Fan, J. (2023). Effects of Different Primary Processing Methods on the Flavor of Coffea arabica Beans by Metabolomics. Fermentation, 9(8), 717. https://doi.org/10.3390/fermentation9080717