Assessing the Potential of Milk-Based Encapsulation Matrix for Improved Bio-Accessibility of Probiotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Inoculum Preparation
2.3. Preparation of Alginate-Milk Microspheres
2.4. Microencapsulation of L. acidophilus in Alginate-Milk Microspheres
2.5. Encapsulation Yield and Diameter of Microspheres
2.6. Structural Analysis of Beads
2.7. Spectral Analysis of Beads
2.8. Determination of Encapsulated and Free L. acidophilus LAC5
2.9. Stability of the Encapsulated and Free L. acidophilus LAC5 at Different pH
2.10. Tolerance of Encapsulated and Free L. acidophilus LAC5 against Bile Salts
2.11. Stability of Encapsulated and Free L. acidophilus LAC5 during Storage
2.12. Release of the Encapsulated L. acidophilus LAC5 from Simulated Intestinal Fluid
2.13. Cheddar Cheese Preparation
2.14. HPLC Analysis of the Organic Acids in Cheddar Cheese
2.15. Viable Cell Count (VCC) of Cheddar Cheese
2.16. Sensory Evaluation of Cheddar Cheese
2.17. Statistical Analysis
3. Results and Discussion
3.1. Encapsulation of L. acidophilus in Alginate-Milk Microspheres
3.2. Determination of Free and Encapsulated L. acidophilus Viable Cells
3.3. Structural Analysis of Beads
3.4. FTIR Spectral Analysis of Beads
3.5. Low pH Stability of Free and Encapsulated L. acidophilus
3.6. Bile Salt Solution Tolerance of Free and Encapsulated L. acidophilus
3.7. Storage Stability of Free and Encapsulated L. acidophilus
3.8. Release Study of Encapsulated L. acidophilus
3.9. Organic Acids in Cheddar Cheese
3.10. Viable Cell Count (VCC)
3.11. pH of Probiotic Cheddar Cheese
3.12. Sensory Evaluation of Probiotic Cheddar Cheese
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yasmin, H.M.; Zahoor, T.; Sagheer, A.; Nadeem, M.; Khaliq, A.; Iqbal, R.; Ahsan, S.; Ahmad, Z. Assessment of antagonistic activity of free and encapsulated Bifidobacterium bifidum against Salmonella. J. Food Saf. 2018, 38, e12546. [Google Scholar] [CrossRef]
- Silva, K.K.D.P.; de Souza Queirós, M.; Ribeiro, A.P.B.; Gigante, M.L. Modified milk fat as encapsulating material for the probiotic microorganism Lactobacillus acidophilus LA3. Int. Dairy J. 2022, 125, 105237. [Google Scholar] [CrossRef]
- Tavares, G.M.; Croguennec, T.; Carvalho, A.F.; Bouhallab, S. Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends Food Sci. Technol. 2014, 37, 5–20. [Google Scholar] [CrossRef]
- Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, gut microbiota, and their influence on host health and disease. Molecul. Nutri. Food Res. 2017, 61, 1600240. [Google Scholar] [CrossRef] [Green Version]
- Nunes, G.L.; de Araújo Etchepare, M.; Cichoski, A.J.; Zepka, L.Q.; Lopes, E.J.; Barin, J.S.; de Moraes Flores, É.M.; da Silva, C.D.B.; de Menezes, C.R. Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT-Food Sci. Technol. 2018, 89, 128–133. [Google Scholar] [CrossRef]
- Kiani, H.S.; Ali, A.; Zahra, S.; Hassan, Z.U.; Kubra, K.T.; Azam, M.; Zahid, H.F. Phytochemical Composition and Pharmacological Potential of Lemongrass (Cymbopogon) and Impact on Gut Microbiota. AppliedChem 2022, 2, 229–246. [Google Scholar] [CrossRef]
- Azam, M.; Saeed, M.; Yasmin, I.; Afzaal, M.; Ahmed, S.; Khan, W.A.; Iqbal, M.W.; Hussain, H.T.; Asif, M. Microencapsulation and invitro characterization of Bifidobacterium animalis for improved survival. J. Food Meas. Charact. 2021, 15, 2591–2600. [Google Scholar] [CrossRef]
- Afzaal, M.; Khan, A.U.; Saeed, F.; Arshad, M.S.; Khan, M.A.; Saeed, M.; Maan, A.A.; Khan, M.K.; Ismail, Z.; Ahmed, A.; et al. Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal conditions and in ice cream. Food Sci. Nutr. 2020, 8, 1649–1656. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.; Saeed, M.; Pasha, I.; Shahid, M. A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. Food Biosci. 2020, 37, 100679. [Google Scholar] [CrossRef]
- Yasmin, I.; Saeed, M.; Pasha, I.; Zia, M.A. Development of whey protein concentrate-pectin-alginate based delivery system to improve survival of B. longum BL-05 in simulated gastrointestinal conditions. Probiotics Antimicrob. Proteins 2019, 11, 413–426. [Google Scholar] [CrossRef]
- Velciov, A.B.; Popescu, S.; Cozma, A.; Lalescu, D.; David, I. Statistical evaluation of nutritional characteristics for several cheese types. Int. Multidiscip. Sci. Geo Conf. SGEM 2018, 18, 441–447. [Google Scholar]
- Gandomi, H.; Abbaszadeh, S.; Misaghi, A.; Bokaie, S.; Noori, N. Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT-Food Sci. Technol. 2016, 69, 365–371. [Google Scholar] [CrossRef]
- Liao, N.; Luo, B.; Gao, J.; Li, X.; Zhao, Z.; Zhang, Y.; Ni, Y.; Tian, F. Oligosaccharides as co-encapsulating agents: Effect on oral Lactobacillus fermentum survival in a simulated gastrointestinal tract. Biotechnol. Lett. 2019, 41, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.Q.; Zhou, J.; Walker, J.; Li, L.; Hong, J.K.; Olsen, K.F.; Tang, J.; Ackermann, R.; Wang, Y.; Qin, B.; et al. Microencapsulation of luteinizing hormone-releasing hormone agonist in poly (lactic-co-glycolic acid) microspheres by spray-drying. J. Control. Release 2019, 321, 756–772. [Google Scholar] [CrossRef]
- Rather, S.A.; Akhter, R.; Masoodi, F.A.; Gani, A.; Wani, S.M. Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT-Food Sci. Technol. 2017, 83, 50–58. [Google Scholar] [CrossRef]
- Soodam, K.; Ong, L.; Powell, I.B.; Kentish, S.E.; Gras, S.L. Effect of elevated temperature on the microstructure of full fat Cheddar cheese during ripening. Food Struct. 2017, 14, 8–16. [Google Scholar] [CrossRef]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Antioxidant, alpha-glucosidase inhibition activities, in silico molecular docking and pharmacokinetics study of phenolic compounds from native australian fruits and spices. Antioxidants 2023, 12, 254. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, Y.; Shi, M.; Cao, Z.; Lu, Q.; Yang, T.; Fan, Y.; Wei, Z. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresour. Technol. 2018, 247, 190–199. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ali, A.; Legione, A.R.; Ranadheera, C.S.; Fang, Z.; Dunshea, F.R.; Ajlouni, S. Probiotic yoghurt enriched with mango peel powder: Biotransformation of phenolics and modulation of metabolomic outputs after in vitro digestion and colonic fermentation. Int. J. Mol. Sci. 2023, 24, 8560. [Google Scholar] [CrossRef]
- Upadhyay, P.; Joshi, H. Viability of Lactobacillus fermentum CM36 and Lactobacillus rhamnosus CW40 in skimmed milk during refrigeration. J. Camel Pract. Res. 2020, 27, 77–79. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Ahangaran, F.; Navarchian, A.H.; Picchioni, F. Material encapsulation in poly (methyl methacrylate) shell: A review. J. Appl. Polym. Sci. 2019, 136, 48039. [Google Scholar] [CrossRef] [Green Version]
- Pradeep Prasanna, P.H.; Charalampopoulos, D. Encapsulation in an alginate–goats’ milk–inulin matrix improves survival of probiotic Bifidobacterium in simulated gastrointestinal conditions and goats’ milk yoghurt. Int. J. Dairy Technol. 2019, 72, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Guimaraes, A.; Abrunhosa, L.; Pastrana, L.M.; Cerqueira, M.A. Edible films and coatings as carriers of living microorganisms: A new strategy towards biopreservation and healthier foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 594–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šipailienė, A.; Petraitytė, S. Encapsulation of probiotics: Proper selection of the probiotic strain and the influence of encapsulation technology and materials on the viability of encapsulated microorganisms. Prob. Antimicrob. Proteins 2018, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tsali, A.; Goula, A.M. Valorization of grape pomace: Encapsulation and storage stability of its phenolic extract. Powder Technol. 2018, 340, 194–207. [Google Scholar] [CrossRef]
- Zanjani, M.A.K.; Ehsani, M.R.; Ghiassi Tarzi, B.; Sharifan, A. Promoting Lactobacillus casei and Bifidobacterium adolescentis survival by microencapsulation with different starches and chitosan and poly L-lysine coatings in ice cream. J. Food Process. Preserv. 2018, 42, e13318. [Google Scholar] [CrossRef]
- Rodrigues, F.J.; Omura, M.H.; Cedran, M.F.; Dekker, R.F.; Barbosa-Dekker, A.M.; Garcia, S. Effect of natural polymers on the survival of Lactobacillus casei encapsulated in alginate microspheres. J. Microencapsul. 2017, 34, 431–439. [Google Scholar] [CrossRef]
- Wiessel, A.L. Shelf-Stable Fermented Dairy Products and Methods of Making Same. Google Patents WO2014170716A1, 23 October 2014. [Google Scholar]
- Praepanitchai, O.A.; Noomhorm, A.; Anal, A.K. Survival and behavior of encapsulated probiotics (Lactobacillus plantarum) in calcium-alginate-soy protein isolate-based hydrogel beads in different processing conditions (pH and temperature) and in pasteurized mango juice. BioMed Res. Int. 2019, 2019, 9768152. [Google Scholar] [CrossRef] [Green Version]
- Atia, A.; Gomaa, A.; Fliss, I.; Beyssac, E.; Garrait, G.; Subirade, M. A prebiotic matrix for encapsulation of probiotics: Physicochemical and microbiological study. J. Microencapsul. 2016, 33, 89–101. [Google Scholar] [CrossRef]
- Ji, R.; Wu, J.; Zhang, J.; Wang, T.; Zhang, X.; Shao, L.; Chen, D.; Wang, J. Extending viability of Bifidobacterium longum in chitosan-coated alginate microcapsules using emulsification and internal gelation encapsulation technology. Front. Microbiol. 2019, 10, 1389. [Google Scholar] [CrossRef]
- Chen, W.; Hang, F. Lactic acid bacteria starter. In Bioengineering and Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 93–143. [Google Scholar]
- Lin, T.C.; Chen, B.Y.; Chen, C.Y.; Chen, Y.S.; Wu, H. Comparative analysis of spray-drying microencapsulation of Bifidobacterium adolescentis and Lactobacillus acidophilus cultivated in different growth media. J. Food Process Eng. 2019, 42, e13258. [Google Scholar] [CrossRef]
- Shori, A.B. Microencapsulation improved probiotics survival during gastric transit. HAYATI J. Biosci. 2017, 24, 1–5. [Google Scholar] [CrossRef]
- Halim, M.; Mustafa, N.A.M.; Othman, M.; Wasoh, H.; Kapri, M.R.; Ariff, A.B. Effect of encapsulant and cryoprotectant on the viability of probiotic Pediococcus acidilactici ATCC 8042 during freeze-drying and exposure to high acidity, bile salts and heat. LWT-Food Sci. Technol. 2017, 81, 210–216. [Google Scholar] [CrossRef]
- Feng, K.; Huang, R.M.; Wu, R.Q.; Wei, Y.S.; Zong, M.H.; Linhardt, R.J.; Wu, H. A novel route for double-layered encapsulation of probiotics with improved viability under adverse conditions. Food Chem. 2020, 310, 125977. [Google Scholar] [CrossRef]
- de Araújo Etchepare, M.; Nunes, G.L.; Nicoloso, B.R.; Barin, J.S.; Flores, E.M.M.; de Oliveira Mello, R.; de Menezes, C.R. Improvement of the viability of encapsulated probiotics using whey proteins. LWT-Food Sci. Technol. 2020, 117, 108601. [Google Scholar] [CrossRef]
- Chávarri, M.; Marañón, I.; Ares, R.; Ibáñez, F.C.; Marzo, F.; del Carmen Villarán, M. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol. 2010, 142, 185–189. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Kandylis, P.; Lević, S.; Petrović, T.; Ivanović, S.; Nedović, V.; Kourkoutas, Y. Encapsulation of Lactobacillus casei ATCC 393 in alginate capsules for probiotic fermented milk production. LWT-Food Sci. Technol. 2019, 116, 108501. [Google Scholar] [CrossRef]
- Ali, A.; Zahid, H.F.; Cottrell, J.J.; Dunshea, F.R. A comparative study for nutritional and phytochemical profiling of coffea arabica (c. Arabica) from different origins and their antioxidant potential and molecular docking. Molecules 2022, 27, 5126. [Google Scholar] [CrossRef]
- Zuljan, F.A.; Mortera, P.; Alarcón, S.H.; Blancato, V.S.; Espariz, M.; Magni, C. Lactic acid bacteria decarboxylation reactions in cheese. Int. Dairy J. 2016, 62, 53–62. [Google Scholar] [CrossRef]
- Tekin, A.; Güler, Z. Glycolysis, lipolysis and proteolysis in raw sheep milk Tulum cheese during production and ripening: Effect of ripening materials. Food Chem. 2019, 286, 160–169. [Google Scholar] [CrossRef]
- Zheng, X.; Li, K.; Shi, X.; Ni, Y.; Li, B.; Zhuge, B. Potential characterization of yeasts isolated from Kazak artisanal cheese to produce flavoring compounds. Microbiol. Open 2018, 7, e00533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanovic, E.; Kilcawley, K.N.; Rea, M.C.; Fitzgerald, G.F.; McAuliffe, O. Genetic, enzymatic and metabolite profiling of the Lactobacillus casei group reveals strain biodiversity and potential applications for flavour diversification. J. Appl. Microbiol. 2017, 122, 1245–1261. [Google Scholar] [CrossRef]
- Gomand, F.; Borges, F.; Burgain, J.; Guerin, J.; Revol-Junelles, A.M.; Gaiani, C. Food matrix design for effective lactic acid bacteria delivery. Ann. Rev. Food Sci. Technol. 2019, 10, 285–310. [Google Scholar] [CrossRef]
- Dantas, A.B.; Jesus, V.F.; Silva, R.; Almada, C.N.; Esmerino, E.A.; Cappato, L.P.; Silva, M.C.; Raices, R.S.; Cavalcanti, R.N.; Carvalho, C.C.; et al. Manufacture of probiotic Minas Frescal cheese with Lactobacillus casei Zhang. J. Dairy Sci. 2016, 99, 18–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evivie, S.E.; Huo, G.C.; Igene, J.O.; Bian, X. Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food Nutri. Res. 2017, 61, 1318034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rama, G.R.; Kuhn, D.; Beux, S.; Maciel, M.J.; de Souza, C.F.V. Potential applications of dairy whey for the production of lactic acid bacteria cultures. Int. Dairy J. 2019, 98, 25–37. [Google Scholar] [CrossRef]
- Drake, M.A.; Delahunty, C.M. Sensory character of cheese and its evaluation. In Cheese; Academic Press: Cambridge, MA, USA, 2017; pp. 517–545. [Google Scholar]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L. Fundamentals of Cheese Science; Springer: Boston, MA, USA, 2017; Volume 1, p. 271. [Google Scholar]
Treatment | Sodium Alginate Concentration | Alginate/Milk Ratio |
---|---|---|
T0 | 0 | 0 |
T1 | 1 | 1/1 |
T2 | 1/2 | |
T3 | 1.5 | 1/1 |
T4 | 1/2 | |
T5 | 2 | 1/1 |
T6 | 1/2 |
Treatment | Size (µm) | Yield (%) |
---|---|---|
T0 | - | - |
T1 | 709 ± 1.08 | 60.7 ± 1.06 |
T2 | 733 ± 2.03 | 63.3 ± 0.07 |
T3 | 802 ± 0.07 | 73.9 ± 1.23 |
T4 | 812 ± 1.01 | 77.5 ± 1.04 |
T5 | 861 ± 0.09 | 85.9 ± 1.05 |
T6 | 879 ± 1.71 | 92.4 ± 1.21 |
Treatment | Concentration (mg/g) | |
---|---|---|
Lactic Acid | Acetic Acid | |
T0 | 34.24 ± 5.2 | 0.85 ± 0.02 |
T1 | 35.46 ± 7.4 | 0.82 ± 0.04 |
T2 | 36.57 ± 3.5 | 1.13 ± 0.03 |
T3 | 36.44 ± 4.8 | 0.97 ± 0.02 |
T4 | 39.28 ± 6.3 | 1.02 ± 0.04 |
T5 | 37.84 ± 5.2 | 0.87 ± 0.08 |
T6 | 37.29 ± 7.2 | 0.86 ± 0.06 |
Treatment | Storage Time (Days) | ||||
---|---|---|---|---|---|
0 | 1 | 7 | 14 | 21 | |
T0 | 9.92 ± 0.19 | 9.89 ± 0.10 | 9.87 ± 0.31 | 9.85 ± 0.12 | 9.86 ± 0.18 |
T1 | 9.93 ± 0.10 | 9.92 ± 0.22 | 9.90 ± 0.11 | 9.91 ± 0.16 | 9.88 ± 0.10 |
T2 | 9.93 ± 0.14 | 9.93 ± 0.12 | 9.90 ± 0.10 | 9.90 ± 0.14 | 9.89 ± 0.21 |
T3 | 9.94 ± 0.09 | 9.92 ± 0.21 | 9.91 ± 0.23 | 9.91 ± 0.21 | 9.90 ± 0.13 |
T4 | 9.95 ± 0.18 | 9.93 ± 0.14 | 9.92 ± 0.16 | 9.91 ± 0.24 | 9.91 ± 0.24 |
T5 | 9.91 ± 0.15 | 9.90 ± 0.13 | 9.89 ± 0.09 | 9.87 ± 0.13 | 9.88 ± 0.25 |
T6 | 9.90 ± 0.17 | 9.91 ± 0.21 | 9.88 ± 0.15 | 9.86 ± 0.17 | 9.87 ± 0.16 |
Treatment | Storage Time (Days) | ||||
---|---|---|---|---|---|
0 | 1 | 7 | 14 | 21 | |
To | 5.42 ± 0.10 | 5.30 ± 0.06 | 4.87 ± 0.15 | 4.50 ± 0.12 | 4.20 ± 0.14 |
T1 | 5.37 ± 0.06 | 5.10 ± 0.15 | 4.57 ± 0.08 | 4.30 ± 0.16 | 4.13 ± 0.05 |
T2 | 5.32 ± 0.11 | 4.90 ± 0.14 | 4.48 ± 0.05 | 4.28 ± 0.07 | 4.05 ± 0.10 |
T3 | 5.35 ± 0.12 | 5.28 ± 0.16 | 4.81 ± 0.14 | 4.43 ± 0.05 | 4.15 ± 0.13 |
T4 | 5.28 ± 0.05 | 5.00 ± 0.10 | 4.38 ± 0.06 | 4.15 ± 0.08 | 3.96 ± 0.05 |
T5 | 5.44 ± 0.04 | 5.20 ± 0.07 | 4.67 ± 0.12 | 4.48 ± 0.10 | 4.17 ± 0.09 |
T6 | 5.39 ± 0.09 | 5.10 ± 0.09 | 4.72 ± 0.11 | 4.36 ± 0.11 | 4.10 ± 0.08 |
Treatment | Parameters | ||||||
---|---|---|---|---|---|---|---|
Crumbliness | Stickiness | Firmness | Slice-Ability | Flavor | Taste | General Acceptability | |
To | 3.48 ± 0.04 | 3.35 ± 0.10 | 3.50 ± 0.13 | 3.41 ± 0.05 | 2.75 ± 0.04 | 2.64 ± 0.07 | 3.18 ± 0.09 |
T1 | 3.51 ± 0.06 | 3.41 ± 0.08 | 3.55 ± 0.05 | 3.42 ± 0.10 | 3.11 ± 0.07 | 3.09 ± 0.08 | 3.17 ± 0.05 |
T2 | 3.58 ± 0.03 | 3.45 ± 0.05 | 3.56 ± 0.08 | 3.44 ± 0.08 | 3.28 ± 0.06 | 3.42 ± 0.09 | 3.15 ± 0.11 |
T3 | 3.46 ± 0.07 | 3.49 ± 0.07 | 3.45 ± 0.04 | 3.42 ± 0.10 | 3.66 ± 0.05 | 3.51 ± 0.11 | 3.18 ± 0.06 |
T4 | 3.51 ± 0.09 | 3.51 ± 0.11 | 3.44 ± 0.09 | 3.40 ± 0.11 | 3.71 ± 0.04 | 3.84 ± 0.08 | 3.09 ± 0.07 |
T5 | 3.49 ± 0.11 | 3.46 ± 0.05 | 3.47 ± 0.10 | 3.45 ± 0.12 | 4.05 ± 0.06 | 3.98 ± 0.08 | 3.12 ± 0.11 |
T6 | 3.48 ± 0.04 | 3.51 ± 0.04 | 3.53 ± 0.11 | 3.46 ± 0.04 | 4.03 ± 0.05 | 4.13 ± 0.07 | 3.16 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, M.; Azam, M.; Kiani, H.S.; Hussain, M.; Ahsan, H.; Ahmad, T.; Waseem, H.K.; Bilal, M.; Fatima, A.; Ali, A. Assessing the Potential of Milk-Based Encapsulation Matrix for Improved Bio-Accessibility of Probiotics. Fermentation 2023, 9, 725. https://doi.org/10.3390/fermentation9080725
Saeed M, Azam M, Kiani HS, Hussain M, Ahsan H, Ahmad T, Waseem HK, Bilal M, Fatima A, Ali A. Assessing the Potential of Milk-Based Encapsulation Matrix for Improved Bio-Accessibility of Probiotics. Fermentation. 2023; 9(8):725. https://doi.org/10.3390/fermentation9080725
Chicago/Turabian StyleSaeed, Muhammad, Muhammad Azam, Hafiza Sehrish Kiani, Majid Hussain, Haseeb Ahsan, Tanveer Ahmad, Hafiz Khuram Waseem, Muhammad Bilal, Arooj Fatima, and Akhtar Ali. 2023. "Assessing the Potential of Milk-Based Encapsulation Matrix for Improved Bio-Accessibility of Probiotics" Fermentation 9, no. 8: 725. https://doi.org/10.3390/fermentation9080725
APA StyleSaeed, M., Azam, M., Kiani, H. S., Hussain, M., Ahsan, H., Ahmad, T., Waseem, H. K., Bilal, M., Fatima, A., & Ali, A. (2023). Assessing the Potential of Milk-Based Encapsulation Matrix for Improved Bio-Accessibility of Probiotics. Fermentation, 9(8), 725. https://doi.org/10.3390/fermentation9080725