Anaerobic Fermentation of Slaughterhouse Waste—Codigestion with Wheat Straw to Determine Methane Biochemical Potential and Kinetic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Substrates and Inoculum
2.2. Characterization of Raw Materials and Biogas
2.3. Experimental Methodology
2.4. Kinetic Modeling
3. Results and Discussion
3.1. Characterization of Substrates and Inoculums
3.2. Cumulative Production of Biogas and Methane
3.3. Effect of pH, C/N Rate, Biodegradability and Synergic Effect Index on Accumulated Methane Yield
3.4. Evaluation of the Different Kinetic Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bond, T.; Templeton, M.R. History and future of domestic biogas plants in the developing world. Energy Sustain. Dev. 2011, 15, 347–354. [Google Scholar] [CrossRef]
- Ebner, J.H.; Labatut, R.A.; Lodge, J.S.; Williamson, A.A.; Trabold, T.A. Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects. Waste Manag. 2016, 52, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef] [PubMed]
- Boe, K. Online Monitoring and Control of the Biogas Process. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2006. [Google Scholar]
- Paudel, S.R.; Banjara, S.P.; Choi, O.K.; Park, K.Y.; Kim, Y.M.; Lee, J.W. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresour. Technol. 2017, 245, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, T.G.; Adelard, L. Improving biogas quality and methane yield via co-digestion of agricultural and urban biomass wastes. Waste Manag. 2016, 54, 118–125. [Google Scholar] [CrossRef]
- Aguilar, M.C.; Wang, Y.D.; Roskilly, T.; Pathare, P.B.; Lamidi, R.O. Biogas from anaerobic co-digestion of food waste and primary sludge for cogeneration of power and heat. Energy Procedia 2017, 142, 70–76. [Google Scholar] [CrossRef]
- Neshat, S.A.; Mohammadi, M.; Najafpour, G.D.; Lahijani, P. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew. Sustain. Energy Rev. 2017, 79, 308–322. [Google Scholar] [CrossRef]
- Acosta, N.; De Vrieze, J.; Sandoval, V.; Sinche, D.; Wierinck, I.; Rabaey, K. Cocoa residues as viable biomass for renewable energy production through anaerobic digestion. Bioresour. Technol. 2018, 265, 568–572. [Google Scholar] [CrossRef]
- Gaibor-Chávez, J.; Niño-Ruiz, Z.; Velázquez-Martí, B.; Lucio-Quintana, A. Viability of Biogas Production and Determination of Bacterial Kinetics in Anaerobic Co-digestion of Cabbage Waste and Livestock Manure. Waste Biomass Valorization 2018, 10, 2129–2137. [Google Scholar] [CrossRef]
- Tufaner, F.; Avşar, Y. Effects of co-substrate on biogas production from cattle manure: A review. Int. J. Environ. Sci. Technol. 2016, 13, 2303–2312. [Google Scholar] [CrossRef] [Green Version]
- Valenti, F.; Zhong, Y.; Sun, M.; Porto, S.M.C.; Toscano, A.; Dale, B.E.; Sibilla, F.; Liao, W. Anaerobic co-digestion of multiple agricultural residues to enhance biogas production in southern Italy. Waste Manag. 2018, 78, 151–157. [Google Scholar] [CrossRef]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; De Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; Van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meneses-Quelal, W.O.; Velázquez-Martí, B.; Gaibor-Chávez, J.; Niño-Ruiz, Z. Biochemical potential of methane (BMP) of camelid waste and the Andean region agricultural crops. Renew. Energy 2021, 168, 406–415. [Google Scholar] [CrossRef]
- APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater. Standard Methods for the Examination of Water and Wastewater; APHA (American Public Health Association): Washington, DC, USA, 2012; p. 1496. Available online: https://www.apha.org/ (accessed on 22 July 2023).
- Valero, D.; Montes, J.A.; Rico, J.L.; Rico, C. Influence of headspace pressure on methane production in Biochemical Methane Potential (BMP) tests. Waste Manag. 2016, 48, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buswell, M.; Muellepi, H.F. Mechanis of Methane Fermentation. Ind. Eng. Chem. 1952, 44, 550–552. [Google Scholar] [CrossRef]
- Li, W.; Siddhu, M.A.H.; Amin, F.R.; He, Y.; Zhang, R.; Liu, G.; Chen, C. Methane production through anaerobic co-digestion of sheep dung and waste paper. Energy Convers. Manag. 2018, 156, 279–287. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, F.; Yu, J.; Cai, Y.; Luo, X.; Cui, Z.; Hu, Y.; Wang, X. Co-digestion of oat straw and cow manure during anaerobic digestion: Stimulative and inhibitory effects on fermentation. Bioresour. Technol. 2018, 269, 143–152. [Google Scholar] [CrossRef]
- Kafle, G.K.; Chen, L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag. 2016, 48, 492–502. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Khalid, H.; Zhu, Z.; Zhang, R.; Liu, G.; Chen, C.; Thorin, E. Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Appl. Energy 2018, 226, 1219–1228. [Google Scholar] [CrossRef]
- Zahan, Z.; Othman, M.Z.; Muster, T.H. Anaerobic digestion/co-digestion kinetic potentials of different agro-industrial wastes: A comparative batch study for C/N optimisation. Waste Manag. 2018, 71, 663–674. [Google Scholar] [CrossRef]
- Pommier, X.L.S.; Chenu, D.; Quintard, M. A Logistic Model for the Prediction of the Influence of Water on the Solid Waste Methanization in Landfill. Biotechnol. Bioeng. 2007, 97, 473–481. [Google Scholar] [CrossRef]
- Ware, A.; Power, N. Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renew. Energy 2017, 104, 50–59. [Google Scholar] [CrossRef]
- Almomani, F. Prediction of biogas production from chemically treated co-digested agricultural waste using artificial neural network. Fuel 2020, 280, 118573. [Google Scholar] [CrossRef]
- Li, Y.; Meng, Z.; Xu, Y.; Shi, Q.; Ma, Y.; Aung, M.; Cheng, Y. Interactions between Anaerobic Fungi and Methanogens in the Rumen and Their Biotechnological Potential in Biogas Production from Lignocellulosic Materials. Microorganisms 2021, 9, 190. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Pope, P.B.; Eijsink, V.G.H.; Schnürer, A. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb. Biotechnol. 2015, 8, 815–827. [Google Scholar] [CrossRef] [Green Version]
- Karekar, S.; Stefanini, R. Homo-Acetogens: Their Metabolism and Competitive Relationship with Hydrogenotrophic Methanogens. Microorganisms 2022, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
- Sumantri, I.; Kusnadi, P.; Handoyo, I.G.R.; Kumoro, A.C. Biodigestion of Mixed Substrates of Cow Manure-Delignified Spent Coffee Ground (DSCG) using Microorganism Enhancer for Biogas Production and Its Kinetic Study. Environ. Res. Eng. Manag. 2022, 78, 96–109. [Google Scholar] [CrossRef]
- Hahn, M.J.; Figueroa, L.A. Pilot scale application of anaerobic baffled reactor for biologically enhanced primary treatment of raw municipal wastewater. Water Res. 2015, 87, 494–502. [Google Scholar] [CrossRef]
- Siddique, M.N.I.; Wahid, Z.A. Achievements and perspectives of anaerobic co-digestion: A review. J. Clean. Prod. 2018, 194, 359–371. [Google Scholar] [CrossRef]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor. Ecotoxicol. Environ. Saf. 2015, 121, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Raposo, F.; Borja, R.; Martín, M.A.; Martín, A.; de la Rubia, M.A.; Rincón, B. Influence of inoculum-substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: Process stability and kinetic evaluation. Chem. Eng. J. 2009, 149, 70–77. [Google Scholar] [CrossRef]
Parameter | Units | RR | WS | Inoculum |
---|---|---|---|---|
Moisture | % | 90.4 ± 1.3 | 11.8 ± 0.1 | 96.1 ± 0.0 |
TS | % | 9.6 ± 1.3 | 88.2 ± 0.1 | 3.9 ± 0.0 |
Ash | % | 12. 8 ± 0.2 | 8.5 ± 0.1 | 55.6 ± 0.2 |
VS | % | 70.7 ± 0.1 | 74.8 ± 0.3 | 58.5 ± 0.5 |
C | % | 42.1 ± 1.1 | 43.0 ± 1.3 | 25.0 ± 1.1 |
H | % | 6.3 ± 0.1 | 6.5 ± 0.1 | 2.1 ± 0.2 |
O | % | 38.3 ± 1.2 | 38.6 ± 1.3 | 12.9 ± 1.1 |
N | % | 0.4 ± 0.0 | 3.3 ± 0.1 | 3.4 ± 0.2 |
S | % | 0.02 ± 0.0 | 0.2 ± 0.0 | 0.7 ± 0.1 |
C/N | - | 102.8 ± 2.6 | 28.9 ± 0.1 | 7.5 ± 1.3 |
Ratio I:S | Ratio RR:WS | Ratio C/N | TMY (mL/g-VS) | EMY (mL/g-VS) | SEI (%) | BD (%) | Initial pH | Final pH |
---|---|---|---|---|---|---|---|---|
2:1 | RR:WS—0:4 | 28.9 | 427.9 | 274.9 ± 5.4 | - | 64.3 | 7.2 ± 0.1 | 7.1 ± 0.0 |
RR:WS—1:3 | 16.7 | 429.2 | 288.4 ± 3.7 | 7.2 | 67.2 | 7.3 ± 0.0 | 7.1 ± 0.0 | |
RR:WS—2:2 | 23.3 | 430.6 | 296.6 ± 5.2 | 12.9 | 68.9 | 7.3 ± 0.0 | 7.2 ± 0.0 | |
RR:WS—3:1 | 38.2 | 432.0 | 277.2 ± 3.3 | 7.9 | 64.2 | 7.4 ± 0.0 | 7.2 ± 0.0 | |
RR:WS—4:0 | 102.8 | 433.4 | 250.8 ± 2.8 | - | 57.9 | 7.5 ± 0.0 | 7.2 ± 0.1 | |
1:1 | RR:WS—0:4 | 28.9 | 427.9 | 264.6 ± 4.5 | - | 61.8 | 7.3 ± 0.0 | 6.98 ± 0.05 |
RR:WS—1:3 | 16.7 | 429.2 | 245.6 ± 2.6 | −4.9 | 57.2 | 7.4 ± 0.1 | 7.0 ± 0.0 | |
RR:WS—2:2 | 23.3 | 430.6 | 231.6 ± 3.7 | −8.1 | 53.8 | 7.4 ± 0.1 | 7.1 ± 0.0 | |
RR:WS—3:1 | 38.2 | 432.0 | 272.8 ± 3.0 | 11.1 | 63.2 | 7.5 ± 0.0 | 7.1 ± 0.0 | |
RR:WS—4:0 | 102.8 | 433.4 | 239.3 ± 3.1 | - | 55.2 | 7.7 ± 0.0 | 7.2 ± 0.0 | |
1:2 | RR:WS—0:4 | 28.9 | 427.9 | 167.1 ± 5.9 | - | 39.1 | 7.3 ± 0.1 | 6.8 ± 0.2 |
RR:WS—1:3 | 16.7 | 429.2 | 227.7 ± 3.0 | 24.2 | 53.1 | 7.8 ± 0.0 | 6.9 ± 0.0 | |
RR:WS—2:2 | 23.3 | 430.6 | 253.3 ± 4.1 | 26.9 | 58.8 | 7.8 ± 0.0 | 7.0 ± 0.1 | |
RR:WS—3:1 | 38.2 | 432.0 | 289.1 ± 5.5 | 33.9 | 66.9 | 7.8 ± 0.0 | 7.1 ± 0.0 | |
RR:WS—4:0 | 102.8 | 433.4 | 232.3 ± 7.6 | - | 53.6 | 7.8 ± 0.0 | 7.0 ± 0.1 |
Models | Parameter | Unit | * 2:1 | 1:1 | 1:2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
** RR:WS 0:4 | RR:WS 1:3 | RR:WS 2:2 | RR:WS 3:1 | RR:WS 4:0 | RR:WS 0:4 | RR:WS 1:3 | RR:WS 2:2 | RR:WS 3:1 | RR:WS 4:0 | RR:WS 0:4 | RR:WS 1:3 | RR:WS 2:2 | RR:WS 3:1 | RR:WS 4:0 | |||
Experimental | TMY | mLCH4/g VS | 274.9 | 288.4 | 306.2 | 277.2 | 250.8 | 264.6 | 245.6 | 244.4 | 272.8 | 239.2 | 167.1 | 227.7 | 255.3 | 289.1 | 232.2 |
Gompertz | Bo | mLCH4/g VS | 262.5 | 284.5 | 305.1 | 272.9 | 249.8 | 264.1 | 244.4 | 235.5 | 276.5 | 238.4 | 177.3 | 230.8 | 257.0 | 286.9 | 222.9 |
Transfer | 271.2 | 298.3 | 325.0 | 288.9 | 263.1 | 283.4 | 257.2 | 252.2 | 298.0 | 253.2 | 213.1 | 249.3 | 275.1 | 304.1 | 233.1 | ||
Logistic | 259.0 | 279.2 | 298.0 | 266.6 | 243.9 | 257.1 | 239.4 | 229.6 | 268.5 | 232.5 | 168.4 | 224.9 | 250.9 | 281.3 | 219.1 | ||
Gompertz | Vmax | mLCH4/g VS day | 16.7 | 13.9 | 13.3 | 12.2 | 10.2 | 10.4 | 11.1 | 11.0 | 10.8 | 10.7 | 6.7 | 11.0 | 12.7 | 16.7 | 13.4 |
Transfer | 29.8 | 24.7 | 22.9 | 21.3 | 18.5 | 18.0 | 19.7 | 18.2 | 18.4 | 18.4 | 9.3 | 17.6 | 20.6 | 26.6 | 22.9 | ||
Logistic | 15.1 | 12.6 | 12.1 | 11.2 | 9.2 | 9.5 | 10.1 | 10.3 | 10.0 | 10.0 | 6.7 | 10.5 | 12.0 | 16.0 | 12.4 | ||
Gompertz | tlag | day | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.5 | 0.0 |
Transfer | 0.7 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.5 | 0.0 | 0.0 | 0.7 | 0.8 | 0.8 | 1.2 | 1.0 | ||
Logistic | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 | 0.5 | 0.0 | ||
Gompertz | R2 | dimensionless | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Transfer | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | ||
Logistic | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | ||
Gompertz | RMSE | dimensionless | 10.2 | 8.8 | 10.0 | 6.7 | 7.2 | 10.8 | 8.5 | 5.4 | 8.2 | 5.5 | 2.8 | 3.8 | 4.4 | 4.5 | 9.0 |
Transfer | 5.4 | 3.6 | 5.0 | 2.5 | 4.8 | 6.2 | 4.6 | 1.4 | 4.2 | 4.0 | 4.6 | 3.3 | 3.0 | 5.0 | 5.0 | ||
Logistic | 13.5 | 12.3 | 13.6 | 9.7 | 9.2 | 13.7 | 11.0 | 8.5 | 10.9 | 7.5 | 3.7 | 6.6 | 7.7 | 8.7 | 12.2 | ||
Experimental | TMY | mLbiogas/g VS | 477.8 | 479.9 | 493.2 | 421.7 | 354.5 | 460.9 | 417.8 | 378.5 | 427.8 | 365.3 | 329.6 | 411.7 | 455.4 | 502.903 | 375.441 |
Gompertz | Bo | mLbiogas/g VS | 448.7 | 463.1 | 481.9 | 410.0.9 | 354.6 | 458.7 | 411.4 | 373.2 | 435.8 | 368.4 | 339.1 | 410.3 | 456.1 | 495.670 | 360.830 |
Transfer | 378.7 | 439.8 | 492.9 | 531.8 | 383.8 | 493.6 | 434.5 | 407.3 | 487.1 | 410.6 | 378.6 | 439.8 | 492.9 | 531.780 | 383.010 | ||
Logistic | 442.9 | 454.1 | 469.6 | 399.3 | 344.1 | 445.9 | 402.0 | 362.2 | 418.2 | 354.0 | 325.7 | 399.7 | 443.1 | 483.720 | 352.800 | ||
Gompertz | Vmax | mLbiogas/g VS day | 28.5 | 22.1 | 19.8 | 16.9 | 12.9 | 17.1 | 17.7 | 16.5 | 15.2 | 14.1 | 12.5 | 18.3 | 19.8 | 25.674 | 16.859 |
Transfer | 19.9 | 30.6 | 32.5 | 40.8 | 29.1 | 29.7 | 31.5 | 26.5 | 24.5 | 22.3 | 19.9 | 30.6 | 32.5 | 40.848 | 29.064 | ||
Logistic | 25.8 | 20.0 | 18.1 | 15.5 | 11.8 | 15.6 | 16.1 | 15.7 | 14.4 | 13.6 | 12.0 | 17.1 | 18.7 | 24.599 | 15.407 | ||
Gompertz | tlag | day | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 |
Transfer | 0.0 | 0.2 | 0.2 | 0.8 | 0.3 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.834 | 0.270 | ||
Logistic | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | ||
Gompertz | R2 | dimensionless | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.997 | 0.980 |
Transfer | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.996 | 0.994 | ||
Logistic | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.990 | 0.965 | ||
Gompertz | RMSE | dimensionless | 16.8 | 14.8 | 16.5 | 11.1 | 10.3 | 18.9 | 14.4 | 8.7 | 11.8 | 7.4 | 5.9 | 8.4 | 8.6 | 7.630 | 13.800 |
Transfer | 4.7 | 2.9 | 3.9 | 8.6 | 7.6 | 11.6 | 8.2 | 2.6 | 5.9 | 6.2 | 4.7 | 2.9 | 3.9 | 8.580 | 7.570 | ||
Logistic | 22.2 | 20.2 | 21.8 | 15.2 | 12.9 | 23.6 | 18.5 | 13.8 | 15.9 | 10.3 | 8.6 | 13.1 | 13.7 | 14.000 | 18.400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meneses Quelal, O.; Pilamunga Hurtado, D. Anaerobic Fermentation of Slaughterhouse Waste—Codigestion with Wheat Straw to Determine Methane Biochemical Potential and Kinetic Analysis. Fermentation 2023, 9, 726. https://doi.org/10.3390/fermentation9080726
Meneses Quelal O, Pilamunga Hurtado D. Anaerobic Fermentation of Slaughterhouse Waste—Codigestion with Wheat Straw to Determine Methane Biochemical Potential and Kinetic Analysis. Fermentation. 2023; 9(8):726. https://doi.org/10.3390/fermentation9080726
Chicago/Turabian StyleMeneses Quelal, Orlando, and David Pilamunga Hurtado. 2023. "Anaerobic Fermentation of Slaughterhouse Waste—Codigestion with Wheat Straw to Determine Methane Biochemical Potential and Kinetic Analysis" Fermentation 9, no. 8: 726. https://doi.org/10.3390/fermentation9080726
APA StyleMeneses Quelal, O., & Pilamunga Hurtado, D. (2023). Anaerobic Fermentation of Slaughterhouse Waste—Codigestion with Wheat Straw to Determine Methane Biochemical Potential and Kinetic Analysis. Fermentation, 9(8), 726. https://doi.org/10.3390/fermentation9080726