Advances in Synthetic Biology Techniques and Industrial Applications of Corynebacterium glutamicum
Abstract
:1. Introduction
2. Gene Editing Techniques for the C. glutamicum
2.1. Traditional Gene Editing Techniques
2.1.1. Homologous Recombination Mediated by Non-Replicating Plasmids
2.1.2. Site-Specific and Single-Stranded Recombination
2.2. CRISPR/Cas Gene Editing Techniques
2.2.1. CRISPR/Cas9 System
2.2.2. CRISPR/Cpf1 System
Editing System | Features | Editing Efficiency | Applications | Ref |
---|---|---|---|---|
CRISPR/Cas9 | Cas9 protein codon optimization | 20% knockout efficiency | Obtained γ-aminobutyric acid production strain. | [44] |
CRISPR/Cas9 | Dual Plasmid System | Knockout rate of porB gene up to 100% | Enhanced expression of GFP 1 in strains lacking specific genes. | [48] |
CRISPR/Cas9 | Co-expression of Cas9 and gRNA | Gene knockout efficiency was 30.8–60%, and gene integration efficiency was 16.7–62.5% | Obtained strains of C. glutamicum ATCC 13032 and ATCC 13869. | [49] |
CRISPR/Cpf1 | Optimized the original PAM sequence, spacer length, and repair template type | Gene knockout efficiency of about 32% | Improvement of isobutyric acid production in C. glutamicum. | [50] |
CRISPR/Cpf1 | Multi-locus editing, targeted deletion of large DNA, and insertion of possible | The simultaneous editing efficiency of two genes was 91.6%, while the knockout efficiencies for DNA fragments of 1 kb, 5 kb, and 20 kb were 79.6%, 91.3%, and 36.4%, respectively | Obtained a strain of C. glutamicum ATCC 14067. | [36] |
CRISPR/Cpf1 | ssDNA recombination binding, in situ saturation point mutation | Small fragment gene editing efficiency of 86–100% efficiency | Obtained high-yielding strains resistant to L-proline inhibition. | [51] |
CRISPR/Cpf1 | Using CRISPR-induced DNA double-strand breaks as counter-selection | Knockout efficiency > 80%, gene integration efficiency > 76% (gene length within 4 kb) | High-yielding D-pantothenic acid (vitamin B5) producing strains were constructed. | [52] |
2.3. CRISPR Interference Technology
3. Elements of Gene Expression and Regulatory Strategies
3.1. Promoters
3.2. Non-Coding Regions in the 5′ Untranslated Region (UTR)
3.3. Signal Peptides (SPs)
3.4. Terminators
3.5. Expression Vectors
4. Summary and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, K.; Zhao, N.; Cai, Y.; Lin, Y.; Han, S.; Zheng, S. Genome-Scale Mining of Novel Anchor Proteins of Corynebacterium glutamicum. Front. Microbiol. 2022, 12, 677702. [Google Scholar] [CrossRef]
- Ikeda, M.; Nakagawa, S. The Corynebacterium glutamicum genome: Features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 2003, 62, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Capo, A.; Natalello, A.; Marienhagen, J.; Pennacchio, A.; Camarca, A.; Di Giovanni, S.; Staiano, M.; D’Auria, S.; Varriale, A. Structural features of the glutamate-binding protein from Corynebacterium glutamicum. Int. J. Biol. Macromol. 2020, 162, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Fan, X.; Cai, N.; Zhang, D.; Zhao, G.; Wang, T.; Su, R.; Yuan, M.; Ma, Q.; Zhang, C.; et al. Efficient fermentative production of l-theanine by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2020, 104, 119–130. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Shi, T.; Sun, G.; Gao, N.; Zhao, X.; Guo, X.; Ni, X.; Yuan, Q.; Feng, J.; et al. CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an l-proline exporter for l-proline hyperproduction. Nat. Commun. 2022, 13, 891. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, X.; Xiao, W.; Shi, J.; Xu, Z. Production of L-serine and its derivative L-cysteine from renewable feedstocks using Corynebacterium glutamicum: Advances and perspectives. Crit. Rev. Biotechnol. 2023, 43, 1–14. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Liu, D.; Yuwen, M.; Koffas, M.A.G.; Zha, J. Biosynthesis of eriodictyol from tyrosine by Corynebacterium glutamicum. Microb. Cell Factories 2022, 21, 86. [Google Scholar] [CrossRef]
- Kubota, T.; Watanabe, A.; Suda, M.; Kogure, T.; Hiraga, K.; Inui, M. Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metab. Eng. 2016, 38, 322–330. [Google Scholar] [CrossRef]
- Rohles, C.M.; Gläser, L.; Kohlstedt, M.; Gießelmann, G.; Pearson, S.; del Campo, A.; Becker, J.; Wittmann, C. A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6,5 using metabolically engineered Corynebacterium glutamicum. Green Chem. 2018, 20, 4662–4674. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.; Rohles, C.M.; Wittmann, C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab. Eng. 2018, 50, 122–141. [Google Scholar] [CrossRef]
- Carpinelli, J.; Krämer, R.; Agosin, E. Metabolic Engineering of Corynebacterium glutamicum for Trehalose Overproduction: Role of the TreYZ Trehalose Biosynthetic Pathway. Appl. Environ. Microbiol. 2006, 72, 1949–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Liu, C.; Xia, M.; Li, S.; Tu, R.; Wang, S.; Jin, H.; Zhang, D. Characterization of a Riboflavin-Producing Mutant of Bacillus subtilis Isolated by Droplet-Based Microfluidics Screening. Microorganisms 2023, 11, 1070. [Google Scholar] [CrossRef]
- Zhang, K.; Su, L.; Wu, J. Recent Advances in Recombinant Protein Production by Bacillus subtilis. Annu. Rev. Food Sci. Technol. 2020, 11, 295–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, B.; Liu, M.; Li, Z.-H.; Tao, X.; Wei, D.-Z.; Wang, F.-Q. Significantly Enhanced Production of Patchoulol in Metabolically Engineered Saccharomyces cerevisiae. J. Agric. Food Chem. 2019, 67, 8590–8598. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Li, D.; Kang, J.; Jiang, P.; Sun, J.; Zhang, D. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat. Commun. 2018, 9, 4917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashiro, S.; Mitsuhashi, M.; Yasueda, H. Overexpression system for recombinant RNA in Corynebacterium glutamicum using a strong promoter derived from corynephage BFK20. J. Biosci. Bioeng. 2019, 128, 255–263. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Zhao, Z.; Dai, X.; Yang, Y.; Bai, Z. Protein secretion in Corynebacterium glutamicum. Crit. Rev. Biotechnol. 2017, 37, 541–551. [Google Scholar] [CrossRef]
- Li, N.; Zeng, W.; Xu, S.; Zhou, J. Obtaining a series of native gradient promoter-5′-UTR sequences in Corynebacterium glutamicum ATCC 13032. Microb. Cell Factories 2020, 19, 120. [Google Scholar] [CrossRef]
- Ozaki, A.; Katsumata, R.; Oka, T.; Furuya, A. Functional expression of the genes of Escherichia coli in gram-positive Corynebacterium glutamicum. Mol. Gen. Genet. MGG 1984, 196, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, J.; Bathe, B.; Bartels, D.; Bischoff, N.; Bott, M.; Burkovski, A.; Dusch, N.; Eggeling, L.; Eikmanns, B.J.; Gaigalat, L.; et al. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J. Biotechnol. 2003, 104, 5–25. [Google Scholar] [CrossRef]
- Vertès, A.A.; Inui, M.; Yukawa, H. Manipulating Corynebacteria, from Individual Genes to Chromosomes. Appl. Environ. Microbiol. 2005, 71, 7633–7642. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Li, Y.; Li, J.; Zhang, D.; Cai, N.; Zhao, G.; Ma, H.; Shang, C.; Ma, Q.; Xu, Q.; et al. An update of the suicide plasmid-mediated genome editing system in Corynebacterium glutamicum. Microb. Biotechnol. 2019, 12, 907–919. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Xu, Y.; Yang, J.; Shang, G. Homing endonuclease I-SceI-mediated Corynebacterium glutamicum ATCC 13032 genome engineering. Appl. Microbiol. Biotechnol. 2020, 104, 3597–3609. [Google Scholar] [CrossRef]
- Suzuki, N.; Tsuge, Y.; Inui, M.; Yukawa, H. Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2005, 67, 225–233. [Google Scholar] [CrossRef]
- Okibe, N.; Suzuki, N.; Inui, M.; Yukawa, H. Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J. Microbiol. Methods 2011, 85, 155–163. [Google Scholar] [CrossRef]
- Jäger, W.; Schäfer, A.; Pühler, A.; Labes, G.; Wohlleben, W. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J. Bacteriol. 1992, 174, 5462–5465. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, Y.; Ma, J.; Liu, Y.; He, J.; Li, Y.; Zhu, F.; Meng, J.; Zhan, J.; Li, Z.; et al. High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering. Metab. Eng. 2018, 49, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Xu, D.; Li, Y.; Wang, X. Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid 2012, 67, 44–52. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Al Makishah, N.H.; Sun, X.; Wen, Z.; Jiang, Y.; Yang, S. Advances and Perspectives for Genome Editing Tools of Corynebacterium glutamicum. Front. Microbiol. 2021, 12, 654058. [Google Scholar] [CrossRef]
- Kim, I.K.; Jeong, W.K.; Lim, S.H.; Hwang, I.K.; Kim, Y.H. The small ribosomal protein S12P gene rpsL as an efficient positive selection marker in allelic exchange mutation systems for Corynebacterium glutamicum. J. Microbiol. Methods 2011, 84, 128–130. [Google Scholar] [CrossRef]
- Ma, W.; Wang, X.; Mao, Y.; Wang, Z.; Chen, T.; Zhao, X. Development of a markerless gene replacement system in Corynebacterium glutamicum using upp as a counter-selection marker. Biotechnol. Lett. 2015, 37, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, W.; Hata, M. Development of Efficient Genome-Reduction Tool Based on Cre/loxP System in Rhodococcus erythropolis. Microorganisms 2023, 11, 268. [Google Scholar] [CrossRef] [PubMed]
- Binder, S.; Siedler, S.; Marienhagen, J.; Bott, M.; Eggeling, L. Recombineering in Corynebacterium glutamicum combined with optical nanosensors: A general strategy for fast producer strain generation. Nucleic Acids Res. 2013, 41, 6360–6369. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Zhao, N.; Jiang, S.; Zheng, S. Application of RecET-Cre/loxP system in Corynebacterium glutamicum ATCC14067 for l-leucine production. Biotechnol. Lett. 2021, 43, 297–306. [Google Scholar] [CrossRef]
- Huang, Y.; Li, L.; Xie, S.; Zhao, N.; Han, S.; Lin, Y.; Zheng, S. Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette. Sci. Rep. 2017, 7, 7916. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Li, L.; Luo, G.; Xie, S.; Lin, Y.; Han, S.; Huang, Y.; Zheng, S. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum. J. Ind. Microbiol. Biotechnol. 2020, 47, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Doudna, J.A. CRISPR technology: A decade of genome editing is only the beginning. Science 2023, 379, eadd8643. [Google Scholar] [CrossRef]
- Nishida, K.; Kondo, A. CRISPR-derived genome editing technologies for metabolic engineering. Metab. Eng. 2021, 63, 141–147. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Liu, J.; Guo, Y.; Fan, L.; Ni, X.; Zheng, X.; Wang, M.; Zheng, P.; Sun, J.; et al. MACBETH: Multiplex automated Corynebacterium glutamicum base editing method. Metab. Eng. 2018, 47, 200–210. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Li, J.; Yang, Y.; Ni, X.; Cheng, H.; Huang, T.; Guo, Y.; Ma, H.; Zheng, P.; et al. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum. Biotechnol. Bioeng. 2019, 116, 3016–3029. [Google Scholar] [CrossRef]
- Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420–424. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, D.; Sun, L.; Wang, J.; Fan, L.; Cheng, G.; Zhang, Z.; Ni, X.; Feng, J.; Wang, M.; et al. Engineering of the Translesion DNA Synthesis Pathway Enables Controllable C-to-G and C-to-A Base Editing in Corynebacterium glutamicum. ACS Synth. Biol. 2022, 11, 3368–3378. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Liu, Y.; Liu, Y.; Wen, X.; Zhang, K.; Ni, X.; Gao, N.; Fan, L.; Zhang, Z.; et al. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nat. Commun. 2021, 12, 678. [Google Scholar] [CrossRef]
- Cho, J.S.; Choi, K.R.; Prabowo, C.P.S.; Shin, J.H.; Yang, D.; Jang, J.; Lee, S.Y. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab. Eng. 2017, 42, 157–167. [Google Scholar] [CrossRef]
- Li, N.; Wang, M.; Yu, S.; Zhou, J. Optimization of CRISPR-Cas9 through promoter replacement and efficient production of L-homoserine in Corynebacterium glutamicum. Biotechnol. J. 2021, 16, e2100093. [Google Scholar] [CrossRef] [PubMed]
- Fonfara, I.; Richter, H.; Bratovič, M.; Le Rhun, A.; Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 2016, 532, 517–521. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.; Wang, X.; Sun, Y.; Dong, G.; Yang, Y.; Liu, X.; Bai, Z. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb. Cell Factories 2017, 16, 201. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, Y.; Lu, Y.; Zheng, P.; Sun, J.; Ma, Y. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb. Cell Factories 2017, 16, 205. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yang, F.; Yang, Y.; Jiang, Y.; Huo, Y.-X. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium Glutamicum. Microb. Cell Factories 2019, 18, 60. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Qian, F.; Yang, J.; Liu, Y.; Dong, F.; Xu, C.; Sun, B.; Chen, B.; Xu, X.; Li, Y.; et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat. Commun. 2017, 8, 15179. [Google Scholar] [CrossRef] [Green Version]
- Su, R.; Wang, T.; Bo, T.; Cai, N.; Yuan, M.; Wu, C.; Jiang, H.; Peng, H.; Chen, N.; Li, Y. Enhanced production of d-pantothenic acid in Corynebacterium glutamicum using an efficient CRISPR–Cpf1 genome editing method. Microb. Cell Factories 2023, 22, 3. [Google Scholar] [CrossRef]
- Ghavami, S.; Pandi, A. Chapter Five—CRISPR interference and its applications. In Progress in Molecular Biology and Translational Science; Singh, V., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 180, pp. 123–140. [Google Scholar]
- Cleto, S.; Jensen, J.V.; Wendisch, V.F.; Lu, T.K. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi). ACS Synth. Biol. 2016, 5, 375–385. [Google Scholar] [CrossRef]
- Li, N.; Shan, X.; Zhou, J.; Yu, S. Identification of key genes through the constructed CRISPR-dcas9 to facilitate the efficient production of O-acetylhomoserine in Corynebacterium Glutamicum. Front. Bioeng. Biotechnol. 2022, 10, 978686. [Google Scholar] [CrossRef]
- Gauttam, R.; Seibold, G.M.; Mueller, P.; Weil, T.; Weiß, T.; Handrick, R.; Eikmanns, B.J. A simple dual-inducible CRISPR interference system for multiple gene targeting in Corynebacterium glutamicum. Plasmid 2019, 103, 25–35. [Google Scholar] [CrossRef]
- Lee, S.S.; Shin, H.; Jo, S.; Lee, S.-M.; Um, Y.; Woo, H.M. Rapid identification of unknown carboxyl esterase activity in Corynebacterium glutamicum using RNA-guided CRISPR interference. Enzym. Microb. Technol. 2018, 114, 63–68. [Google Scholar] [CrossRef]
- Byun, G.; Yang, J.; Seo, S.W. CRISPRi-mediated tunable control of gene expression level with engineered single-guide RNA in Escherichia coli. Nucleic Acids Res. 2023, 51, 4650–4659. [Google Scholar] [CrossRef]
- Sun, M.; Gao, X.; Zhao, Z.; Li, A.; Wang, Y.; Yang, Y.; Liu, X.; Bai, Z. Enhanced production of recombinant proteins in Corynebacterium glutamicum by constructing a bicistronic gene expression system. Microb. Cell Factories 2020, 19, 113. [Google Scholar] [CrossRef]
- Ben-Samoun, K.; Leblon, G.; Reyes, O. Positively regulated expression of the Escherichia coli araBAD promoter in Corynebacterium glutamicum. FEMS Microbiol. Lett. 1999, 174, 125–130. [Google Scholar] [CrossRef]
- Shang, X.; Chai, X.; Lu, X.; Li, Y.; Zhang, Y.; Wang, G.; Zhang, C.; Liu, S.; Zhang, Y.; Ma, J.; et al. Native promoters of Corynebacterium glutamicum and its application in l-lysine production. Biotechnol. Lett. 2018, 40, 383–391. [Google Scholar] [CrossRef]
- Ravasi, P.; Peiru, S.; Gramajo, H.; Menzella, H.G. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb. Cell Factories 2012, 11, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Liu, J.; Ni, X.; Lei, Y.; Zheng, P.; Diao, A. Screening efficient constitutive promoters in Corynebacterium glutamicum based on time-series transcriptome analysis. Sheng Wu Gong Cheng Xue Bao 2018, 34, 1760–1771. [Google Scholar] [PubMed]
- Lee, J. Development and characterization of expression vectors for Corynebacterium glutamicum. J. Microbiol. Biotechnol. 2014, 24, 70–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Ai, Y.; Zhang, J.; Fei, J.; Liu, B.; Wang, J.; Li, M.; Zhao, Q.; Song, J. A novel expression vector for Corynebacterium glutamicum with an auxotrophy complementation system. Plasmid 2020, 107, 102476. [Google Scholar] [CrossRef]
- Zhang, B.; Ren, L.-Q.; Yu, M.; Zhou, Y.; Ye, B.-C. Enhanced l-ornithine production by systematic manipulation of l-ornithine metabolism in engineered Corynebacterium glutamicum S9114. Bioresour. Technol. 2018, 250, 60–68. [Google Scholar] [CrossRef]
- Kiefer, D.; Tadele, L.R.; Lilge, L.; Henkel, M.; Hausmann, R. High-level recombinant protein production with Corynebacterium glutamicum using acetate as carbon source. Microb. Biotechnol. 2022, 15, 2744–2757. [Google Scholar] [CrossRef]
- Liu, Q.; Ouyang, S.-p.; Kim, J.; Chen, G.-Q. The impact of PHB accumulation on l-glutamate production by recombinant Corynebacterium glutamicum. J. Biotechnol. 2007, 132, 273–279. [Google Scholar] [CrossRef]
- Yu, X.; Liu, X.; Gao, X.; Luo, X.; Yang, Y.; Li, Y.; Liu, C.; Zhang, C.; Bai, Z. Development of a novel platform for recombinant protein production in Corynebacterium glutamicum on ethanol. Synth. Syst. Biotechnol. 2022, 7, 765–774. [Google Scholar] [CrossRef]
- Lu, N.; Zhang, C.; Zhang, W.; Xu, H.; Li, Y.; Wei, M.; Meng, J.; Meng, Y.; Wang, J.; Chen, N. A Myo-Inositol-Inducible Expression System for Corynebacterium glutamicum and Its Application. Front. Bioeng. Biotechnol. 2021, 9, 746322. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhu, N.; Xia, H. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Bioresour. Technol. 2014, 151, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, Z.; Dong, G.; Li, Y.; Peng, F.; Liu, C.; Zhang, F.; Linhardt, R.J.; Yang, Y.; Bai, Z. Identification, repair and characterization of a benzyl alcohol-inducible promoter for recombinant proteins overexpression in Corynebacterium glutamicum. Enzym. Microb. Technol. 2020, 141, 109651. [Google Scholar] [CrossRef]
- Shi, F.; Luan, M.; Li, Y. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum. AMB Express 2018, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Cui, Y.; Du, L.; Liu, X.; Xie, X.; Chen, N. Identification and application of a growth-regulated promoter for improving l-valine production in Corynebacterium glutamicum. Microb. Cell Factories 2018, 17, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kou, M.; Cui, Z.; Fu, J.; Dai, W.; Wang, Z.; Chen, T. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol. Microb. Cell Factories 2022, 21, 150. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, D.; Mao, Z.; Mao, Y.; Ma, H.; Chen, T.; Zhao, X.; Wang, Z. Model-based reconstruction of synthetic promoter library in Corynebacterium glutamicum. Biotechnol. Lett. 2018, 40, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Ko, Y.J.; Jeong, D.W.; Jeong, W.-Y.; Han, S.O. Ecofriendly Synthesis of l-Carnosine in Metabolically Engineered Corynebacterium glutamicum by Reinforcing Precursor Accumulation. ACS Synth. Biol. 2021, 10, 1553–1562. [Google Scholar] [CrossRef]
- Li, H.; Xu, D.; Zhang, D.; Tan, X.; Huang, D.; Ma, W.; Zhao, G.; Li, Y.; Liu, Z.; Wang, Y.; et al. Improve L-isoleucine production in Corynebacterium glutamicum WM001 by destructing the biosynthesis of trehalose dicorynomycolate. Microbiol. Res. 2023, 272, 127390. [Google Scholar] [CrossRef]
- Roberts, J.W. Mechanisms of Bacterial Transcription Termination. J. Mol. Biol. 2019, 431, 4030–4039. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Itaya, H.; Date, M.; Matsui, K.; Wu, L.-F. TatABC Overexpression Improves Corynebacterium glutamicum Tat-Dependent Protein Secretion. Appl. Environ. Microbiol. 2009, 75, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Zhang, X.; Zhai, W.; Zhang, J.; Ren, J.; Zhang, X.; Xu, G.; Shi, J.; Xu, Z. Characterization and implications of prokaryotic ribosome-binding sites across species. Syst. Microbiol. Biomanufacturing 2022, 2, 676–684. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, H.; Xu, D. Construction of a novel twin-arginine translocation (Tat)-dependent type expression vector for secretory production of heterologous proteins in Corynebacterium glutamicum. Plasmid 2015, 82, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Fan, Z.; Zhang, S.; Wang, Y.; Tan, S.; Li, Y. Optimization of ribosomal binding site sequences for gene expression and 4-hydroxyisoleucine biosynthesis in recombinant corynebacterium glutamicum. Enzym. Microb. Technol. 2020, 140, 109622. [Google Scholar] [CrossRef]
- Smets, D.; Smit, J.; Xu, Y.; Karamanou, S.; Economou, A. Signal Peptide-rheostat Dynamics Delay Secretory Preprotein Folding. J. Mol. Biol. 2022, 434, 167790. [Google Scholar] [CrossRef]
- Yim, S.S.; Choi, J.W.; Lee, R.J.; Lee, Y.J.; Lee, S.H.; Kim, S.Y.; Jeong, K.J. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol. Bioeng. 2016, 113, 163–172. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Y.; Liu, X.; Liu, C.; Bai, Z. Development of a secretory expression system with high compatibility between expression elements and an optimized host for endoxylanase production in Corynebacterium glutamicum. Microb. Cell Factories 2019, 18, 72. [Google Scholar] [CrossRef]
- Yim, S.S.; An, S.J.; Choi, J.W.; Ryu, A.J.; Jeong, K.J. High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2014, 98, 273–284. [Google Scholar] [CrossRef]
- Friedrich, L.; Kikuchi, Y.; Matsuda, Y.; Binder, U.; Skerra, A. Efficient secretory production of proline/alanine/serine (PAS) biopolymers in Corynebacterium glutamicum yielding a monodisperse biological alternative to polyethylene glycol (PEG). Microb. Cell Factories 2022, 21, 227. [Google Scholar] [CrossRef]
- Suzuki, N.; Watanabe, K.; Okibe, N.; Tsuchida, Y.; Inui, M.; Yukawa, H. Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl. Microbiol. Biotechnol. 2009, 82, 491–500. [Google Scholar] [CrossRef]
- Fu, G.; Liu, J.; Li, J.; Zhu, B.; Zhang, D. Systematic Screening of Optimal Signal Peptides for Secretory Production of Heterologous Proteins in Bacillus subtilis. J. Agric. Food Chem. 2018, 66, 13141–13151. [Google Scholar] [CrossRef]
- Jin, Q.; Pan, F.; Hu, C.-F.; Lee, S.Y.; Xia, X.-X.; Qian, Z.-G. Secretory production of spider silk proteins in metabolically engineered Corynebacterium glutamicum for spinning into tough fibers. Metab. Eng. 2022, 70, 102–114. [Google Scholar] [CrossRef]
- Miao, H.; Zhe, Y.; Xiang, X.; Cao, Y.; Han, N.; Wu, Q.; Huang, Z. Enhanced Extracellular Expression of a Ca2+- and Mg2+-Dependent Hyperthermostable Protease EA1 in Bacillus subtilis via Systematic Screening of Optimal Signal Peptides. J. Agric. Food Chem. 2022, 70, 15830–15839. [Google Scholar] [CrossRef]
- Hemmerich, J.; Rohe, P.; Kleine, B.; Jurischka, S.; Wiechert, W.; Freudl, R.; Oldiges, M. Use of a Sec signal peptide library from Bacillus subtilis for the optimization of cutinase secretion in Corynebacterium glutamicum. Microb. Cell Factories 2016, 15, 208. [Google Scholar] [CrossRef] [Green Version]
- Hemmerich, J.; Moch, M.; Jurischka, S.; Wiechert, W.; Freudl, R.; Oldiges, M. Combinatorial impact of Sec signal peptides from Bacillus subtilis and bioprocess conditions on heterologous cutinase secretion by Corynebacterium glutamicum. Biotechnol. Bioeng. 2019, 116, 644–655. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Zhang, W.; Sun, Y.; Peng, F.; Jeffrey, L.; Harvey, L.; McNeil, B.; Bai, Z. Expression of recombinant protein using Corynebacterium Glutamicum: Progress, challenges and applications. Crit. Rev. Biotechnol. 2016, 36, 652–664. [Google Scholar] [CrossRef]
- Palmer, T.; Berks, B.C. The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 2012, 10, 483–496. [Google Scholar] [CrossRef]
- Matsuda, Y.; Itaya, H.; Kitahara, Y.; Theresia, N.M.; Kutukova, E.A.; Yomantas, Y.A.V.; Date, M.; Kikuchi, Y.; Wachi, M. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum. Microb. Cell Factories 2014, 13, 56. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Shi, F.; Tao, G.; Wang, X. Purification and structure analysis of mycolic acids in Corynebacterium glutamicum. J. Microbiol. 2012, 50, 235–240. [Google Scholar] [CrossRef]
- Shin, K.-C.; Sim, D.-H.; Seo, M.-J.; Oh, D.-K. Increased Production of Food-Grade d-Tagatose from d-Galactose by Permeabilized and Immobilized Cells of Corynebacterium glutamicum, a GRAS Host, Expressing d-Galactose Isomerase from Geobacillus thermodenitrificans. J. Agric. Food Chem. 2016, 64, 8146–8153. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, X.; Wang, J.; Li, H.; Wang, X. Impact of mycolic acid deficiency on cells of Corynebacterium glutamicum ATCC13869. Biotechnol. Appl. Biochem. 2018, 65, 435–445. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Lu, Y.; Ni, X.; Guo, X.; Zhao, J.; Chen, J.; Dele-Osibanjo, T.; Zheng, P.; Sun, J.; et al. Mutations in Peptidoglycan Synthesis Gene ponA Improve Electrotransformation Efficiency of Corynebacterium glutamicum ATCC 13869. Appl. Environ. Microbiol. 2018, 84, e02225-18. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Meng, L.; Wang, X.; Yang, Y.; Bai, Z. Effect of Clp protease from Corynebacterium glutamicum on heterologous protein expression. Protein Expr. Purif. 2022, 189, 105928. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Duan, Y.; Zhai, W.; Zhang, X.; Shi, J.; Zhang, X.; Xu, Z. Evaluating Terminator Strength Based on Differentiating Effects on Transcription and Translation. ChemBioChem 2020, 21, 2067–2072. [Google Scholar] [CrossRef] [PubMed]
- Gale, G.A.R.; Wang, B.; McCormick, A.J. Evaluation and Comparison of the Efficiency of Transcription Terminators in Different Cyanobacterial Species. Front. Microbiol. 2021, 11, 624011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yu, M.; Zhou, Y.; Ye, B.-C. Improvement of l-ornithine production by attenuation of argF in engineered Corynebacterium glutamicum S9114. AMB Express 2018, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-Y.; Shi, K.; Chen, P.; Zhang, F.; Xu, J.-Z.; Zhang, W.-G. Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance l-leucine production. J. Ind. Microbiol. Biotechnol. 2020, 47, 485–495. [Google Scholar] [CrossRef]
- Hashiro, S.; Yasueda, H. Plasmid copy number mutation in repA gene encoding RepA replication initiator of cryptic plasmid pHM1519 in Corynebacterium glutamicum. Biosci. Biotechnol. Biochem. 2018, 82, 2212–2224. [Google Scholar] [CrossRef] [PubMed]
- Knoppová, M.; Phensaijai, M.; Veselý, M.; Zemanová, M.; Nešvera, J.; Pátek, M. Plasmid Vectors for Testing In Vivo Promoter Activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr. Microbiol. 2007, 55, 234–239. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, X.; Zhang, W.; Yang, Y.; Dai, X.; Bai, Z. Construction of genetic parts from the Corynebacterium glutamicum genome with high expression activities. Biotechnol. Lett. 2016, 38, 2119–2126. [Google Scholar] [CrossRef]
- Choi, J.W.; Yim, S.S.; Jeong, K.J. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2018, 102, 873–883. [Google Scholar] [CrossRef]
- Ilhan, J.; Kupczok, A.; Woehle, C.; Wein, T.; Hülter, N.F.; Rosenstiel, P.; Landan, G.; Mizrahi, I.; Dagan, T. Segregational Drift and the Interplay between Plasmid Copy Number and Evolvability. Mol. Biol. Evol. 2018, 36, 472–486. [Google Scholar] [CrossRef] [Green Version]
- Battling, S.; Wohlers, K.; Igwe, C.; Kranz, A.; Pesch, M.; Wirtz, A.; Baumgart, M.; Büchs, J.; Bott, M. Novel plasmid-free Gluconobacter oxydans strains for production of the natural sweetener 5-ketofructose. Microb. Cell Factories 2020, 19, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Promoter | Type | Representation | Hosts | Effect | Ref |
---|---|---|---|---|---|
Ptac | IPTG-inducible | LysE expression | C. glutamicum S9114 | The yield of l-ornithine obtained was 25 g/L. | [66] |
PT7 | IPTG-inducible | eYFP 1 | C. glutamicum MB001 (DE3) | The fluorescence level is 3.3 times greater than that of Ptac. | [67] |
Ptrc | IPTG-inducible | synthesis of polyhydroxybutyrate (PHB) | C. glutamicum ATCC14067 | The strain was found to accumulate approximately 2–14% of PHB in both LBG medium 2 and l-glutamic acid production media. | [68] |
PA256 | Ethanol induction | sfGFP 3 | C. glutamicum CGMCC 1.15647 | The ultimate yield was approximately 2.5 times greater than that achieved with the potent promoter PH36. | [69] |
PiolT1 | Myo-inositol induction | GFP | C. glutamicum ATCC 13032 | The yield of 5-aminolevulinic acid (5-ALA) was enhanced to 0.73 g/L. | [70] |
ParaBAD | Arabia sugar-inducible | Succinic acid yield | C. glutamicum ATCC 13032 | Under the condition of arabinose as the sole carbon source, a yield of 41.0% was achieved to the theoretical maximum yield of succinic acid. | [71] |
Pcat-B | Benzyl alcohol induced | EGFP 4 | C. glutamicum CGMCC1.15647 | The NT-proBNP yield was tenfold higher compared to that of the Ptac strain. | [72] |
PtacM | Constitutive | Glutamate decarboxylase (GAD) enzyme activity | C. glutamicum SH | The activity of GAD was significantly increased, resulting in the production of more than 25 g/L of gamma-aminobutyric acid (GABA). | [73] |
PCP_2836 | Constitutive | GFP | C. glutamicum CP | The exponential and stable phases of fluorescence intensity accounted for 75% and 28% of Ptuf, respectively. | [74] |
Ppgk | Constitutive | β-Galactosidase | C. glutamicum ATCC 13032 | The enzyme activity is approximately 1.5-fold higher than that observed at the Ptac transcriptional level. | [61] |
Psod | Constitutive | The activity of 2,3-butanediol dehydrogenase. | C. glutamicum CGS9 | The strain increased the yield of 2,3-butanediol to reach 16.58 g/L. | [75] |
P70 | Synthetic | GFP | C. glutamicum ATCC 13032 | Its strength of it exceeds that of the Ptac by 121%. | [76] |
PH36 | Synthetic | Accumulation of L-histidine | C. glutamicum ATCC 13032 | The histidine biosynthesis pathway was upregulated, resulting in the production of 5.0 g/L l-histidine and 3.9 mg/L l-creatine. | [77] |
PbrnFE 7 | L-isoleucine sensing promoter | The activity of threonine dehydrogenase | C. glutamicum WM001 | The strain increased the yield of L-isoleucine by 36.1%. | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, Q.; Sha, A.; Ren, K.; Hu, M.; Xu, M.; Zhang, X.; Rao, Z. Advances in Synthetic Biology Techniques and Industrial Applications of Corynebacterium glutamicum. Fermentation 2023, 9, 729. https://doi.org/10.3390/fermentation9080729
Wang Y, Wang Q, Sha A, Ren K, Hu M, Xu M, Zhang X, Rao Z. Advances in Synthetic Biology Techniques and Industrial Applications of Corynebacterium glutamicum. Fermentation. 2023; 9(8):729. https://doi.org/10.3390/fermentation9080729
Chicago/Turabian StyleWang, Yujue, Qiang Wang, Aobo Sha, Kexin Ren, Mengkai Hu, Meijuan Xu, Xian Zhang, and Zhiming Rao. 2023. "Advances in Synthetic Biology Techniques and Industrial Applications of Corynebacterium glutamicum" Fermentation 9, no. 8: 729. https://doi.org/10.3390/fermentation9080729
APA StyleWang, Y., Wang, Q., Sha, A., Ren, K., Hu, M., Xu, M., Zhang, X., & Rao, Z. (2023). Advances in Synthetic Biology Techniques and Industrial Applications of Corynebacterium glutamicum. Fermentation, 9(8), 729. https://doi.org/10.3390/fermentation9080729