Solid State and Semi-Solid Fermentations of Olive and Sunflower Cakes with Yarrowia lipolytica: Impact of Biological and Physical Pretreatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Microorganisms
2.3. Co-Culture with A. niger and Y. lipolytica
2.4. Production of Enzymatic Extract from A. niger
2.5. Enzymatic Hydrolysis Followed by SSF
2.6. Physical Pretreatments Followed by SSF
2.7. Lipase Extraction
2.8. Semi-Solid Fermentation after Ultrasound Pretreatment
2.9. Analytical Methods
2.10. Statistical Analysis
3. Results
3.1. SSF with A. niger
3.2. Simultaneous or Sequential SSF with Y. lipolytica and A. niger
3.3. Enzymatic Hydrolysis Pretreatment of the Optimum Substrate for Lipase Production
3.4. SSF of Enzymatically Pretreated Substrate for Lipase Production by Y. lipolytica
3.5. SSF and Semi-Solid Fermentation after Physical Pretreatments for Lipase Production by Y. lipolytica
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leite, P.; Sousa, D.; Fernandes, H.; Ferreira, M.; Costa, A.R.; Filipe, D.; Gonçalves, M.; Peres, H.; Belo, I.; Salgado, J.M. Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Curr. Opin. Green Sustain. Chem. 2020, 27, 100407. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Avila, O.; Llimós, J.; Ponsá, S. Integrated solid-state enzymatic hydrolysis and solid-state fermentation for producing sustainable polyhydroxyalkanoates from low-cost agro-industrial residues. Food Bioprod. Process. 2021, 126, 334–344. [Google Scholar] [CrossRef]
- Leite, P.; Salgado, J.M.; Venâncio, A.; Domínguez, J.M.; Belo, I. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour. Technol. 2016, 214, 737–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Zhou, Y.; Zheng, G.; Liu, D. Microwave pretreatment of substrates for cellulase production by solid-state fermentation. Appl. Biochem. Biotechnol. 2009, 160, 1557–1571. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.; Miranda, S.M.; Costa, A.R.; Pereira, A.S.; Belo, I. Yarrowia lipolytica as a biorefinery platform for effluents and solid wastes valorization—Challenges and opportunities. Crit. Rev. Biotechnol. 2021, 42, 163–183. [Google Scholar] [CrossRef] [PubMed]
- Try, S.; De-Coninck, J.; Voilley, A.; Chunhieng, T.; Waché, Y. Solid state fermentation for the production of γ-decalactones by Yarrowia lipolytica. Process. Biochem. 2018, 64, 9–15. [Google Scholar] [CrossRef]
- Liu, X.; Yu, X.; Zhang, T.; Wang, Z.; Xu, J.; Xia, J.; He, A.; Yan, Y.; Xu, J. Novel two-stage solid-state fermentation for erythritol production on okara—buckwheat husk medium. Bioresour. Technol. 2018, 266, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.R.; Salgado, J.M.; Lopes, M.; Belo, I. Valorization of by-products from vegetable oil industries: Enzymes production by Yarrowia lipolytica through solid state fermentation. Front. Sustain. Food Syst. 2022, 6, 1006467. [Google Scholar] [CrossRef]
- Lipase Production by Yarrowia lipolytica NCIM 3589 in Solid State Fermentation Using Mixed Substrate. Res. J. Microbiol. 2007, 2, 469–474. [CrossRef]
- Imandi, S.B.; Karanam, S.K.; Garapati, H.R. Optimization of media constituents for the production of lipase in solid state fermentation by Yarrowia lipolytica from palm Kernal cake (Elaeis guineensis). Adv. Biosci. Biotechnol. 2010, 01, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Lopes, V.R.O.; Farias, M.A.; Belo, I.M.P.; Coelho, M.A.Z. Nitrogen sources on TPOMW valorization through solid state fermentation performed by Yarrowia lipolytica. Braz. J. Chem. Eng. 2016, 33, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Farias, M.A.; Valoni, E.A.; Castro, A.; Coelho, M.A. Lipase production by yarrowia lipolytica in solid state fermentation using different agro industrial residues. Chem. Eng. Trans. 2014, 38, 301–306. [Google Scholar] [CrossRef]
- Souza, C.E.C.; Farias, M.A.; Ribeiro, B.D.; Coelho, M.A.Z. Adding Value to Agro-industrial Co-products from Canola and Soybean Oil Extraction Through Lipase Production Using Yarrowia lipolytica in Solid-State Fermentation. Waste Biomass-Valorization 2016, 8, 1163–1176. [Google Scholar] [CrossRef]
- Groenewald, M.; Boekhout, T.; Neuveglise, C.; Gaillardin, C.; Van Dijck, P.W.M.; Wyss, M. Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Crit. Rev. Microbiol. 2014, 40, 187–206. [Google Scholar] [CrossRef]
- Moftah, O.A.S.; Grbavčić, S.; Žuža, M.; Luković, N.; Bezbradica, D.; Knežević-Jugović, Z. Adding value to the oil cake as a waste from oil processing industry: Production of lipase and protease by candida utilis in solid state fermentation. Appl. Biochem. Biotechnol. 2011, 166, 348–364. [Google Scholar] [CrossRef]
- Moftah, O.; Grbavcic, S.; Moftah, W.; Lukovic, N.; Prodanovic, O.; Jakovetic, S.; Knezevic-Jugovic, Z. Lipase production by Yarrowia lipolytica using olive oil processing wastes as substrates. J. Serbian Chem. Soc. 2013, 78, 781–794. [Google Scholar] [CrossRef]
- Swain, M.R.; Mishra, J.; Thatoi, H. Bioethanol Production from Sweet Potato (Ipomoea batatas L.) Flour Using co-Culture of Trichoderma sp. and Saccharomyces Cerevisiae in Solid-State Fermentation. Braz. Arch. Biol. Technol. 2013, 56, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Ong, V.Z.; Wu, T.Y. An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products. Renew. Sustain. Energy Rev. 2020, 132, 109924. [Google Scholar] [CrossRef]
- Cantero, D.; Jara, R.; Navarrete, A.; Pelaz, L.; Queiroz, J.; Rodríguez-Rojo, S.; Cocero, M. Pretreatment processes of biomass for biorefineries: Current status and prospects. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 289–310. [Google Scholar] [CrossRef] [Green Version]
- Sousa, D.; Salgado, J.M.; Cambra-López, M.; Dias, A.; Belo, I. Biotechnological valorization of oilseed cakes: Substrate optimization by simplex centroid mixture design and scale-up to tray bioreactor. Biofuels Bioprod. Biorefining 2022, 17, 121–134. [Google Scholar] [CrossRef]
- Filipe, D.; Fernandes, H.; Castro, C.; Peres, H.; Oliva-Teles, A.; Belo, I.; Salgado, J.M. Improved lignocellulolytic enzyme production and antioxidant extraction using solid-state fermentation of olive pomace mixed with winery waste. Biofuels Bioprod. Biorefining 2019, 14, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Dias, B.; Fernandes, H.; Lopes, M.; Belo, I. Yarrowia lipolytica produces lipid-rich biomass in medium mimicking lignocellulosic biomass hydrolysate. Appl. Microbiol. Biotechnol. 2023, 107, 3925–3937. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Fernandes, H.; Peres, H.; Oliva-Teles, A.; Belo, I.; Salgado, J.M. Bio-enrichment of oilseed cakes by Mortierella alpina under solid-state fermentation. LWT 2020, 134, 109981. [Google Scholar] [CrossRef]
- Lopes, M.; Miranda, S.M.; Alves, J.M.; Pereira, A.S.; Belo, I. Waste Cooking Oils as Feedstock for Lipase and Lipid-Rich Biomass Production. Eur. J. Lipid Sci. Technol. 2018, 121, 188. [Google Scholar] [CrossRef] [Green Version]
- Sousa, D.; Salgado, J.M.; Cambra-López, M.; Dias, A.C.; Belo, I. Degradation of lignocellulosic matrix of oilseed cakes by solid-state fermentation: Fungi screening for enzymes production and antioxidants release. J. Sci. Food Agric. 2021, 102, 1550–1560. [Google Scholar] [CrossRef] [PubMed]
- Moran-Aguilar, M.; Costa-Trigo, I.; Calderón-Santoyo, M.; Domínguez, J.; Aguilar-Uscanga, M. Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochem. Eng. J. 2021, 172, 108060. [Google Scholar] [CrossRef]
- Oliveira, F.; Moreira, C.; Salgado, J.M.; Abrunhosa, L.; Venâncio, A.; Belo, I. Olive pomace valorization by Aspergillus species: Lipase production using solid-state fermentation. J. Sci. Food Agric. 2016, 96, 3583–3589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, F.; Salgado, J.M.; Abrunhosa, L.; Pérez-Rodríguez, N.; Domínguez, J.M.; Venâncio, A.; Belo, I. Optimization of lipase production by solid-state fermentation of olive pomace: From flask to laboratory-scale packed-bed bioreactor. Bioprocess Biosyst. Eng. 2017, 40, 1123–1132. [Google Scholar] [CrossRef] [Green Version]
- de Castro, R.J.S.; Ohara, A.; Nishide, T.G.; Albernaz, J.R.M.; Soares, M.H.; Sato, H.H. A new approach for proteases production by Aspergillus niger based on the kinetic and thermodynamic parameters of the enzymes obtained. Biocatal. Agric. Biotechnol. 2015, 4, 199–207. [Google Scholar] [CrossRef]
- Vong, W.C.; Hua, X.Y.; Liu, S.-Q. Solid-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavour properties of okara. LWT 2018, 90, 316–322. [Google Scholar] [CrossRef]
- Salgado, J.M.; Abrunhosa, L.; Venâncio, A.; Domínguez, J.M.; Belo, I. Enhancing the Bioconversion of Winery and Olive Mill Waste Mixtures into Lignocellulolytic Enzymes and Animal Feed by Aspergillus uvarum Using a Packed-Bed Bioreactor. J. Agric. Food Chem. 2015, 63, 9306–9314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modenbach, A.A.; Nokes, S.E. Enzymatic hydrolysis of biomass at high-solids loadings—A review. Biomass-Bioenergy 2013, 56, 526–544. [Google Scholar] [CrossRef] [Green Version]
- Najjar, A.; Robert, S.; Guérin, C.; Violet-Asther, M.; Carrière, F. Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: Analogies with lipolysis in humans. Appl. Microbiol. Biotechnol. 2010, 89, 1947–1962. [Google Scholar] [CrossRef] [PubMed]
- Fickers, P.; Marty, A.; Nicaud, J.M. The lipases from Yarrowia lipolytica: Genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol. Adv. 2011, 29, 632–644. [Google Scholar] [CrossRef]
- Fickers, P.; Nicaud, J.M.; Destain, J.; Thonart, P. Involvement of hexokinase hxk1 in glucose catabolite repression of LIP2 Encoding extracellular lipase in the yeast Yarrowia lipolytica. Curr. Microbiol. 2005, 50, 133–137. [Google Scholar] [CrossRef]
- Braga, A.; Gomes, N.; Belo, I. Lipase induction in Yarrowia lipolytica for castor oil hydrolysis and its effect on γ-decalactone production. J. Am. Oil Chem. Soc. 2011, 89, 1041–1047. [Google Scholar] [CrossRef] [Green Version]
- Ogrydziak, D. Acid and Alkaline Extracellular Proteases of Yarrowia lipolytica. In Yarrowia lipolytica Microbiology Monographs; Barth, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 25. [Google Scholar]
- Sarris, D.; Galiotou-Panayotou, M.; Koutinas, A.A.; Komaitis, M.; Papanikolaou, S. Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. J. Chem. Technol. Biotechnol. 2011, 86, 1439–1448. [Google Scholar] [CrossRef]
- Gonçalves, C.; Lopes, M.; Ferreira, J.P.; Belo, I. Biological treatment of olive mill wastewater by non-conventional yeasts. Bioresour. Technol. 2009, 100, 3759–3763. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Meirelles, F.V.; Rocha-Leão, M.H.G.L.S., Jr. Lipase location in Yarrowia lipolytica cells. Biotechnol. Lett. 2000, 22, 71–75. [Google Scholar] [CrossRef]
- Yano, Y.; Oikawa, H.; Satomi, M. Reduction of lipids in fish meal prepared from fish waste by a yeast Yarrowia lipolytica. Int. J. Food Microbiol. 2008, 121, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Molina-Alcaide, E.; Yáñez-Ruiz, D. Potential use of olive by-products in ruminant feeding: A review. Anim. Feed. Sci. Technol. 2008, 147, 247–264. [Google Scholar] [CrossRef]
- Enjalbert, F.; Combes, S.; Zened, A.; Meynadier, A. Rumen microbiota and dietary fat: A mutual shaping. J. Appl. Microbiol. 2017, 123, 782–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Sample Collection (Days) | |
---|---|---|
2 | 4 | |
Cellulase (U/g) | 7 ± 2 a | 64 ± 5 b |
Xylanase (U/g) | 32 ± 4 a | 290 ± 74 b |
Lipase (U/g) | 1.95 ± 0.02 a | 4 ± 1 b |
Protease (U/g) | 13 ± 3 a | 10 ± 2 a |
Reducing sugars (mg/g) | 39 ± 3 a | 18 ± 5 b |
Parameters | SSF | |
---|---|---|
Sequential | Simultaneous | |
Maximum lipase (U/g) | 8 ± 2 a | 49 ± 7 b |
Protease (U/g) | 16 ± 1 a | 12 ± 2 b |
Parameters | Time (h) | |
---|---|---|
0 | 12 | |
NDF (%) | 52 ± 1 a | 41 ± 3 b |
ADF (%) | 35 ± 2 a | 28 ± 1 a |
Glucose (mg/g) * | 36 ± 8 a | 51 ± 1 b |
Xylose (mg/g) * | 9 ± 2 a | 26 ± 1 b |
Parameters | Pretreated Substrate | Unpretreated Substrate | |
---|---|---|---|
Water | Citrate Buffer pH = 4.8 | ||
Lipase activity (U/g) | 5 ± 1 a | 78 ± 2 b | 60 ± 6 c |
Cellular density (mg/g) | 43 ± 3 a | 18 ± 2 b | 15 ± 2 b |
pH | 5.39 ± 0.04 a | 6.8 ± 0.1 b | 5.8 ± 0.1 c |
Parameters | Physical Pre-Treatment | Untreated Substrate | |
---|---|---|---|
Ultrasound | Microwave | ||
Reducing sugars released (mg/g) | 67 ± 6 a | 64 ± 1 a | 58 ± 1 a |
Cellular concentration (mg/g) | 18 ± 2 a | 26 ± 6 b | 18 ± 1 a |
Maximum lipase production (U/g) | 56 ± 9 a,b | 63 ± 4 b | 54 ± 2 a |
Protease production (U/g) | 9 ± 3 a | 3.24 ± 0.01a | 6 ± 2 a |
Parameter (%) | Semi-Solid Fermentation | |||
---|---|---|---|---|
Unfermented | Pretreated by US | Untreated | ||
Crude protein | 22 ± 1 a | 20 ± 1 a | 20 ± 1 a | |
Lipids | 6.1 ± 0.4 a | 3 ± 1 b | 3.0 ± 0.3 b | |
LCFAs | C16:0 | 14 ± 1 a | 12.2 ± 0.4 b | 12.1 ± 0.4 b |
C16:1 | 0.6 ± 0.1 a | 2.0 ± 0.2 b | 2.1 ± 0.3 b | |
C17:1 | 0.2 ± 0.1 a | ND | 0.2 ± 0.1 a | |
C18:0 | 2 ± 1 a | 1.9 ± 0.4 a | 1.9 ± 0.4 a | |
C18:1 | 62 ± 1 a | 59.3 ± 0.4 a | 59.7 ± 0.8 a | |
C18:2 | 21 ± 1 a | 25 ± 1 b | 24 ± 1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, A.R.; Fernandes, H.; Salgado, J.M.; Belo, I. Solid State and Semi-Solid Fermentations of Olive and Sunflower Cakes with Yarrowia lipolytica: Impact of Biological and Physical Pretreatments. Fermentation 2023, 9, 734. https://doi.org/10.3390/fermentation9080734
Costa AR, Fernandes H, Salgado JM, Belo I. Solid State and Semi-Solid Fermentations of Olive and Sunflower Cakes with Yarrowia lipolytica: Impact of Biological and Physical Pretreatments. Fermentation. 2023; 9(8):734. https://doi.org/10.3390/fermentation9080734
Chicago/Turabian StyleCosta, Ana Rita, Helena Fernandes, José Manuel Salgado, and Isabel Belo. 2023. "Solid State and Semi-Solid Fermentations of Olive and Sunflower Cakes with Yarrowia lipolytica: Impact of Biological and Physical Pretreatments" Fermentation 9, no. 8: 734. https://doi.org/10.3390/fermentation9080734
APA StyleCosta, A. R., Fernandes, H., Salgado, J. M., & Belo, I. (2023). Solid State and Semi-Solid Fermentations of Olive and Sunflower Cakes with Yarrowia lipolytica: Impact of Biological and Physical Pretreatments. Fermentation, 9(8), 734. https://doi.org/10.3390/fermentation9080734