Floral Biology of Aquilaria sinensis (Lour.) Spreng
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Floral Morphology and Anatomy
2.3. Floral Micro-Structures
2.4. Ultra-Structure of Anthers and Pollen
2.5. Measurement of Pollen Viability
2.6. Measurement of Stigma Receptivity
2.7. Validation of Artificial Pollination
2.8. Statistical Analysis
3. Results
3.1. Floral Morphology at Different Development Stages
3.2. Floral Morphological Structure
3.3. Micro-Structure of Stigmas and Anthers
3.4. Micro-Structure of Stamens and Pistils
3.5. Ultra-Structure of Anthers and Pollen
3.6. Pollen Viability during Flowering
3.7. Stigma Receptivity during Flowering
3.8. Comparison of Artificial Pollination with Natural Pollination
4. Discussion
4.1. Optimal Pollination Stage for A. sinensis
4.2. Pollination Characteristics of A. sinensis
4.3. Artificial Pollination and Compatibility of A. sinensis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soehartono, T.; Newton, A.C. Reproductive ecology of Aquilaria spp. in Indonesia. For. Ecol. Manag. 2001, 152, 71. [Google Scholar] [CrossRef]
- Naef, R. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: A review. Flavour Fragr. J. 2011, 26, 73–87. [Google Scholar] [CrossRef]
- Lee, S.Y.; Ng, W.L.; Mahat, M.N.; Nazre, M.; Mohamed, R. DNA Barcoding of the Endangered Aquilaria (Thymelaeaceae) and Its Application in Species Authentication of Agarwood Products Traded in the Market. PLoS ONE 2016, 11, e0154631. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhao, W.; Sun, P.; Wei, J. Species and Conservation Status of the Endangered Agarwood-Producing Genus Aquilaria. Mod. Chin. Med. 2017, 19, 1057–1063. [Google Scholar]
- Committee of Chinese Flora. Flora of China; Science Press: Beijing, China, 1999; pp. 289–290. [Google Scholar]
- Xu, Y.H.; Zhang, Z.; Wang, M.X.; Wei, J.H.; Chen, H.J.; Gao, Z.H.; Sui, C.; Luo, H.M.; Zhang, X.L.; Yang, Y.; et al. Identification of genes related to agarwood formation: Transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis. BMC Genom. 2013, 14, 227. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.W.; Zhao, J.P.; Liu, Y.B.; Qiu, Y.X.; Xie, Q.L.; Li, M.J.; Khan, I.A.; Wang, W. Advance in studies on chemical constituents, pharmacology and quality control of Aquilaria sinensis. Digit. Chin. Med. 2018, 1, 316–330. [Google Scholar] [CrossRef]
- Li, L.H.; Shou, H.Y.; Ma, Q.W. Distribution of Aquilaria sinensis (Thymelaeaceae). Med. Plant 2012, 3, 8. [Google Scholar]
- CITES. Available online: http://checklist.cites.org (accessed on 8 December 2023).
- Zhou, Y.F.; Wei, J.H.; Sun, P.W.; Liu, Y.Y.; Yang, Y.; Liu, P.W.; Ding, Z.M.; Wang, S.; Wang, C.H. The Development Situation and Consideration of Agarwood Scientific & Technological Innovation and Industrial Development in China. Mod. Chin. Med. 2017, 19, 1051–1056. [Google Scholar]
- Wyatt, R. Pollinator-plant interactions and the evolution of breeding systems. In Pollination Biology; Academic Press: Cambridge, MA, USA, 1983; pp. 51–86. [Google Scholar]
- Lan, Q.Y.; Fang, C.Y.; He, H.Y.; Chen, Z.Y. Mature embryo culture and plantlet regeneration of the Aquilaria sinensis. Genom. Appl. Biol. 2001, 20, 231–232. [Google Scholar]
- Friedman, J. The evolution of annual and perennial plant life histories: Ecological correlates and genetic mechanisms. Annu. Rev. Ecol. Evol. Syst. 2020, 51, 461–481. [Google Scholar] [CrossRef]
- Hathurusinghe, B.M.; Pushpakumara, D.K.N.G.; Bandaranayake, P.C.G. Macroscopic and microscopic study on floral biology and pollination of Cinnamomum verum Blume (Sri Lankan). PLoS ONE 2023, 18, e0271938. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.L.; Wei, Y.R.; Pang, H.G.; Xu, J.F.; Li, Y.L.; Zhang, H.X.; Zhang, J.G.; Zhang, Y.X. Genome-wide identification of the PEBP genes in pears and the putative role of PbFT in flower bud differentiation. PeerJ 2020, 8, e8928. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, T.; Hatta, M.A.M. Improving coconut using modern breeding technologies: Challenges and opportunities. Plants 2022, 11, 3414. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hao, X.Y.; Lu, Q.H.; Zhang, W.F.; Zhang, H.J.; Wang, L.; Yang, Y.J.; Xiao, B.; Wang, X.C. Genome-wide identification and expression analysis of flowering-related genes reveal putative floral induction and differentiation mechanisms in tea plant (Camellia sinensis). Genomics 2020, 112, 2318–2326. [Google Scholar] [CrossRef] [PubMed]
- Shou, H.Y.; Ma, Q.W.; Liu, D.; Li, F.L. Cytological observations of microsporogenesis and male gametophyte development of Aquilaria sinensis (Lour.) Spreng. J. Beijing For. Univ. 2010, 32, 92–96. [Google Scholar]
- Zheng, L.A.; Wang, L.Y.; Han, R.Q.; Li, W.J.; Cheng, X.L. Growth Characteristics and Planting Techniques of Aquilaria sinensis. South China Agric. 2021, 15, 27–29. [Google Scholar]
- López-Sampson, A.; Page, T. Reproductive phenology, floral biology and breeding system of aquiliaria crassna in tropical Australia. J. Trop. For. Sci. 2019, 31, 211–221. [Google Scholar] [CrossRef]
- Muenchrath, D.; Campbell, A.; Merrick, L.; Lübberstedt, T.; Fei, S.Z. Controlled Hybridization: Self-incompatibility, Male-sterility, and Sex-inheritance. In Crop Genetics, 3rd ed.; Walter, S., Kendall, L., Eds.; Iowa State University Digital Press: Ames, IA, USA, 2023; pp. 42–66. [Google Scholar]
- Wei, S.; Ma, L. Comprehensive Insight into Tapetum-Mediated Pollen Development in Arabidopsis thaliana. Cells 2023, 12, 247. [Google Scholar] [CrossRef]
- Qin, R.M.; Wen, P.; Corlett, R.T.; Zhang, Y.Y.; Wang, G.; Chen, J. Plant-defense mimicry facilitates rapid dispersal of short-lived seeds by hornets. Curr. Biol. 2022, 32, 3429–3435. [Google Scholar] [CrossRef]
- Peakall, R.; Bohman, B. Seed dispersal: Hungry hornets are unexpected and effective vectors. Curr. Biol. 2022, 32, R836–R838. [Google Scholar] [CrossRef]
- Chen, G.; Liu, C.; Sun, W. Pollination and seed dispersal of Aquilaria sinensis (Lour.) Gilg (Thymelaeaceae):an economic plant species with extremely small populations in China. Plant Divers. 2016, 38, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q. Experimental Guidance of Plant Physiology; China Agricultural Press: Beijing, China, 2000; p. 149. [Google Scholar]
- Dafni, A. Pollination Ecology; Oxford University Press: New York, NY, USA, 1992; pp. 1–57. [Google Scholar]
- Thu, M.K.; Lin, Y.; Chen, J. Flower Types, Pollen Morphology, and In Vitro Pollen Germination of Longan (Dimocarpus longan Lour.). J. Bot. Res. 2017, 1, 50–56. [Google Scholar]
- Liang, S.; Hu, M.; Lin, H.C.; He, H.J.; Ning, X.P.; Peng, P.P.; Lu, G.H.; Sun, S.L.; Wang, X.J.; Wang, Y.Q.; et al. Transcriptional regulations of pollen tube reception are associated with the fertility of the ginger species Zingiber zerumbet and Zingiber corallinum. Front. Plant Sci. 2023, 14, 1099250. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.X.; Wang, S.; Chen, J.H.; Chen, J.; Hong, R.Y.; Tang, Y.; Wang, J. Stigma shape development and receptivity of Zhongqiu Sucui Chinese jujube. Acta Hortic. Sin. 2019, 46, 2309–2322. [Google Scholar]
- Cai, Z.Y.; Dong, L.; Wang, H.Q.; Qiu, W.W.; Su, W.Q.; Ren, H.; Wang, X.M.; Fang, W.K.; Huang, Z.B.; Deng, B.; et al. Pollen viability, stigma receptivity and their effect on fruit set of passion-fruit at different flower developmental stages. J. Fruit Sci. 2023, 40, 969–977. [Google Scholar]
- Chu, Y.; Fan, Y.R.; Zhang, S.Y.; Sun, Y.F.; Ning, H.J. Pollen vitality and stigma receptivity of Cymbidium hybridum and Chinese orchid. J. Zhejiang A F Univ. 2013, 30, 950–954. [Google Scholar]
- Liu, H.; Cai, P.; Wan, T.; Yi, W.; Zhang, J. Observation on the Flowering Dynamic, Pollen Viability and Stigma Receptivity of Artemisia wudanica. Chin. J. Grassl. 2020, 42, 43–47. [Google Scholar]
- Sun, H.; Shi, G.; Ran, B.; Zhang, L.; Jia, X. Pollen viability, stigma receptivity and breeding system of Lilium davidii var. unicolor. J. Desert Res. 2019, 39, 62–69. [Google Scholar]
- Liu, L.D.; Zhu, N.; Shen, J.H.; Zhao, H.X. Comparative studies on floral dynamics and breeding system between Eleutherococcus senticosus and E. sessiliflorus. Acta Ecol. Sin. 2002, 22, 1041–1048. [Google Scholar]
- Machado, I.C.; Lopes, A.V. Floral traits and pollination systems in the Caatinga, a Brazilian tropical dry forest. Ann. Bot. 2000, 94, 365–376. [Google Scholar] [CrossRef]
- Charlesworth, D. Evolution of Plant Breeding Systems. Curr. Biol. 2006, 16, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Richards, A.J. Plant Breeding Systems; Hong Kong Printed in Great Britain at The University Press: Hong Kong, China, 1997; pp. 20–23. [Google Scholar]
- He, Y.P.; Liu, J.Q. A review on recent advances in the studies of plant breeding system. Acta Phytoecol. Sin. 2003, 27, 151–163. [Google Scholar]
- Armbruster, W.S.; Baldwin, B.G. Switch from specialized to generalized pollination. Nature 1998, 394, 632. [Google Scholar] [CrossRef]
- Wattanachai, T.; Suwan, T.; Malaiporn, T.; Kazuo, O. Insect pollination of Aquilaria crassna (Thymelaeaceae): Effect of moths for the fruit setting in Thailand. J. Fac. Agric. Kyushu Univ. 2009, 54, 321–328. [Google Scholar]
- Soehartono, T.; Newton, A.C. Conservation and sustainable use of tropical trees in the genus Aquilaria II. The impact of gaharu harvesting in Indonesia. Biol. Conserv. 2001, 97, 29–41. [Google Scholar] [CrossRef]
- Fattorini, R.; Glover, B.J. Molecular mechanisms of pollination biology. Annu. Rev. Plant Biol. 2020, 71, 487–515. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Kubo, K.; Takayama, S. Non-self- and self-recognition models in plant self-incompatibility. Nat. Plants 2016, 2, 16130. [Google Scholar] [CrossRef]
- Dyer, W.T.T. The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom. Nature 1877, 15, 329–332. [Google Scholar] [CrossRef]
- Achrem, M.; Stępień, E.; Kalinka, A. Epigenetic Changes Occurring in Plant Inbreeding. Int. J. Mol. Sci. 2023, 24, 5407. [Google Scholar] [CrossRef]
Floral Organs | Size or Number |
---|---|
Flower stalk length (mm) | 8.29 ± 1.58 |
Calyx length (mm) | 8.42 ± 0.77 |
Calyx width (mm) | 4.93 ± 0.63 |
Number of petals | 10 |
Number of calyces | 4–6 |
Number of pistil | 1 |
Number of stamens | 10 |
Stamen length (mm) | 4.81 ± 0.45 |
Pistil length (mm) | 3.83 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Ma, G.; Lin, S.; He, X.; Chen, B.; Li, H.; Huang, L.; Yang, Y.; Wei, J. Floral Biology of Aquilaria sinensis (Lour.) Spreng. Horticulturae 2024, 10, 109. https://doi.org/10.3390/horticulturae10010109
Wang B, Ma G, Lin S, He X, Chen B, Li H, Huang L, Yang Y, Wei J. Floral Biology of Aquilaria sinensis (Lour.) Spreng. Horticulturae. 2024; 10(1):109. https://doi.org/10.3390/horticulturae10010109
Chicago/Turabian StyleWang, Bin, Guangyao Ma, Suxian Lin, Xin He, Bo Chen, Haoling Li, Liangming Huang, Yun Yang, and Jianhe Wei. 2024. "Floral Biology of Aquilaria sinensis (Lour.) Spreng" Horticulturae 10, no. 1: 109. https://doi.org/10.3390/horticulturae10010109
APA StyleWang, B., Ma, G., Lin, S., He, X., Chen, B., Li, H., Huang, L., Yang, Y., & Wei, J. (2024). Floral Biology of Aquilaria sinensis (Lour.) Spreng. Horticulturae, 10(1), 109. https://doi.org/10.3390/horticulturae10010109