Advances in the Quality Improvement of Fruit Wines: A Review
Abstract
:1. Introduction
2. Selection of Raw Material and Post-Harvest Treatment to Improve Fruit Wine Quality
3. Effects of Fermentation on Fruit Wine Quality
3.1. Yeasts
Fruit Wine | Yeast (s) | Impact on Fruit Wine Quality | Ref. |
---|---|---|---|
Blueberry wine | T. delbrueckii | Increased total anthocyanins, total flavonoids, and total phenols; Decreased ethanol, titratable acidity, ethyl 3-methylbutanoate, ethyl hexanoate, and ethyl octanoate | [9] |
Peach wine | H. uvarum | Increased pH, volatile acidity, ethyl acetate, methyl acetate, furfuryl acetate, 2-octanone, and pentanal; Decreased ethanol and titratable acidity | [10] |
M. pulcherrima | Increased pH, (E, E)-farnesol, ethyl sorbate, 4-penten-1-ol, (Z)-3-hexenol, 2-methyl-1-butanol, and acetoin; Decreased ethanol and titratable acidity | [10] | |
L. thermotolerans | Increased pH, nerolidol, phenylethyl alcohol, 1-hexanol, ethyl butyrate, and ethyl hexanoate; Decreased ethanol | [10] | |
T. delbrueckii | Increased pH, ethyl L (−)-lactate, ethyl palmitate, ethyl 2-furoate, ethyl caprate, and nonanal; Decreased ethanol | [10] | |
Apple wine | M. pulcherrima | Decreased acetic acid | [11] |
M. sinensis | Decreased ethanol | [11] | |
W. anomalus | Increased ethyl acetate | [11] | |
P. kluyveri | Decreased pH and ethanol | [40] | |
Plum wine | H. thailandica | Decreased total phenols and antioxidant activity | [14] |
Pear wine | L. thermotolerans | Increased pH; Decreased ethanol | [40] |
Kiwifruit wine | L. thermotolerans | Decreased ethanol | [40] |
C. zemplinina | Decreased ethanol | [40] | |
Bilberry wine | H. uvarum and I. orientalis | Increased ethyl acetate | [49] |
M. pulcherrima | Increased higher alcohols | [49] | |
S. pombe | Increased acetoin and pyruvic acid; Decreased ethanol, 3-methyl-1-butanol, 4-methyl-1-pentanol, 3-methyl-1-pentanol, 2-ethyl-1-hexanol, ethyl acetate, diethyl succinate, and β-citronellol | [50,58] | |
T. delbrueckii | Increased 2-phenylethanol and phenethyl acetate; Decreased ethanol, total sugar, 4-methyl-1-pentanol, diethyl succinate, acetaldehyde, and 3-methylbutanal | [50] | |
Lychee wine | T. delbrueckii | Increased geraniol and cis-rose oxide; Decreased ethanol, volatile acids, and esters | [51] |
Cherry wine | T. delbrueckii | Decreased pH | [53] |
Mango wine | M. pulcherrima | Decreased volatile acidity, ethyl acetate, and higher alcohols | [57] |
T. delbrueckii | Decreased volatile acidity and higher alcohols | [57] |
3.2. Inoculation Protocols of Mixed Culture Fermentation
Fruit Wine | Mixed Cultures | Modality | Inoculation Ratio | Impact on Fruit Wine Quality | Ref. |
---|---|---|---|---|---|
Plum wine | M. pulcherrima/S. cerevisiae | SIM | 10:1/1:1 | Increased linalool, citronellol, nerolidol, total terpenes, hexyl acetate, isoamyl acetate, and ethyl caproate | [7] |
SIM | 1:10 | Increased higher alcohols, linalool, citronellol, and ethyl acetate | [7] | ||
SEQ | 10:1 | Increased linalool, citronellol, nerolidol, total terpenes, total esters, hexyl acetate, isoamyl acetate, phenethyl acetate, and ethyl caproate; Decreased ethanol | [7] | ||
SEQ | 1:1/1:10 | Increased linalool, citronellol, nerolidol, total terpenes, total esters, hexyl acetate, isoamyl acetate, phenethyl acetate, and ethyl caproate; Decreased ethanol and higher alcohols | [7] | ||
H. uvarum/S. cerevisiae | SIM | 10:1 | Increased total esters and volatile acids | [12] | |
SEQ | 10:1 | Increased total esters and volatile acids | [12] | ||
Blueberry wine | T. delbrueckii/S. cerevisiae | SIM | 1:1 | Increased total anthocyanins, α-terpinene, 1,4-cineole, o-cymene, limonene, β-ocimene, terpinolene, and nerol oxide; Decreased ethanol, titratable acidity, higher alcohols, β-damascenone, ethyl hexanoate, and ethyl octanoate | [9] |
SEQ | 1:1 | Increased total anthocyanins, α-terpinene, 1,4-cineole, (+)-4-carene, o-cymene, limonene, trans-β-ocimene, β-ocimene, terpinolene, myrcenol, β-terpineol, nerol oxide, cis-geraniol, (6E)-nerolidol, TDN, and (E)-geranylacetone; Decreased titratable acidity, ethyl hexanoate, and ethyl octanoate | [9] | ||
H. uvarum/S. cerevisiae | SIM | 10:1 | Decreased ethanol | [12] | |
SEQ | 10:1 | Decreased ethanol | [12] | ||
Peach wine | H. uvarum/S. cerevisiae | SEQ | 10:1 | Increased pH, volatile acidity, higher alcohols, linalool, and ethyl acetate | [10] |
M. pulcherrima/S. cerevisiae | SEQ | 10:1 | Increased higher alcohols and ethyl acetate | [10] | |
L. thermotolerans/S. cerevisiae | SEQ | 10:1 | Increased pH, higher alcohols, and ethyl acetate; Decreased titratable acidity | [10] | |
T. delbrueckii/S. cerevisiae | SEQ | 10:1 | Increased pH, volatile acidity, and ethyl acetate; Decreased higher alcohols | [10] | |
Cherry wine | T. delbrueckii/S. cerevisiae | SIM/SEQ | 10:1 | Increased linalool, β-damascenone, ethyl butyrate, ethyl 3-methylbutanoate, ethyl hexanoate, ethyl hex-3-enoate, and ethyl octanoate | [16,53] |
M. pulcherrima/S. cerevisiae | SEQ | 10:1 | Increased volatile acids, α-terpineol, linalool, β-damascenone, ethyl butyrate, ethyl 3-methylbutanoate, ethyl hexanoate, ethyl hex-3-enoate, methyl octanoate, ethyl octanoate, and ethyl decanoate | [53] | |
Bilberry wine | T. delbrueckii/S. cerevisiae | SIM | 1:1 | Decreased ethanol | [50] |
SEQ | 1:1 | Increased higher alcohols, phenethyl acetate, and ethyl dodecanoate; Decreased ethanol | [50,56] | ||
S. pombe/S. cerevisiae | SIM | 1:1 | Increased pH and ethyl hexanoate | [50,56] | |
SEQ | 1:1 | Increased pH, total esters, ethyl acetate, ethyl hexanoate, and ethyl heptanoate | [50,56] | ||
Lychee wine | T. delbrueckii/S. cerevisiae | SIM | 1:1 | Increased pH | [51] |
SEQ | 1:1 | Increased geraniol; Decreased volatile acids | [51] | ||
Mango wine | T. delbrueckii/S. cerevisiae | SIM | 10:1 | Decreased volatile acidity and higher alcohols | [57] |
M. pulcherrima/S. cerevisiae | SIM | 10:1 | Decreased volatile acidity and higher alcohols | [57] | |
Citrus wine | H. opuntiae/S. cerevisiae | SEQ | 10:1 | Increased higher alcohols, total terpenes, ethyl acetate, isoamyl acetate, and phenethyl acetate; Decreased ethanol | [65] |
H. uvarum/S. cerevisiae | SEQ | 10:1 | Increased pH and higher alcohols, total terpenes, ethyl acetate, isoamyl acetate, and phenethyl acetate; Decreased ethanol | [65] | |
T. delbrueckii/S. cerevisiae | SEQ | 10:1 | Increased volatile acids, pH, higher alcohols, total terpenes, ethyl acetate, isoamyl acetate, and phenethyl acetate; Decreased ethanol | [65] |
3.3. Fermentation Conditions
4. Effects of Wine Aging Technologies on Fruit Wine Quality
5. Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, Y.; Pico, J.; Sun, B.; Pratap-Singh, A.; Gerbrandt, E.; Diego Castellarin, S. Phenolic profiles and their responses to pre-and post-harvest factors in small fruits: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 3574–3601. [Google Scholar] [CrossRef]
- Pu, Y.; Jiang, H.; Zhang, Y.; Cao, J.; Jiang, W. Advances in propolis and propolis functionalized coatings and films for fruits and vegetables preservation. Food Chem. 2023, 414, 135662. [Google Scholar] [CrossRef]
- Joensuu, K.; Hartikainen, H.; Karppinen, S.; Jaakkonen, A.-K.; Kuoppa-Aho, M. Developing the collection of statistical food waste data on the primary production of fruit and vegetables. Environ. Sci. Pollut. Res. 2021, 28, 24618–24627. [Google Scholar] [CrossRef]
- Yuan, F.; Cheng, K.; Gao, J.; Pan, S. Characterization of cultivar differences of blueberry wines using GC-QTOF-MS and metabolic profiling methods. Molecules 2018, 23, 2376. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Cui, M.-Y.; Fu, Y.; Wang, X.-H.; Yang, Q.; Zhu, Y.; Yang, X.-H.; Bi, H.-J.; Gao, X.-L. Aroma enhancement of blueberry wine by postharvest partial dehydration of blueberries. Food Chem. 2023, 426, 136593. [Google Scholar] [CrossRef]
- Liu, G.; Wei, P.; Tang, Y.; Pang, Y.; Sun, J.; Li, J.; Rao, C.; Wu, C.; He, X.; Li, L. Evaluation of bioactive compounds and bioactivities in plum (Prunus salicina Lindl.) wine. Front. Nutr. 2021, 8, 766415. [Google Scholar] [CrossRef]
- Zhang, M.; Zhong, T.; Heygi, F.; Wang, Z.; Du, M. Effects of inoculation protocols on aroma profiles and quality of plum wine in mixed culture fermentation of Metschnikowia pulcherrima with Saccharomyces cerevisiae. LWT 2022, 161, 113338. [Google Scholar] [CrossRef]
- Wu, Z.; Li, X.; Zeng, Y.; Cai, D.; Teng, Z.; Wu, Q.; Sun, J.; Bai, W. Color stability enhancement and antioxidation improvement of sanhua plum wine under circulating ultrasound. Foods 2022, 11, 2435. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, X.-Y.; Fu, Y.; Zhang, Q.; Wang, X.-H.; Cui, M.-Y.; Ma, Y.-Y.; Gao, X.-L. Effects of Torulaspora delbrueckii co-fermented with Saccharomyces cerevisiae on physicochemical and aromatic profiles of blueberry fermented beverage. Food Chem. 2023, 409, 135284. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Ren, T.; Wang, J.; Niu, C.; Zheng, F.; Li, Q. Effect of Saccharomyces cerevisiae and non-Saccharomyces strains on alcoholic fermentation behavior and aroma profile of yellow-fleshed peach wine. LWT 2022, 155, 112993. [Google Scholar] [CrossRef]
- Kręgiel, D.; Pawlikowska, E.; Antolak, H.; Dziekońska-Kubczak, U.; Pielech-Przybylska, K. Exploring Use of the Metschnikowia pulcherrima Clade to Improve Properties of Fruit Wines. Fermentation 2022, 8, 247. [Google Scholar] [CrossRef]
- Huang, M.; Liu, X.; Li, X.; Sheng, X.; Li, T.; Tang, W.; Yu, Z.; Wang, Y. Effect of Hanseniaspora uvarum–Saccharomyces cerevisiae Mixed Fermentation on Aroma Characteristics of Rosa roxburghii Tratt, Blueberry, and Plum Wines. Molecules 2022, 27, 8097. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Tang, C.; Zou, S.; Lei, L.; Wu, Y.; Yang, W.; Harindintwali, J.D.; Zhang, J.; Zeng, W.; Deng, D.; et al. Enhancement of pyranoanthocyanin formation in blueberry wine with non-Saccharomyces yeasts. Food Chem. 2024, 438, 137956. [Google Scholar] [CrossRef]
- Niyomvong, N.; Trakunjae, C.; Boondaeng, A. Fermentation Characteristics and Aromatic Profiles of Plum Wines Produced with Hanseniaspora thailandica Zal1 and Common Wine Yeasts. Molecules 2023, 28, 3009. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Y.; Li, Y.; Lou, Y.; Feng, X.; Yang, B. Comparison of phenolic profiles of albino bilberry (Vaccinium myrtillus L.) wines fermented by non-Saccharomyces yeasts. Food Biosci. 2023, 55, 102980. [Google Scholar] [CrossRef]
- Sun, S.Y.; Gong, H.S.; Zhao, Y.P.; Liu, W.L.; Jin, C.W. Sequential culture with Torulaspora delbrueckii and Saccharomyces cerevisiae and management of fermentation temperature to improve cherry wine quality. J. Sci. Food Agric. 2016, 96, 1880–1887. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, T.; Lü, H.; Yu, Z.; Li, X. Effect of added sulphur dioxide levels on the fermentation characteristics of strawberry wine. J. Inst. Brew. 2016, 122, 446–451. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, M.-Y.; Zhang, Q.; Zhu, Y.; Yang, Q.; Fu, Y.; Bi, H.-J.; Yang, X.-H.; Gao, X.-L. Enhancing blueberry wine aroma: Insights from cultivar selection and berry sorting. Curr. Res. Food Sci. 2023, 7, 100643. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2018, 234, 463–469. [Google Scholar] [CrossRef]
- Lan, Y.-B.; Xiang, X.-F.; Yang, W.-X.; Zhu, B.-Q.; Pu, H.-T.; Duan, C.-Q. Characterization of free and glycosidically bound volatile compounds, fatty acids, and amino acids in Vitis davidii Foex grape species native to China. Food Sci. Biotechnol. 2020, 29, 1641–1653. [Google Scholar] [CrossRef]
- Ruiz, J.; Kiene, F.; Belda, I.; Fracassetti, D.; Marquina, D.; Navascués, E.; Calderón, F.; Benito, A.; Rauhut, D.; Santos, A. Effects on varietal aromas during wine making: A review of the impact of varietal aromas on the flavor of wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [CrossRef] [PubMed]
- Styger, G.; Prior, B.; Bauer, F.F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145. [Google Scholar] [CrossRef]
- Swami, S.B.; Thakor, N.; Divate, A. Fruit wine production: A review. J. Food Res. Technol. 2014, 2, 93–100. [Google Scholar]
- Kuang, L.; Wang, Z.; Zhang, J.; Li, H.; Xu, G.; Li, J. Factor analysis and cluster analysis of mineral elements contents in different blueberry cultivars. J. Food Compos. Anal. 2022, 109, 104507. [Google Scholar] [CrossRef]
- Šamec, D.; Maretić, M.; Lugarić, I.; Mešić, A.; Salopek-Sondi, B.; Duralija, B. Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis. Food Chem. 2016, 194, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Botu, M. Total phenolic, flavonoid distribution and antioxidant capacity in skin, pulp and fruit extracts of plum cultivars. J. Food Biochem. 2015, 39, 64–69. [Google Scholar] [CrossRef]
- Liu, F.; Li, S.; Gao, J.; Cheng, K.; Yuan, F. Changes of terpenoids and other volatiles during alcoholic fermentation of blueberry wines made from two southern highbush cultivars. LWT 2019, 109, 233–240. [Google Scholar] [CrossRef]
- Liu, S.; Marsol-Vall, A.; Laaksonen, O.; Kortesniemi, M.; Yang, B. Characterization and quantification of nonanthocyanin phenolic compounds in white and blue bilberry (Vaccinium myrtillus) juices and wines using UHPLC-DAD− ESI-QTOF-MS and UHPLC-DAD. J. Agric. Food Chem. 2020, 68, 7734–7744. [Google Scholar] [CrossRef]
- Miljić, U.; Puškaš, V.; Cvejić Hogervorst, J.; Torović, L. Phenolic compounds, chromatic characteristics and antiradical activity of plum wines. Int. J. Food Prop. 2017, 20, 2022–2033. [Google Scholar] [CrossRef]
- Reddy, L.; Reddy, O.V.S. Production and characterization of wine from mango fruit (Mangifera indica L.). World J. Microbiol. Biotechnol. 2005, 21, 1345–1350. [Google Scholar] [CrossRef]
- Kumar, Y.S.; Varakumar, S.; Reddy, O.V.S. Evaluation of antioxidant and sensory properties of mango (Mangifera indica L.) wine. CyTA—J. Food 2012, 10, 12–20. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.-Y.; Shi, X.-Y.; Xiao, H.; Kang, K.; Liu, X.-Y.; Zhan, J.-C.; Huang, W.-D. Effect of Cultivar, Temperature, and Environmental Conditions on the Dynamic Change of Melatonin in Mulberry Fruit Development and Wine Fermentation. J. Food Sci. 2016, 81, M958–M967. [Google Scholar] [CrossRef]
- Liu, S.; Laaksonen, O.; Li, P.; Gu, Q.; Yang, B. Use of non-Saccharomyces yeasts in berry wine production: Inspiration from their applications in winemaking. J. Agric. Food Chem. 2022, 70, 736–750. [Google Scholar] [CrossRef]
- Van Leeuwen, C. Terroir: The effect of the physical environment on vine growth, grape ripening, and wine sensory attributes. In Managing Wine Quality; Elsevier: Amsterdam, The Netherlands, 2022; pp. 341–393. [Google Scholar]
- Stefanini, I.; Cavalieri, D. Metagenomic approaches to investigate the contribution of the vineyard environment to the quality of wine fermentation: Potentials and difficulties. Front. Microbiol. 2018, 9, 991. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; de Toda, F.M. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.-N.; He, L.; He, F.; Chen, W.; Duan, C.-Q.; Wang, J. Changes in global aroma profiles of Cabernet Sauvignon in response to cluster thinning. Food Res. Int. 2019, 122, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, L.; Pan, Q.; Duan, C.; Wang, J. Effects of Basal Defoliation on Wine Aromas: A Meta-Analysis. Molecules 2018, 23, 779. [Google Scholar] [CrossRef]
- Miljić, U.; Puškaš, V.; Vučurović, V.; Muzalevski, A. Fermentation Characteristics and Aromatic Profile of Plum Wines Produced with Indigenous Microbiota and Pure Cultures of Selected Yeast. J. Food Sci. 2017, 82, 1443–1450. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, Y.; Yuan, Y.; Dai, L.; Yue, T. Characteristic fruit wine production via reciprocal selection of juice and non-Saccharomyces species. Food Microbiol. 2019, 79, 66–74. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity. Front. Microbiol. 2016, 7, 411. [Google Scholar] [CrossRef]
- Saranraj, P.; Sivasakthivelan, P.; Naveen, M. Fermentation of fruit wine and its quality analysis: A review. Aust. J. Sci. Technol. 2017, 1, 85–97. [Google Scholar]
- Januszek, M.; Satora, P. How different fermentation type affects volatile composition of plum jerkums. Appl. Sci. 2021, 11, 4658. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Q.; Hu, X.; Wu, W.; Zhang, Y.; Liu, S.; Li, C. Evaluation of different Saccharomyces cerevisiae strains on the profile of volatile compounds in pineapple wine. J. Food Sci. Technol. 2018, 55, 4119–4130. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liu, M.; Ouyang, Y.; Zhao, X.; Ju, Y.; Fang, Y. Comparative study of aromatic compounds in fruit wines from raspberry, strawberry, and mulberry in central Shaanxi area. Food Nutr. Res. 2015, 59, 29290. [Google Scholar] [CrossRef] [PubMed]
- Ogodo, A.C.; Ugbogu, O.C.; Ugbogu, A.E.; Ezeonu, C.S. Production of mixed fruit (pawpaw, banana and watermelon) wine using Saccharomyces cerevisiae isolated from palm wine. SpringerPlus 2015, 4, 683. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.-T.; Lu, L.; Duan, C.-Q.; Yan, G.-L. The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation. LWT—Food Sci. Technol. 2016, 71, 356–363. [Google Scholar] [CrossRef]
- Luan, Y.; Zhang, B.-Q.; Duan, C.-Q.; Yan, G.-L. Effects of different pre-fermentation cold maceration time on aroma compounds of Saccharomyces cerevisiae co-fermentation with Hanseniaspora opuntiae or Pichia kudriavzevii. LWT 2018, 92, 177–186. [Google Scholar] [CrossRef]
- Liu, S.; Laaksonen, O.; Marsol-Vall, A.; Zhu, B.; Yang, B. Comparison of volatile composition between alcoholic bilberry beverages fermented with non-Saccharomyces yeasts and dynamic changes in volatile compounds during fermentation. J. Agric. Food Chem. 2020, 68, 3626–3637. [Google Scholar] [CrossRef]
- Liu, S.; Laaksonen, O.; Yang, B. Volatile composition of bilberry wines fermented with non-Saccharomyces and Saccharomyces yeasts in pure, sequential and simultaneous inoculations. Food Microbiol. 2019, 80, 25–39. [Google Scholar] [CrossRef]
- Chen, D.; Liu, S.-Q. Impact of simultaneous and sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on non-volatiles and volatiles of lychee wines. LWT-Food Sci. Technol. 2016, 65, 53–61. [Google Scholar] [CrossRef]
- Ciani, M.; Morales, P.; Comitini, F.; Tronchoni, J.; Canonico, L.; Curiel, J.A.; Oro, L.; Rodrigues, A.J.; Gonzalez, R. Non-conventional yeast species for lowering ethanol content of wines. Front. Microbiol. 2016, 7, 642. [Google Scholar] [CrossRef]
- Sun, S.Y.; Gong, H.S.; Jiang, X.M.; Zhao, Y.P. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines. Food Microbiol. 2014, 44, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Vahl, K.; Kahlert, H.; von Mühlen, L.; Albrecht, A.; Meyer, G.; Behnert, J. Determination of the titratable acidity and the pH of wine based on potentiometric flow injection analysis. Talanta 2013, 111, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Liu, S.; Yang, H.; Li, E. Effect of selected yeast on physicochemical and oenological properties of blueberry wine fermented with citrate-degrading Pichia fermentans. LWT 2021, 145, 111261. [Google Scholar] [CrossRef]
- Liu, S.; Laaksonen, O.; Kortesniemi, M.; Kalpio, M.; Yang, B. Chemical composition of bilberry wine fermented with non-Saccharomyces yeasts (Torulaspora delbrueckii and Schizosaccharomyces pombe) and Saccharomyces cerevisiae in pure, sequential and mixed fermentations. Food Chem. 2018, 266, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Sadineni, V.; Kondapalli, N.; Obulam, V.S.R. Effect of co-fermentation with Saccharomyces cerevisiae and Torulaspora delbrueckii or Metschnikowia pulcherrima on the aroma and sensory properties of mango wine. Ann. Microbiol. 2012, 62, 1353–1360. [Google Scholar] [CrossRef]
- Liu, S.; Laaksonen, O.; Yang, W.; Zhang, B.; Yang, B. Pyranoanthocyanins in bilberry (Vaccinium myrtillus L.) wines fermented with Schizosaccharomyces pombe and their evolution during aging. Food Chem. 2020, 305, 125438. [Google Scholar] [CrossRef]
- Wang, C.; Mas, A.; Esteve-Zarzoso, B. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific. Front. Microbiol. 2016, 7, 502. [Google Scholar] [CrossRef]
- Black, C.A.; Parker, M.; Siebert, T.E.; Capone, D.L.; Francis, I.L. Terpenoids and their role in wine flavour: Recent advances. Aust. J. Grape Wine Res. 2015, 21, 582–600. [Google Scholar] [CrossRef]
- He, L.; Meng, N.; Castellarin, S.D.; Wang, Y.; Sun, Q.; Li, X.-Y.; Dong, Z.-G.; Tang, X.-P.; Duan, C.-Q.; Pan, Q.-H. Combined Metabolite and Transcriptome Profiling Reveals the Norisoprenoid Responses in Grape Berries to Abscisic Acid and Synthetic Auxin. Int. J. Mol. Sci. 2021, 22, 1420. [Google Scholar] [CrossRef]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- Chen, X.; Quek, S.Y. Free and glycosidically bound aroma compounds in fruit: Biosynthesis, transformation, and practical control. Crit. Rev. Food Sci. Nutr. 2023, 63, 9052–9073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, R.; Sirisena, S.; Gan, R.; Fang, Z. Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A mini-review. Food Microbiol. 2021, 100, 103859. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Liu, R.; Wang, X.; Zhang, X. The sensory quality improvement of citrus wine through co-fermentations with selected non-Saccharomyces yeast strains and Saccharomyces cerevisiae. Microorganisms 2020, 8, 323. [Google Scholar] [CrossRef] [PubMed]
- Plata, C.; Millan, C.; Mauricio, J.; Ortega, J. Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiol. 2003, 20, 217–224. [Google Scholar] [CrossRef]
- Lambrechts, M.; Pretorius, I. Yeast and its importance to wine aroma. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Xue, J.; Tang, C.; Duan, C.; Yan, G. Use of Torulaspora delbrueckii and Hanseniaspora vineae co-fermentation with Saccharomyces cerevisiae to improve aroma profiles and safety quality of Petit Manseng wines. LWT 2022, 161, 113360. [Google Scholar] [CrossRef]
- Andorrà, I.; Berradre, M.; Mas, A.; Esteve-Zarzoso, B.; Guillamón, J.M. Effect of mixed culture fermentations on yeast populations and aroma profile. LWT 2012, 49, 8–13. [Google Scholar] [CrossRef]
- Reddy, L.V.A.; Reddy, O.V.S. Effect of fermentation conditions on yeast growth and volatile composition of wine produced from mango (Mangifera indica L.) fruit juice. Food Bioprod. Process. 2011, 89, 487–491. [Google Scholar] [CrossRef]
- Sudheer Kumar, Y.; Prakasam, R.S.; Reddy, O.V.S. Optimisation of fermentation conditions for mango (Mangifera indica L.) wine production by employing response surface methodology. Int. J. Food Sci. Technol. 2009, 44, 2320–2327. [Google Scholar] [CrossRef]
- Beltran, G.; Novo, M.; Guillamón, J.M.; Mas, A.; Rozès, N. Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. Int. J. Food Microbiol. 2008, 121, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Beltran, G.; Rozès, N.; Mas, A.; Guillamón, J.M. Effect of low-temperature fermentation on yeast nitrogen metabolism. World J. Microbiol. Biotechnol. 2007, 23, 809–815. [Google Scholar] [CrossRef]
- Peng, B.; Li, F.; Cui, L.; Guo, Y. Effects of Fermentation Temperature on Key Aroma Compounds and Sensory Properties of Apple Wine. J. Food Sci. 2015, 80, S2937–S2943. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; García, J.F.; Sun, D.-W. Advances in Wine Aging Technologies for Enhancing Wine Quality and Accelerating Wine Aging Process. Crit. Rev. Food Sci. Nutr. 2014, 54, 817–835. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Peng, Z.; Zhao, Y.; Wu, K.; Zhou, N.; Yan, Y.; Ramaswamy, H.S.; Sun, J.; Bai, W. The impact of ultrasonic treatment on blueberry wine anthocyanin color and its In-vitro anti-oxidant capacity. Food Chem. 2020, 333, 127455. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.; Li, S.; Wang, Y.; Fan, L.; Zhou, J. Effects of high power pulsed microwave on the enhanced color and flavor of aged blueberry wine. Food Sci. Biotechnol. 2023, 33, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Li, Y.; Yu, C.; Li, S.; Zhang, X.; Tian, Y. Effect of high hydrostatic pressure on the quality of red raspberry wine. J. Food Process. Preserv. 2022, 46, e16030. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Zhang, H.; Li, X.; Afoakwah, N.A. Effects of Ultrasound, High Pressure, and Manosonication Processes on Phenolic Profile and Antioxidant Properties of a Sulfur Dioxide-Free Mulberry (Morus nigra) Wine. Food Bioprocess Technol. 2017, 10, 1210–1223. [Google Scholar] [CrossRef]
- Sadoudi, M.; Tourdot-Maréchal, R.; Rousseaux, S.; Steyer, D.; Gallardo-Chacón, J.-J.; Ballester, J.; Vichi, S.; Guérin-Schneider, R.; Caixach, J.; Alexandre, H. Yeast–yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol. 2012, 32, 243–253. [Google Scholar] [CrossRef]
- Roullier-Gall, C.; David, V.; Hemmler, D.; Schmitt-Kopplin, P.; Alexandre, H. Exploring yeast interactions through metabolic profiling. Sci. Rep. 2020, 10, 6073. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Yan, Y.; Wu, M.; Ke, L. Advances in the Quality Improvement of Fruit Wines: A Review. Horticulturae 2024, 10, 93. https://doi.org/10.3390/horticulturae10010093
He L, Yan Y, Wu M, Ke L. Advances in the Quality Improvement of Fruit Wines: A Review. Horticulturae. 2024; 10(1):93. https://doi.org/10.3390/horticulturae10010093
Chicago/Turabian StyleHe, Lei, Yifan Yan, Min Wu, and Leqin Ke. 2024. "Advances in the Quality Improvement of Fruit Wines: A Review" Horticulturae 10, no. 1: 93. https://doi.org/10.3390/horticulturae10010093
APA StyleHe, L., Yan, Y., Wu, M., & Ke, L. (2024). Advances in the Quality Improvement of Fruit Wines: A Review. Horticulturae, 10(1), 93. https://doi.org/10.3390/horticulturae10010093