Non-Destructive Prediction of Rosmarinic Acid Content in Basil Plants Using a Portable Hyperspectral Imaging System and Ensemble Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Condition
2.2. Determination of RA Content
2.3. HSI Data Collection
2.4. Image Segmentation and Spectral Extraction
2.5. Spectral Data Pre-Processing Method
2.6. Feature Selection and Modeling Methods
2.7. Model Calibration and Evaluation
2.8. In-Field Application
2.9. Statistical Analysis
3. Results
3.1. Analysis of RA Content in Basil Plants
3.2. Determination of Spectral Pre-Processing Methods
3.3. Selection of Characteristic Wavelength
3.4. Final Prediction Models
3.5. In-Field Application for Monitoring RA Distribution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Makri, O.; Kintzios, S. Ocimum sp. (Basil): Botany, cultivation, pharmaceutical properties, and biotechnology. J. Herbs Spices Med. Plants 2008, 3, 123–150. [Google Scholar] [CrossRef]
- Guan, H.; Luo, W.; Bao, B.; Cao, Y.; Cheng, F.; Yu, S.; Fan, Q.; Zhang, L.; Wu, Q.; Shan, M.A. Comprehensive review of rosmarinic acid: From phytochemistry to pharmacology and its new insight. Molecules 2022, 27, 3292. [Google Scholar] [CrossRef] [PubMed]
- Hitl, M.; Kladar, N.; Gavarić, N.; Božin, B. Rosmarinic acid–human pharmacokinetics and health benefits. Planta Medica 2021, 87, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Connelly, A.E.; Tucker, A.J.; Tulk, H.; Catapang, M.; Chapman, L.; Sheikh, N.; Yurchenko, S.; Fletcher, R.; Kott, L.S.; Duncan, A.M.; et al. High-rosmarinic acid spearmint tea in the management of knee osteoarthritis symptoms. J. Med. Food 2014, 17, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Scholey, A.; Gibbs, A.; Neale, C.; Perry, N.; Ossoukhova, A.; Bilog, V.; Kras, M.; Scholz, C.; Sass, M.; Buchwald-Werner, S. Anti-stress effects of lemon balm-containing foods. Nutrients 2014, 6, 4805–4821. [Google Scholar] [CrossRef]
- Lee, J.; Jung, E.; Koh, J.; Kim, Y.S.; Park, D. Effect of rosmarinic acid on atopic dermatitis. J. Dermatol. 2008, 35, 768–771. [Google Scholar] [CrossRef]
- Kiferle, C.; Lucchesini, M.; Mensuali-Sodi, A.; Maggini, R.; Raffaelli, A.; Pardossi, A. Rosmarinic acid content in basil plants grown in vitro and in hydroponics. Cent. Eur. J. Biol. 2011, 6, 946–957. [Google Scholar] [CrossRef]
- Amigo, J.M.; Martí, I.; Gowen, A. Hyperspectral imaging and chemometrics: A perfect combination for the analysis of food structure, composition and quality. Data Handl. Sci. Technol. 2013, 28, 343–370. [Google Scholar] [CrossRef]
- Behmann, J.; Steinrücken, J.; Plümer, L. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote Sens. 2014, 93, 98–111. [Google Scholar] [CrossRef]
- Humplík, J.F.; Lazár, D.; Husičková, A.; Spíchal, L. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses—A review. Plant Methods 2015, 11, 29. [Google Scholar] [CrossRef]
- Mishra, P.; Lohumi, S.; Ahmad Khan, H.; Nordon, A. Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches. Comput. Electron. Agric. 2020, 178, 105780. [Google Scholar] [CrossRef]
- Lu, B.; He, Y. Evaluating empirical regression, machine learning, and radiative transfer modelling for estimating vegetation chlorophyll content using bi-seasonal hyperspectral images. Remote Sens. 2019, 11, 1979. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Lu, J.; Yang, T.; Su, X.; Qi, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves. Precis. Agric. 2020, 21, 324–348. [Google Scholar] [CrossRef]
- Gomes, V.; Rendall, R.; Reis, M.S.; Mendes-Ferreira, A.; Melo-Pinto, P. Determination of Sugar, pH, and Anthocyanin Contents in Port Wine Grape Berries through Hyperspectral Imaging: An Extensive Comparison of Linear and Non-Linear Predictive Methods. Appl. Sci. 2021, 11, 10319. [Google Scholar] [CrossRef]
- Burnett, A.C.; Anderson, J.; Davidson, K.J.; Ely, K.S.; Lamour, J.; Li, Q.; Morrison, B.D.; Yang, D.; Rogers, A.; Serbin, S.P. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression. J. Exp. Bot. 2021, 72, 6175–6189. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Shen, W. A review of ensemble learning algorithms used in remote sensing applications. Appl. Sci. 2022, 12, 8654. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Brugger, A.; Yamati, F.I.; Barreto, A.; Paulus, S.; Schramowsk, P.; Kersting, K.; Steiner, U.; Neugart, S.; Mahlein, A.K. Hyperspectral imaging in the UV range allows for differentiation of sugar beet diseases based on changes in secondary plant metabolites. Phytopathology 2023, 113, 44–54. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 1999, 14, 771–780. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A highly efficient gradient boosting decision tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3147–3154. [Google Scholar]
- Brugger, A.; Schramowski, P.; Paulus, S.; Steiner, U.; Kersting, K.; Mahlein, A.K. Spectral signatures in the UV range can be combined with secondary plant metabolites by deep learning to characterize barley–powdery mildew interaction. Plant Pathol. 2021, 70, 1572–1582. [Google Scholar] [CrossRef]
- Weksler, S.; Rozenstein, O.; Haish, N.; Moshelion, M.; Wallach, R.; Ben-Dor, E. Detection of potassium deficiency and momentary transpiration rate estimation at early growth stages using proximal hyperspectral imaging and extreme gradient boosting. Sensors 2021, 21, 958. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Young, S.; Linder, E.; Whipker, B.; Suchoff, D. Hyperspectral imaging with machine learning to differentiate cultivars, growth stages, flowers, and leaves of industrial hemp (Cannabis sativa L.). Front. Plant Sci. 2022, 12, 810113. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Ye, Y.; Wei, L.; Yang, X.; Huang, C. Study on the optimization of hyperspectral characteristic bands combined with monitoring and visualization of pepper leaf SPAD value. Sensors 2022, 22, 183. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Kim, Y.S.; Faqeerzada, M.A.; Kim, M.S.; Baek, I.; Cho, B.K. Hyperspectral reflectance imaging for nondestructive evaluation of root rot in Korean ginseng (Panax ginseng Meyer). Front. Plant Sci. 2023, 14, 1109060. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fowler, M.S.; Fisk, I.D. Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans. Food Chem. 2018, 258, 343–351. [Google Scholar] [CrossRef]
- Bian, X.; Wang, K.; Tan, E.; Diwu, P.; Zhang, F.; Guo, Y. A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples. Chemom. Intell. Lab. Syst. 2020, 197, 103916. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Gao, X.; Xie, A. Total phenolic content prediction in Flos Lonicerae using hyperspectral imaging combined with wavelengths selection methods. J. Food Process Eng. 2019, 42, 13224. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Vidal, M.; Amigo, J.M. Pre-processing of hyperspectral images. Essential steps before image analysis. Chemom. Intell. Lab. Syst. 2012, 117, 138–148. [Google Scholar] [CrossRef]
- Eshkabilov, S.; Lee, A.; Sun, X.; Lee, C.W.; Simsek, H. Hyperspectral imaging techniques for rapid detection of nutrient content of hydroponically grown lettuce cultivars. Comput. Electron. Agric. 2021, 181, 105968. [Google Scholar] [CrossRef]
- Geladi, P.; MacDougall, D.; Martens, H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Zhao, T.; Nakano, A.; Iwaski, Y.; Umeda, H. Application of hyperspectral imaging for assessment of tomato leaf water status in plant factories. Appl. Sci. 2020, 10, 4665. [Google Scholar] [CrossRef]
- Diago, M.P.; Fernandez-Novales, J.; Fernandes, A.M.; Melo-Pinto, P.; Tardaguila, J. Use of visible and short-wave near-infrared hyperspectral imaging to fingerprint anthocyanins in intact grape berries. J. Agric. Food Chem. 2016, 64, 7658–7666. [Google Scholar] [CrossRef]
- Burnett, A.C.; Serbin, S.P.; Davidson, K.J.; Ely, K.S.; Rogers, A. Detection of the metabolic response to drought stress using hyperspectral reflectance. J. Exp. Bot. 2021, 72, 6474–6489. [Google Scholar] [CrossRef]
- Chen, S.; Gao, Y.; Fan, K.; Shi, Y.; Luo, D.; Shen, J.; Ding, Z.; Wang, Y. Prediction of drought-induced components and evaluation of drought damage of tea plants based on hyperspectral imaging. Front. Plant Sci. 2021, 12, 695102. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Wendel, A.; Underwood, J. Spectral filter design based on in-field hyperspectral imaging and machine learning for mango ripeness estimation. Comput. Electron. Agric. 2019, 164, 104890. [Google Scholar] [CrossRef]
- Luo, X.; Xu, L.; Huang, P.; Wang, Y.; Liu, J.; Hu, Y.; Wang, P.; Kang, Z. Nondestructive testing model of tea polyphenols based on hyperspectral technology combined with chemometric methods. Agriculture 2021, 11, 673. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Gill, E.; Mohammadimanesh, F.; Homayouni, S. Bagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and polSAR data: A comparative evaluation. Remote Sens. 2021, 13, 4405. [Google Scholar] [CrossRef]
- Kiani, S.; van Ruth, S.M.; Minaei, S.; Varnamkhastid, M.G. Hyperspectral imaging, a non-destructive technique in medicinal and aromatic plant products industry: Current status and potential future applications. Comput. Electron. Agric. 2018, 152, 9–18. [Google Scholar] [CrossRef]
- Yoon, H.I.; Lee, S.H.; Ryu, D.; Choi, H.; Park, S.H.; Jung, J.H.; Kim, H.-Y.; Yang, J.-S. Non-destructive assessment of cannabis quality during drying process using hyperspectral imaging and machine learning. Front. Plant Sci. 2024, 15, 1365298. [Google Scholar] [CrossRef] [PubMed]
Statistics | Rosmarinic Acid (mg g−1 DW) | ||
---|---|---|---|
Total Dataset | Calibration Set | Prediction Set | |
Number of samples | 144 | 115 | 29 |
Minimum | 1.892 | 1.892 | 2.991 |
Maximum | 34.29 | 34.29 | 33.32 |
Mean | 12.47 | 12.12 | 13.93 |
Standard deviation | 7.966 | 7.624 | 9.204 |
Prediction Model | Pre-Processing Method | Calibration | Cross-Validation | ||
---|---|---|---|---|---|
R2C | RMSEC | R2CV | RMSECV | ||
RF | Log (1/R) + 2nd Der + SNV | 0.966 | 1.407 | 0.737 | 3.889 |
Log (1/R) + 2nd Der | 0.962 | 1.485 | 0.725 | 3.979 | |
Log (1/R) + 1st Der + SNV | 0.960 | 1.519 | 0.725 | 3.980 | |
Log (1/R) + 1st Der + MSC | 0.963 | 1.461 | 0.719 | 4.021 | |
Log (1/R) + SNV | 0.964 | 1.434 | 0.719 | 4.026 | |
AdaBoost | Log (1/R) + 2nd Der + SNV | 0.950 | 1.698 | 0.746 | 3.822 |
Log (1/R) + 2nd Der | 0.944 | 1.803 | 0.739 | 3.877 | |
Log (1/R) + SNV | 0.922 | 2.122 | 0.713 | 4.069 | |
Raw reflectance | 0.914 | 2.229 | 0.705 | 4.121 | |
Log (1/R) + MSC | 0.931 | 1.989 | 0.705 | 4.122 | |
XGBoost | Log (1/R) + 2nd Der + SNV | 1.000 | 0.001 | 0.708 | 4.099 |
1st Der | 1.000 | 0.001 | 0.700 | 4.155 | |
Log (1/R) + SNV | 1.000 | 0.001 | 0.697 | 4.179 | |
Log (1/R) + SG filter + SNV | 1.000 | 0.001 | 0.694 | 4.197 | |
Log (1/R) + SG filter + MSC | 1.000 | 0.001 | 0.686 | 4.254 | |
LightGBM | Log (1/R) + 2nd Der | 0.965 | 1.423 | 0.733 | 3.924 |
Log (1/R) + 2nd Der + SNV | 0.963 | 1.466 | 0.715 | 4.053 | |
Log (1/R) + 1st Der + MSC | 0.960 | 1.514 | 0.712 | 4.073 | |
Log (1/R) + 2nd Der + MSC | 0.964 | 1.448 | 0.711 | 4.082 | |
1st Der + MSC | 0.957 | 1.576 | 0.699 | 4.165 |
Prediction Model | Pre-Processing Method | Feature Selection | Calibration | Cross-Validation | Prediction | ||||
---|---|---|---|---|---|---|---|---|---|
Method | No. Feature | R2C | RMSEC | R2CV | RMSECV | R2P | RMSEP | ||
RF | Log (1/R) + 2nd Der + SNV | Full band | 51 | 0.968 | 1.368 | 0.742 | 3.853 | 0.790 | 4.148 |
RF | 5 | 0.962 | 1.486 | 0.703 | 4.135 | 0.770 | 4.342 | ||
AdaBoost | 7 | 0.968 | 1.364 | 0.732 | 3.927 | 0.804 | 4.003 | ||
XGBoost | 4 | 0.966 | 1.399 | 0.750 | 3.792 | 0.787 | 4.173 | ||
LightGBM | 14 | 0.966 | 1.405 | 0.733 | 3.921 | 0.788 | 4.161 | ||
AdaBoost | Log (1/R) + 2nd Der + SNV | Full band | 51 | 0.949 | 1.716 | 0.750 | 3.792 | 0.770 | 4.335 |
RF | 5 | 0.874 | 2.693 | 0.724 | 3.985 | 0.751 | 4.516 | ||
AdaBoost | 7 | 0.917 | 2.193 | 0.764 | 3.686 | 0.766 | 4.376 | ||
XGBoost | 4 | 0.906 | 2.330 | 0.758 | 3.731 | 0.758 | 4.446 | ||
LightGBM | 14 | 0.930 | 2.013 | 0.750 | 3.798 | 0.792 | 4.124 | ||
XGBoost | Log (1/R) + 2nd Der + SNV | Full band | 51 | 0.940 | 1.851 | 0.739 | 3.878 | 0.768 | 4.360 |
RF | 5 | 0.895 | 2.455 | 0.719 | 4.021 | 0.773 | 4.312 | ||
AdaBoost | 7 | 0.983 | 0.997 | 0.744 | 3.842 | 0.796 | 4.082 | ||
XGBoost | 4 | 0.917 | 2.187 | 0.763 | 3.694 | 0.761 | 4.425 | ||
LightGBM | 14 | 0.968 | 1.350 | 0.776 | 3.595 | 0.752 | 4.502 | ||
LightGBM | Log (1/R) + 2nd Der | Full band | 51 | 0.916 | 2.199 | 0.749 | 3.806 | 0.801 | 4.032 |
RF | 10 | 0.872 | 2.718 | 0.760 | 3.719 | 0.789 | 4.154 | ||
AdaBoost | 8 | 0.828 | 3.151 | 0.744 | 3.837 | 0.812 | 3.924 | ||
XGBoost | 5 | 0.827 | 3.159 | 0.747 | 3.816 | 0.791 | 4.131 | ||
LightGBM | 16 | 0.945 | 1.776 | 0.784 | 3.524 | 0.750 | 4.523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, H.I.; Ryu, D.; Park, J.-E.; Kim, H.-Y.; Park, S.H.; Yang, J.-S. Non-Destructive Prediction of Rosmarinic Acid Content in Basil Plants Using a Portable Hyperspectral Imaging System and Ensemble Learning Algorithms. Horticulturae 2024, 10, 1156. https://doi.org/10.3390/horticulturae10111156
Yoon HI, Ryu D, Park J-E, Kim H-Y, Park SH, Yang J-S. Non-Destructive Prediction of Rosmarinic Acid Content in Basil Plants Using a Portable Hyperspectral Imaging System and Ensemble Learning Algorithms. Horticulturae. 2024; 10(11):1156. https://doi.org/10.3390/horticulturae10111156
Chicago/Turabian StyleYoon, Hyo In, Dahye Ryu, Jai-Eok Park, Ho-Youn Kim, Soo Hyun Park, and Jung-Seok Yang. 2024. "Non-Destructive Prediction of Rosmarinic Acid Content in Basil Plants Using a Portable Hyperspectral Imaging System and Ensemble Learning Algorithms" Horticulturae 10, no. 11: 1156. https://doi.org/10.3390/horticulturae10111156
APA StyleYoon, H. I., Ryu, D., Park, J. -E., Kim, H. -Y., Park, S. H., & Yang, J. -S. (2024). Non-Destructive Prediction of Rosmarinic Acid Content in Basil Plants Using a Portable Hyperspectral Imaging System and Ensemble Learning Algorithms. Horticulturae, 10(11), 1156. https://doi.org/10.3390/horticulturae10111156