Physiological and Biochemical Responses of ‘Burlat’ Sweet Cherry to Pre-Harvest Foliar Application of Calcium and Seaweed Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Gas Exchange Measurements
2.3. Relative Water Content
2.4. Electrolyte Leakage
2.5. Metabolite Composition Determination
2.5.1. Photosynthetic Pigments
2.5.2. Total Soluble Sugars and Starch
2.5.3. Soluble Proteins
2.6. Lipid Peroxidation
2.7. Total Antioxidant Activity (ABTS)
2.8. Total Polyphenol Content
2.9. Thiol Content
2.10. Statistical Analysis
3. Results
3.1. Gas Exchange Measurements
3.2. Relative Water Content
3.3. Electrolyte Leakage
3.4. Metabolite Composition Determination
3.4.1. Photosynthetic Pigments
3.4.2. Total Soluble Sugars and Starch
3.4.3. Soluble Proteins
3.5. Lipid Peroxidation (TBARS)
3.6. Antioxidant Activity (ABTS)
3.7. Polyphenolic Compounds
3.8. Thiol Content
3.9. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, H.; Liu, B.; Zhang, W.; Cao, J.; Jiang, W. Enhancement of quality and antioxidant metabolism of sweet cherry fruit by near freezing temperature storage. Postharvest Biol. Technol. 2019, 147, 113–122. [Google Scholar] [CrossRef]
- Vance, C.P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 2001, 127, 390–397. [Google Scholar] [CrossRef]
- Fernández, V.; Eichert, T. Uptake of hydrophilic solutes through plant leaves: Current state of knowledge and perspectives of foliar fertilization. Crit. Rev. Plant Sci. 2009, 28, 36–68. [Google Scholar] [CrossRef]
- Kunicki, E.; Grabowska, A.; Sekara, A.; Wojciechowska, R. The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic. 2010, 22, 9–13. [Google Scholar] [CrossRef]
- Hanson, J.B. The function of calcium in plant nutrition. In Advances in Plant Nutrition; Tinker, P.B., Lauchli, A., Eds.; Praeger: New York, NY, USA, 1984; pp. 149–208. [Google Scholar]
- Solhjoo, S.; Gharaghani, A.; Fallahi, E. Calcium and potassium foliar sprays affect fruit skin color, quality attributes, and mineral nutrient concentrations of ‘Red Delicious’ apples. Int. J. Fruit Sci. 2017, 17, 358–373. [Google Scholar] [CrossRef]
- Erogul, D. Effect of preharvest calcium treatments on sweet cherry fruit quality. Not. Bot. Horti Agrobot. 2014, 42, 150–153. [Google Scholar] [CrossRef]
- Shear, C.B. Calcium-related disorders of fruits and vegetables. Hort. Sci. 1975, 10, 361–365. [Google Scholar]
- Huang, X.M.; Wang, H.C.; Li, J.G.; Yin, J.H.; Yuan, W.Q.; Lu, J.M.; Huang, H.B. An overview of calcium’s role in lychee fruit cracking. Acta Hortic. 2005, 665, 231–240. [Google Scholar] [CrossRef]
- Rathore, S.S.; Chaudhary, D.R.; Boricha, G.N.; Ghosh, A.; Bhatt, B.P.; Zodape, S.T.; Patolia, J.S. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S. Afr. J. Bot. 2009, 75, 351–355. [Google Scholar] [CrossRef]
- Sunarpi, S.; Jupri, A.; Kurnianingsih, R.; Julisaniah, N.I.; Nikmatullah, A. Effect of seaweed extracts on growth and yield of rice plants. Asian J. Trop. Biotechnol. 2010, 2, 73–77. [Google Scholar] [CrossRef]
- Zodape, S.T.; Gupta, A.; Bhandari, S.C.; Rawat, U.S.; Chaudhary, D.R.; Eswaran, K.; Chikara, J. Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill.). J. Sci. Ind. Res. 2011, 70, 215–219. [Google Scholar]
- Shah, M.T.; Zodape, S.T.; Chaudhary, D.R.; Eswaran, K.; Chikara, J. Seaweed sap as an alternative to liquid fertilizer for yield and quality improvement of wheat. J. Plant Nutr. 2013, 36, 192–200. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Jannin, L.; Arkoun, M.; Etienne, P.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; Francisco, S.S.; Baigorri, R.; Cruz, F. Brassica napus growth is promoted by Ascophyllum nodosum (L.) seaweed extract: Microarray analysis and physiological characterization of N, C, and S metabolisms. J. Plant Growth Regul. 2013, 32, 31–52. [Google Scholar] [CrossRef]
- Correia, S.; Oliveira, I.; Queirós, F.; Ribeiro, C.; Ferreira, L.; Luzio, A.; Silva, A.P.; Gonçalves, B. Preharvest application of seaweed based biostimulant reduced cherry (Prunus avium L.) cracking. In Proceedings of the Environmental Sciences-Agriculture and Climate Change—Adapting Crops to Increased Uncertainty (AGRI 2015), Amsterdam, The Netherlands, 15–17 February 2015; Volume 29, pp. 251–252. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates Inc.: Sunderland, UK, 2010; 782p. [Google Scholar]
- Afonso, S.; Oliveira, I.; Meyer, A.S.; Gonçalves, B. Biostimulants to Improved Tree Physiology and Fruit Quality: A Review with Special Focus on Sweet Cherry. Agronomy 2022, 12, 659. [Google Scholar] [CrossRef]
- Correia, S.; Queirós, F.; Ferreira, H.; Morais, M.C.; Afonso, S.; Silva, A.P.; Gonçalves, B. Foliar application of calcium and growth regulators modulate sweet cherry (Prunus avium L.) tree performance. Plants 2020, 9, 410. [Google Scholar] [CrossRef]
- Xu, C.; Leskovar, D.I. Effects of A. Nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hortic. 2015, 183, 39–47. [Google Scholar] [CrossRef]
- Correia, S.; Schouten, R.; Silva, A.P.; Gonçalves, B. Sweet cherry fruit cracking mechanisms and prevention strategies: A review. Sci. Hortic. 2018, 240, 369–377. [Google Scholar] [CrossRef]
- Santos, M.; Pereira, S.; Ferreira, H.; Sousa, J.R.; Vilela, A.; Ribeiro, C.; Raimundo, F.; Egea-Cortines, M.; Matos, M.; Gonçalves, B. Optimizing sweet cherry attributes through magnesium and potassium fertilization. Horticulturae 2024, 10, 881. [Google Scholar] [CrossRef]
- Von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, E.; Yu, Q. Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agric. Water Manag. 2010, 97, 1174–1183. [Google Scholar] [CrossRef]
- Turner, N.C. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 1981, 58, 339–366. [Google Scholar] [CrossRef]
- Lutts, S.; Kinet, J.M.; Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 1996, 78, 389–398. [Google Scholar] [CrossRef]
- Sesták, Z.; Castky, J.; Jarvis, P.G. Plant Photosynthetic Production: Manual of Methods; Dr. W. Junk: Hague, The Netherlands, 1971; 818p. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Irigoyen, J.J.; Emerich, D.W.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Osaki, M.; Shinano, T.; Tadano, T. Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops. Soil Sci. Plant Nutr. 1991, 37, 117–128. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Peroxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Costa, H.; Gallego, S.M.; Tomaro, M.L. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci. 2002, 162, 939–945. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sratil, P.; Klejdus, B.; Kubán, V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables—Evaluation of spectrophotometric methods. J. Agric. Food Chem. 2006, 54, 607–616. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorometry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Leão, G.A.; Oliveira, J.A.; Felipe, R.T.T.A.; Farnese, F.S.; Gusman, G.S. Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic. J. Plant Interact. 2014, 9, 143–151. [Google Scholar] [CrossRef]
- Beckett, R.P.; van Staden, J. The effect of seaweed concentrate on the growth and yield of potassium stressed wheat. Plant Soil 1989, 116, 29–36. [Google Scholar] [CrossRef]
- Hankins, S.D.; Hockey, H.P. The effect of a liquid seaweed extract from Ascophyllum nodosum (Fucales, Phaeophyta) on the two-spotted red spider mite Tetranychus urticae. Hydrobiologia 1990, 204, 555–559. [Google Scholar] [CrossRef]
- Blunden, G. Agricultural uses of seaweeds and seaweed extracts. In Seaweed Resources in Europe: Uses and Potential; Guiry, M.D., Blunden, G., Eds.; Wiley: Chichester, UK, 1991; pp. 65–81. [Google Scholar]
- Norrie, J.; Keathley, J.P. Benefits of Ascophyllum nodosum marine-plant extract applications to ‘Thompson seedless’ grape production. Acta Hortic. 2006, 727, 243–247. [Google Scholar] [CrossRef]
- Stokes, V.; Kerr, G. Relationships between growth and leaf-scale physiological parameters in five WilstarTM cherry clones (Prunus avium L.). Eur. J. Forest Res. 2006, 125, 369–375. [Google Scholar] [CrossRef]
- Bacelar, E.A.; Santos, D.L.; Moutinho-Pereira, J.M.; Lopes, J.I.; Gonçalves, B.C.; Ferreira, T.C.; Correia, C.M. Physiological behaviour, oxidative damage and antioxidative protection of olive trees grown under different irrigation regimes. Plant Soil 2007, 292, 1–12. [Google Scholar] [CrossRef]
- Mebrahtu, T.; Hanover, J.W. Family variation in gas exchange, growth and leaf traits of black locust half-sib families. Tree Physiol. 1991, 8, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Mucha, A.; Gonçalves, B.; Bacelar, E.; Latr, A.; Ferreira, H.; Oliveira, I.; Rosa, E.; Marques, G. Improvement of some growth and yield parameters of faba bean (Vicia faba L.) by inoculation with Rhizobium laguerreae and arbuscular mycorrhizal fungi. Crop Pasture Sci. 2019, 70, 595–605. [Google Scholar] [CrossRef]
- Bacelar, E.A.; Moutinho-Pereira, J.M.; Gonçalves, B.C.; Lopes, J.I.; Correia, C.M. Physiological responses of different olive genotypes to drought conditions. Acta Physiol. Plant 2009, 31, 611–621. [Google Scholar] [CrossRef]
- Schultz, H.R. Leaf absorptance of visible radiation in Vitis vinifera L.: Estimates of age and shade effects with a simple field method. Sci. Hortic. 1996, 66, 93–102. [Google Scholar] [CrossRef]
- Medrano, H.; Escalona, J.M.; Bota, J.; Gulías, J.; Flexas, J. Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann. Bot. 2002, 89, 895–905. [Google Scholar] [CrossRef]
- Moutinho-Pereira, J.; Magalhães, N.; Gonçalves, B.; Bacelar, E.; Brito, M.; Correia, C. Leaf gas exchange and water relations of grapevines grown in three different conditions. Photosynthetica 2004, 42, 81–86. [Google Scholar] [CrossRef]
- El-Mageed, T.A.; Semida, W.M.; Radyc, M.M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agric. Water Manag. 2017, 193, 46–54. [Google Scholar] [CrossRef]
- Cabo, S.; Morais, M.C.; Aires, A.; Carvalho, R.; Pascual-Seva, N.; Silva, A.P.; Gonçalves, B. Kaolin and seaweed-based extracts can be used as middle and long-term strategy to mitigate negative effects of climate change in physiological performance of hazelnut tree. J. Agron. Crop Sci. 2019, 206, 28–42. [Google Scholar] [CrossRef]
- Tripathy, J.N.; Zhang, J.; Robin, S.; Nguyen, T.T.; Nguyen, H.T. QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor. Appl. Genet. 2000, 100, 1197–1202. [Google Scholar] [CrossRef]
- Malanga, G.; Calmanovici, G.; Puntarulo, S. Oxidative damage to chloroplasts from Chlorella vulgaris exposed to ultraviolet-B radiation. Physiol. Plant 1997, 101, 455–462. [Google Scholar] [CrossRef]
- Czeczuga, B. Carotenoid contents in leaves grown under various light intensities. Biochem. Syst. Ecol. 1987, 15, 523–527. [Google Scholar] [CrossRef]
- Thalmann, M.; Santelia, D. Starch as a determinant of plant fitness under abiotic stress. New Phytol. 2017, 214, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Horrer, D.; Flutsch, S.; Pazmino, D.; Matthews, J.S.A.; Thalmann, M.; Nigro, A.; Leonhardt, N.; Lawson, T.; Santelia, D. Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Curr. Biol. 2016, 26, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Terry, L.A.; Chope, G.A.; Gine-Bordonaba, J. Effect of water deficit irrigation and inoculation with Botrytis cinerea on strawberry (Fragaria × ananassa) fruit quality. J. Agric. Food Chem. 2007, 55, 10812–10819. [Google Scholar] [CrossRef] [PubMed]
- Bordonaba, J.G.; Terry, L.A. Manipulating the taste-related composition of strawberry fruits (Fragaria × ananassa) from different cultivars using deficit irrigation. Food Chem. 2010, 122, 1020–1026. [Google Scholar] [CrossRef]
- Serradilla, M.J.; Lozano, M.; Bernalte, M.J.; Ayuso, M.C.; López-Corrales, M.; González-Gómez, D. Physicochemical and bioactive properties evolution during ripening of Ambrunés’ sweet cherry cultivar. LWT Food Sci. Technol. 2011, 44, 199–205. [Google Scholar] [CrossRef]
- Kocira, A.; Świeca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2018, 25, 563–571. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Sánchez-Hernández, C.V.; Palmeros-Suárez, P.A.; Ocampo-Alvarez, H.; Santacruz-Ruvalcaba, F.; Meza-Canales, I.D.; Becerril-Espinosa, A. Seaweed extract improves growth and productivity of tomato plants under salinity stress. Agronomy 2022, 12, 2495. [Google Scholar] [CrossRef]
- Janero, D.R. Malonaldehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Rad. Biol. Med. 1990, 9, 515–540. [Google Scholar] [CrossRef]
- Alaiz, M.; Hidalgo, F.J.; Zamora, R. Effect of pH and temperature on comparative antioxidant activity of nonenzymatically browned proteins produced by reactions with oxidized lipids and carbohydrates. J. Agric. Food Chem. 1999, 47, 748–752. [Google Scholar] [CrossRef]
- Michailidis, M.; Karagiannis, E.; Tanou, G.; Karamanoli, K.; Lazaridou, A.; Matsi, T.; Molassiotis, A. Metabolomic and physico-chemical approach unravel dynamic regulation of calcium in sweet cherry fruit physiology. Plant Physiol. Biochem. 2017, 116, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Thurzo, S.; Szabo, Z.; Nyeki, J.; Nagy, P.T.; Silva, A.P.; Gonçalves, B. Effect of boron and calcium sprays on photosynthetic pigments, total phenols and flavonoid content of sweet cherry (Prunus avium L.). Acta Hortic. 2010, 868, 457–462. [Google Scholar] [CrossRef]
- Abetz, P. Seaweed extracts: Have they a place in Australian agriculture or horticulture? J. Austral. Inst. Agric. Sci. 1980, 46, 23–29. [Google Scholar]
- Finnie, J.F.; van Staden, J. Effect of seaweed concentrate and applied hormones on in vitro cultured tomato roots. J. Plant Physiol. 1985, 120, 215–222. [Google Scholar] [CrossRef]
Minimum Temperature (°C) | Maximum Temperature (°C) | Total Rainfall (mm) | |
---|---|---|---|
March | 3.7 to 12.2 | 11.9 to 22.6 | 4.1 |
April | 2.0 to 14.3 | 10.9 to 26.0 | 8.1 |
May | 6.4 to 17.4 | 16.2 to 32.9 | 0.3 |
Treatment | FORALG (mL hL−1) | KITPLANT Ca (g hL−1) | KALENGOR K (g hL−1) | KITPLANT Mg (g hL−1) |
---|---|---|---|---|
Ca_150 | 0 | 150 | 150 | 250 |
Ca_ 300 | 0 | 300 | 150 | 250 |
Seaweed_75 | 75 | 0 | 150 | 250 |
Seaweed_150 | 150 | 0 | 150 | 250 |
Control | 150 | 300 | 150 | 250 |
Chl a | Chl b | Chl Total | Carot | |
---|---|---|---|---|
Ca_150 | 4.50 ± 0.76 a | 3.65 ± 0.59 a | 8.15 ± 1.06 a | 0.76 ± 0.08 a |
Ca_300 | 3.92 ± 0.68 a | 2.71 ± 0.38 a | 6.63 ± 1.00 a | 0.63 ± 0.07 a |
Seaweed_75 | 4.10 ± 0.08 a | 3.62 ± 0.50 a | 7.72 ± 0.76 a | 0.73 ± 0.06 a |
Seaweed_150 | 4.80 ± 0.26 a | 3.99 ± 0.38 a | 8.79 ± 0.76 a | 0.59 ± 0.10 a |
Control | 4.68 ± 1.05 a | 2.75 ± 0.35 a | 7.43 ± 1.48 a | 0.76 ± 0.06 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, S.; Silva, V.; Guedes, F.; Raimundo, F.; Sousa, J.R.; Silva, A.P.; Gonçalves, B. Physiological and Biochemical Responses of ‘Burlat’ Sweet Cherry to Pre-Harvest Foliar Application of Calcium and Seaweed Extracts. Horticulturae 2024, 10, 1173. https://doi.org/10.3390/horticulturae10111173
Pereira S, Silva V, Guedes F, Raimundo F, Sousa JR, Silva AP, Gonçalves B. Physiological and Biochemical Responses of ‘Burlat’ Sweet Cherry to Pre-Harvest Foliar Application of Calcium and Seaweed Extracts. Horticulturae. 2024; 10(11):1173. https://doi.org/10.3390/horticulturae10111173
Chicago/Turabian StylePereira, Sandra, Vânia Silva, Francisco Guedes, Fernando Raimundo, João Ricardo Sousa, Ana Paula Silva, and Berta Gonçalves. 2024. "Physiological and Biochemical Responses of ‘Burlat’ Sweet Cherry to Pre-Harvest Foliar Application of Calcium and Seaweed Extracts" Horticulturae 10, no. 11: 1173. https://doi.org/10.3390/horticulturae10111173
APA StylePereira, S., Silva, V., Guedes, F., Raimundo, F., Sousa, J. R., Silva, A. P., & Gonçalves, B. (2024). Physiological and Biochemical Responses of ‘Burlat’ Sweet Cherry to Pre-Harvest Foliar Application of Calcium and Seaweed Extracts. Horticulturae, 10(11), 1173. https://doi.org/10.3390/horticulturae10111173