Foliar Methyl Jasmonate Application Activates Antioxidant Mechanisms to Counteract Water Deficits and Aluminum Stress in Vaccinium corymbosum L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Properties and Preparation
2.2. Plant Material and Growing Conditions
2.3. Treatments
2.4. Leaf and Root Aluminum Concentration
2.5. Physiological Analyses
2.5.1. Plant Growth
2.5.2. Plant Water Status
2.5.3. Photosynthetic Parameters
2.6. Biochemical Analyses
2.6.1. Lipid Peroxidation Determination
2.6.2. Non-Enzymatic Antioxidants
2.6.3. Enzymatic Antioxidants
2.7. Statistical Analysis
3. Results
3.1. MeJA Application Effects on Leaf and Root Aluminum Concentration of V. corymbosum Under Combined WD+Al Stress
3.2. Plant Growth of V. corynbosum Under Combined WD+Al Stress and MeJA Application
3.3. Plant Water Status of V. corymbosum Under WD+Al Stress and MeJA Application
3.4. Leaf Gas Exchange Parameters in V. corymbosum Under WD+Al Stress and MeJA Application
3.5. Effects of MeJA on Lipid Peroxidation of V. corymbosum Under Combined WD+Al Stress
3.6. Effects of WD+Al Stress on Non-Enzymatic Antioxidants in V. corymbosum
3.7. Influence of MeJA Application on Enzymatic Antioxidants in V. corymbosum Under WD+Al Stress
3.8. Multivariate Analysis
4. Discussion
4.1. Aluminum Accumulation Restricts Growth and Water Uptake in V. corymbosum Under Combined WD+Al Stress
4.2. The MeJA 50 µM Dose Is the Effective Dose for Mitigation of Combined WD+Al Stress
4.3. The MeJA Improves Photosynthetic Performance and Limits Transpirational Water Loss Under Combined WD+Al Stress
4.4. MeJA Decreases Oxidative Damage by Inducing the Accumulation of Non-Enzymatic Antioxidants Under Combined WD+Al Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kochian, L.V.; Piñeros, M.A.; Liu, J.; Magalhaes, J.V. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. Annu. Rev. Plant Biol. 2015, 66, 571–598. [Google Scholar] [CrossRef]
- Sade, H.; Meriga, B.; Surapu, V.; Gadi, J.; Sunita, M.S.L.; Suravajhala, P.; Kavi Kishor, P.B. Toxicity and Tolerance of Aluminum in Plants: Tailoring Plants to Suit to Acid Soils. BioMetals 2016, 29, 187–210. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Díaz, M.; Inostroza-Blancheteau, C.; Millaleo, R.; Cruces, E.; Wulff-Zottele, C.; Alberdi, M.; Mora, M.d.l.L. Long-Term Aluminum Exposure Effects on Physiological and Biochemical Features of Highbush Blueberry Cultivars. J. Am. Soc. Hortic. Sci. 2010, 135, 212–222. [Google Scholar] [CrossRef]
- Bojórquez-Quintal, E.; Escalante-Magaña, C.; Echevarría-Machado, I.; Martínez-Estévez, M. Aluminum, a Friend or Foe of Higher Plants in Acid Soils. Front. Plant Sci. 2017, 8, 1767. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Fu, H.; Zhu, B.; Hussain, H.A.; Zhang, K.; Tian, X.; Duan, M.; Xie, X.; Wang, L. Potassium Improves Drought Stress Tolerance in Plants by Affecting Root Morphology, Root Exudates, and Microbial Diversity. Metabolites 2021, 11, 131. [Google Scholar] [CrossRef] [PubMed]
- Niinemets, Ü. Responses of Forest Trees to Single and Multiple Environmental Stresses from Seedlings to Mature Plants: Past Stress History, Stress Interactions, Tolerance and Acclimation. For. Ecol. Manag. 2010, 260, 1623–1639. [Google Scholar] [CrossRef]
- Ahmed, I.M.; Nadira, U.A.; Cao, F.; He, X.; Zhang, G.; Wu, F. Physiological and Molecular Analysis on Root Growth Associated with the Tolerance to Aluminum and Drought Individual and Combined in Tibetan Wild and Cultivated Barley. Planta 2016, 243, 973–985. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Cornejo, P.; Kannan, V.R. Role of Plant Growth–Promoting Rhizobacterial Consortium in Improving the Vigna Radiata Growth and Alleviation of Aluminum and Drought Stresses. Environ. Sci. Pollut. Res. 2019, 26, 27647–27659. [Google Scholar] [CrossRef]
- Siecińska, J.; Wiącek, D.; Przysucha, B.; Nosalewicz, A. Drought in Acid Soil Increases Aluminum Toxicity Especially of the Al-Sensitive Wheat. Environ. Exp. Bot. 2019, 165, 185–195. [Google Scholar] [CrossRef]
- Cáceres, C.; Quintana, J.; Nunes-Nesi, A.; Cohen, J.D.; Delgado, M.; Ribera-Fonseca, A.; Inostroza-Blancheteau, C.; Gonzalez-Villagra, J.; Bravo, L.A.; Savoure, A.; et al. Interplay of Phytohormone Signaling with Aluminum and Drought-Stress Resistance Mechanisms: An Integrated Perspective amidst Climate Change. Environ. Exp. Bot. 2024, 218, 105575. [Google Scholar] [CrossRef]
- Balboa, K.; Ballesteros, G.I.; Molina-Montenegro, M.A. Integration of Physiological and Molecular Traits Would Help to Improve the Insights of Drought Resistance in Highbush Blueberry Cultivars. Plants 2020, 9, 1457. [Google Scholar] [CrossRef] [PubMed]
- Lobos, T.E.; Retamales, J.B.; Ortega-Farías, S.; Hanson, E.J.; López-Olivari, R.; Mora, M.L. Regulated Deficit Irrigation Effects on Physiological Parameters, Yield, Fruit Quality and Antioxidants of Vaccinium corymbosum Plants Cv. Brigitta. Irrig. Sci. 2017, 36, 49–60. [Google Scholar] [CrossRef]
- Sandoval, Y.; Tighe-Neira, R.; Inostroza-Blancheteau, C.; Soto-Cerda, B.; González-Villagra, J. Melatonin Improves Plant Water Status, Photosynthetic Performance, and Antioxidant Defense System in Highbush Blueberry (Vaccinium corymbosum L.) Plants Subjected to Drought Stress. Sci. Hortic. 2024, 323, 112528. [Google Scholar] [CrossRef]
- He, H.; Li, Y.; He, L.F. Aluminum Toxicity and Tolerance in Solanaceae Plants. S. Afr. J. Bot. 2019, 123, 23–29. [Google Scholar] [CrossRef]
- González-Villagra, J.; Pino, R.; Inostroza-Blancheteau, C.; Cartes, P.; Ribera-Fonseca, A.; Reyes-Díaz, M. Pre-Harvest MeJA Application Counteracts the Deleterious Impact of Al and MnToxicity in Highbush Blueberry Grown in Acid Soils. Plants 2021, 10, 2730. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qiu, L.; Guo, H.; Wang, Y.; Yuan, H.; Yan, D.; Zheng, B. Spermidine Induces Physiological and Biochemical Changes in Southern Highbush Blueberry under Drought Stress. Braz. J. Bot. 2017, 40, 841–851. [Google Scholar] [CrossRef]
- Yu, D.J.; Rho, H.; Kim, S.J.; Lee, H.J. Photosynthetic Characteristics of Highbush Blueberry (Vaccinium corymbosum Cv. Bluecrop) Leaves in Response to Water Stress and Subsequent Re-Irrigation. J. Hortic. Sci. Biotechnol. 2015, 90, 550–556. [Google Scholar] [CrossRef]
- Cárcamo-Fincheira, P.; Reyes-Díaz, M.; Omena-Garcia, R.P.; Nunes-Nesi, A.; Inostroza-Blancheteau, C. Physiological and Metabolic Responses to Aluminum Toxicity Reveal Differing Resistance Mechanisms to Long-Term Exposure in Highbush Blueberry Cultivars. Sci. Hortic. 2023, 309, 111665. [Google Scholar] [CrossRef]
- Ulloa-Inostroza, E.; Alberdi, M.; Meriño-Gergichevich, C.; Reyes-Díaz, M. Low Doses of Exogenous Methyl Jasmonate Applied Simultaneously with Toxic Aluminum Improve the Antioxidant Performance of Vaccinium corymbosum. Plant Soil 2016, 412, 81–96. [Google Scholar] [CrossRef]
- Júnior, E.M.F.; Cambraia, J.; Ribeiro, C.; Oliva, M.A.; Oliveira, J.A.; Damatta, F.M. The Effects of Aluminium on the Photosynthetic Apparatus of Two Rice Cultivars. Exp. Agric. 2014, 50, 343–352. [Google Scholar] [CrossRef]
- Alarcón-Poblete, E.; González-Villagra, J.; de Oliveira Silva, F.M.; Nunes-Nesi, A.; Inostroza-Blancheteau, C.; Alberdi, M.; Reyes-Díaz, M. Metabolic Responses of Vaccinium corymbosum L. Cultivars to Al3+ Toxicity and Gypsum Amendment. Environ. Exp. Bot. 2020, 176, 104119. [Google Scholar] [CrossRef]
- Cárcamo-Fincheira, P.; Reyes-Díaz, M.; Omena-García, R.P.; Vargas, J.R.; Alvear, M.; Florez-Sarasa, I.; Rosado-Souza, L.; Rengel, Z.; Fernie, A.R.; Nunes-Nesi, A.; et al. Metabolomic Analyses of Highbush Blueberry (Vaccinium corymbosum L.) Cultivars Revealed Mechanisms of Resistance to Aluminum Toxicity. Environ Exp. Bot. 2021, 183, 104338. [Google Scholar] [CrossRef]
- Cárcamo-Fincheira, P.; Reyes-Díaz, M.; Rengel, Z.; Alberdi, M.; Omena-Garcia, R.P.; Nunes-Nesi, A.; Inostroza-Blancheteau, C. Aluminum Stress Differentially Affects Physiological Performance and Metabolic Compounds in Cultivars of Highbush Blueberry. Sci. Rep. 2019, 9, 11275. [Google Scholar] [CrossRef]
- Beigi, A.; Ghooshchi, F.; Moghaddam, H.R.T.; Nasiri, M.; Kasraie, P. Effect of Methyl Jasmonate and Potassium and Their Combined Action on Drought Tolerance of Fodder Corn. Russ. J. Plant Physiol. 2023, 70, 102. [Google Scholar] [CrossRef]
- Ulloa-Inostroza, E.; Alberdi, M.; Ivanov, A.G.; Reyes-Díaz, M. Protective Effect of Methyl Jasmonate on Photosynthetic Performance and Its Association with Antioxidants in Contrasting Aluminum-Resistant Blueberry Cultivars Exposed to Aluminum. J. Soil Sci. Plant Nutr. 2019, 19, 203–216. [Google Scholar] [CrossRef]
- Allagulova, C.; Avalbaev, A.; Fedorova, K.; Shakirova, F. Methyl Jasmonate Alleviates Water Stress-Induced Damages by Promoting Dehydrins Accumulation in Wheat Plants. Plant Physiol. Biochem. 2020, 155, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.A.; Wang, L.; Farooq, M.; Khan, I.; Xue, L. Methyl Jasmonate-Induced Alteration in Lipid Peroxidation, Antioxidative Defence System and Yield in Soybean under Drought. J. Agron. Crop. Sci. 2011, 197, 296–301. [Google Scholar] [CrossRef]
- Ulloa-Inostroza, E.; Córdova, C.; Campos, M.; Reyes-Díaz, M. Methyl Jasmonate Application Improves Photosynthetic Performance in Blueberry Plants under Water Deficit. Horticulturae 2024, 10, 259. [Google Scholar] [CrossRef]
- Xiong, B.; Wang, Y.; Zhang, Y.; Ma, M.; Gao, Y.; Zhou, Z.; Wang, B.; Wang, T.; Lv, X.; Wang, X.; et al. Alleviation of Drought Stress and the Physiological Mechanisms in Citrus Cultivar (Huangguogan) Treated with Methyl Jasmonate. Biosci. Biotechnol. Biochem. 2020, 84, 1958–1965. [Google Scholar] [CrossRef]
- CIREN. Estudio Agrológico IX Región: Descripciones de Suelos, Materiales y Símbolos. (Pub. CIREN N°122); CIREN: Santiago, Chile, 2002. [Google Scholar]
- Brischke, C.; Wegener, F.L. Impact of Water Holding Capacity and Moisture Content of Soil Substrates on the Moisture Content of Wood in Terrestrial Microcosms. Forests 2019, 10, 485. [Google Scholar] [CrossRef]
- Almutairi, K.F.; Bryla, D.R.; Strik, B.C. Potential of Deficit Irrigation, Irrigation Cutoffs, and Crop Thinning to Maintain Yield and Fruit Quality with Less Water in Northern Highbush Blueberry. HortScience 2017, 52, 625–633. [Google Scholar] [CrossRef]
- Slugeňová, K.; Ditmarová, L.; Kurjak, D.; Válka, J. Drought and Aluminium as Stress Factors in Norway Spruce (Picea abies [L.] Karst) Seedlings. J. For. Sci. 2011, 57, 547–554. [Google Scholar] [CrossRef]
- Sadzawka, A.; Carrasco, M.; Demanet, R.; Flores, H.; Grez, R.; Mora, M.; Neaman, A. Métodos de Análisis de Tejidos Vegetales. Chile: Comisión de Normalización y Acreditación Sociedad Chilena de La Ciencia Del Suelo; Instituto de InvestigacionesAgropecuarias: Santiago, Chile, 2007. [Google Scholar]
- Hoffmann, W.; Poorter, H. Avoiding Bias in Calculations of Relative Growth Rate. Ann. Bot. 2002, 90, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Begg, J.E.; Turner, N.C. Water Potential Gradients in Field Tobacco. Plant Physiol. 1970, 46, 343–346. [Google Scholar] [CrossRef]
- Rahimi, A.; Hosseini, S.M.; Rahimi, A.; Hosseini, S.M.; Pooryoosef, M.; Fateh, I. Variation of Leaf Water Potential, Relative Water Content and SPAD under Gradual Drought Stress and Stress Recovery in Two Medicinal Species of Plantago ovata and P. psyllium Elevated CO2 and Crop Yield View Project Ecophysiological Aspects of Crop Yield View Project Variation of Leaf Water Potential, Relative Water Content and SPAD under Gradual Drought Stress and Stress Recovery in Two Medicinal Species of Plantago ovata and P. psyllium. Plant Ecophysiol. 2010, 2, 53–60. [Google Scholar]
- Reyes-Díaz, M.; Meriño-Gergichevich, C.; Alarcón, E.; Alberdi, M.; Horst, W.J. Calcium Sulfate Ameliorates the Effect of Aluminum Toxicity Differentially in Genotypes of Highbush Blueberry (Vaccinium corymbosum L.). J. Soil Sci. Plant Nutr. 2011, 11, 59–78. [Google Scholar] [CrossRef]
- Du, Z.; Bramlage, W.J. Modified Thiobarbituric Acid Assay for Measuring Lipid Oxidation in Sugar-Rich Plant Tissue Extracts. J. Agric. Food Chem. 2002, 40, 1566–1570. [Google Scholar] [CrossRef]
- Chinnici, F.; Bendini, A.; Gaiani, A.; Riponi, C. Radical Scavenging Activities of Peels and Pulps from Cv. Golden Delicious Apples as Related to Their Phenolic Composition. J. Agric. Food Chem. 2004, 52, 4684–4689. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide DismutasesII. Purification and Quantitative Relationship with Water-Soluble Protein in Seedlings. Plant Physiol. 1977, 59, 315–318. [Google Scholar] [CrossRef]
- Stacklies, W.; Redestig, H.; Scholz, M.; Walther, D.; Selbig, J. PcaMethods—A Bioconductor Package Providing PCA Methods for Incomplete Data. Bioinformatics 2007, 23, 1164–1167. [Google Scholar] [CrossRef] [PubMed]
- Goldman, I.L.; Carter, T.E.; Patterson, R.P. Differential Genotypic Response to Drought Stress and Subsoil Aluminum in Soybean. Crop. Sci. 1989, 29, 330–334. [Google Scholar] [CrossRef]
- Yang, Z.-B.; Rao, I.M.; Horst, W.J. Interaction of Aluminium and Drought Stress on Root Growth and Crop Yield on Acid Soils. Plant Soil 2013, 372, 3–25. [Google Scholar] [CrossRef]
- Yang, Z.B.; Eticha, D.; Albacete, A.; Rao, I.M.; Roitsch, T.; Horst, W.J. Physiological and Molecular Analysis of the Interaction between Aluminium Toxicity and Drought Stress in Common Bean (Phaseolus vulgaris). J. Exp. Bot. 2012, 63, 3109–3125. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.M.; Nadira, U.A.; Qiu, C.W.; Cao, F.; Zhang, G.; Holford, P.; Wu, F. Tolerance to Drought, Low PH and Al Combined Stress in Tibetan Wild Barley Is Associated with Improvement of ATPase and Modulation of Antioxidant Defense System. Int. J. Mol. Sci. 2018, 19, 3553. [Google Scholar] [CrossRef] [PubMed]
- Jaskowiak, J.; Kwasniewska, J.; Milewska-Hendel, A.; Kurczynska, E.U.; Szurman-Zubrzycka, M.; Szarejko, I. Aluminum Alters the Histology and Pectin Cell Wall Composition of Barley Roots. Int. J. Mol. Sci. 2019, 20, 3039. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, S.; Zhang, M. Occurrence of Endogenous Hormones in the Roots of Masson Pine (Pinus massoniana Lamb.) Seedlings Subjected to Aluminum Stress under the Influence of Acid Deposition. Plant Growth Regul. 2020, 92, 43–52. [Google Scholar] [CrossRef]
- Wu, H.; Wu, X.; Li, Z.; Duan, L.; Zhang, M. Physiological Evaluation of Drought Stress Tolerance and Recovery in Cauliflower (Brassica oleracea L.) Seedlings Treated with Methyl Jasmonate and Coronatine. J. Plant Growth Regul. 2011, 31, 113–123. [Google Scholar] [CrossRef]
- Fugate, K.K.; Lafta, A.M.; Eide, J.D.; Li, G.; Lulai, E.C.; Olson, L.L.; Deckard, E.L.; Khan, M.F.R.; Finger, F.L. Methyl Jasmonate Alleviates Drought Stress in Young Sugar Beet (Beta vulgaris L.) Plants. J. Agron. Crop Sci. 2018, 204, 566–576. [Google Scholar] [CrossRef]
- Hossain, M.A.; Munemasa, S.; Uraji, M.; Nakamura, Y.; Mori, I.C.; Murata, Y. Involvement of Endogenous Abscisic Acid in Methyl Jasmonate-induced Stomatal Closure in Arabidopsis. Plant Physiol. 2011, 156, 430–438. [Google Scholar] [CrossRef]
- Khan, V.; Princi; Mubashshir, M.; Umar, S.; Iqbal, N. Methyl Jasmonate and Pseudomonas Fluorescens Synergistically Boost Antioxidative Defense, Secondary Metabolites, and Osmolyte Production to Enhance Drought Resilience in Mustard. J. Plant Growth Regul. 2024. [Google Scholar] [CrossRef]
- Stagos, D. Antioxidant Activity of Polyphenolic Plant Extracts. Antioxidants 2020, 9, 19. [Google Scholar] [CrossRef]
- Guan, Y.; Hu, W.; Jiang, A.; Xu, Y.; Sa, R.; Feng, K.; Zhao, M.; Yu, J.; Ji, Y.; Hou, M.; et al. Effect of Methyl Jasmonate on Phenolic Accumulation in Wounded Broccoli. Molecules 2019, 24, 3537. [Google Scholar] [CrossRef]
- Manquián-Cerda, K.; Cruces, E.; Escudey, M.; Zúñiga, G.; Calderón, R. Interactive effects of Aluminum and Cadmium on Phenolic Compounds, Antioxidant Enzyme Activity and Oxidative Stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro. Ecotoxicol. Environ. Saf. 2018, 150, 320–326. [Google Scholar] [CrossRef]
- Tao, X.; Wu, Q.; Li, J.; Huang, S.; Cai, L.; Mao, L.; Luo, Z.; Li, L.; Ying, T. Exogenous Methyl Jasmonate Regulates Phenolic Compounds Biosynthesis during Postharvest Tomato Ripening. Postharvest Biol. Technol. 2022, 184, 111760. [Google Scholar] [CrossRef]
Cultivars | Treatment | RGR of the Plant (mg DW d−1) |
---|---|---|
Al-sensitive (cv. Star) | Control | 39.1 ± 4.2 Aa |
WD+Al | 22.4 ± 3.6 Ab | |
WD+Al+MeJA10 | 27.9 ± 4.5 Ab | |
WD+Al+MeJA50 | 22.7 ± 3.8 Bb | |
WD+Al+MeJA100 | 36.4 ± 4.7 Aa | |
Al-resistant (cv. Legacy) | Control | 39.6 ± 1.7 Aa |
WD+Al | 21.2 ± 4.3 Ac | |
WD+Al+MeJA10 | 33.4 ± 1.1 Ab | |
WD+Al+MeJA50 | 40.6 ± 0.2 Aa | |
WD+Al+MeJA100 | 18.3 ± 4.9 Bc 1 |
Cultivars | Time | Treatment | Ψw (MPa) | RWC (%) | Pn (µmol CO2 m−2s−1) | gs (mol H2O m−2s−1) | E (mmol H2O m−2s−1) |
---|---|---|---|---|---|---|---|
Al-sensitive (cv. Star) | 7 days | Control | −0.28 ± 0.08 Aa | 95.72 ± 1.21 Aa | 7.81 ± 0.33 Aa | 0.35 ± 0.01 Aa* | 1.62 ± 0.03 Aa* |
WD+Al | −1.07 ± 0.03 Ab | 90.08 ± 2.66 Bb* | 7.78 ± 0.23 Aa | 0.24 ± 0.02 Ab | 1.48 ± 0.07 Ab* | ||
WD+Al+MeJA10 | −1.12 ± 0.06 Ab | 87.08 ± 0.42 Bb | 7.97 ± 0.11 Aa | 0.22 ± 0.01 Bb* | 1.36 ± 0.09 Ab* | ||
WD+Al+MeJA50 | −1.12 ± 0.28 Ab | 96.26 ± 3.34 Aa | 8.06 ± 0.03 Aa | 0.21 ± 0.01 Bb* | 1.37 ± 0.11 Ab* | ||
WD+Al+MeJA100 | −1.83 ± 0.45 Ac* | 98.90 ± 4.23 Aa | 7.92 ± 0.26 Aa | 0.23 ± 0.01 Ab | 1.38 ± 0.06 Ab* | ||
21 days | Control | −0.77 ± 0.12 Ba | 97.51 ± 4.71 Aa | 7.81 ± 0.10 Aa | 0.33 ± 0.01 Aa* | 1.64 ± 0.03 Aa* | |
WD+Al | −2.78 ± 0.20 Bd* | 95.86 ± 1.11 Aa* | 5.37 ± 0.26 Bb* | 0.22 ± 0.02 Ab* | 1.46 ± 0.11 Ab* | ||
WD+Al+MeJA10 | −1.37 ± 0.23 Ab* | 96.51 ± 1.08 Aa | 7.59 ± 0.31 Aa | 0.25 ± 0.01 Ab | 1.38 ± 0.05 Ab* | ||
WD+Al+MeJA50 | −1.10 ± 0.10 Ab* | 98.49 ± 1.69 Aa* | 7.86 ± 0.04 Aa | 0.31 ± 0.01 Aa* | 1.36 ± 0.05 Ab* | ||
WD+Al+MeJA100 | −2.30 ± 0.20 Ac* | 96.05 ± 2.24 Aa | 5.98 ± 0.02 Bb* | 0.23 ± 0.03 Ab | 1.34 ± 0.05 Ab* | ||
Al-resistant (cv. Legacy) | 7 days | Control | −0.15 Aa | 97.32 ± 1.04 Aab | 8.18 ± 0.14 Aa | 0.28 ± 0.02 Aa* | 1.28 ± 0.03 Aa* |
WD+Al | −0.75 ± 0.13 Ab | 99.83 ± 1.76 Aa* | 8.07 ± 0.31 Aa | 0.27 ± 0.02 Aa | 1.24 ± 0.03 Aa* | ||
WD+Al+MeJA10 | −1.28 ± 0.08 Ac | 97.90 ± 1.40 Aab | 8.05 ± 0.16 Aa | 0.28 ± 0.01 Aa* | 1.28 ± 0.11 Aa* | ||
WD+Al+MeJA50 | −1.18 ± 0.16 Ac | 98.38 ± 0.52 Aab | 8.19 ± 0.17 Aa | 0.27 ± 0.01 Aa* | 1.29 ± 0.03 Aa* | ||
WD+Al+MeJA100 | −0.75 ± 0.09 Ab* | 94.79 ± 2.66 Ab | 8.17 ± 0.17 Aa | 0.26 ± 0.02 Aa | 1.27 ± 0.04 Aa* | ||
21 days | Control | −0.55 ± 0.05 Ba | 96.79 ± 1.33 Aa | 8.20 ± 0.14 Aa | 0.28 ± 0.02 Aa* | 1.26 ± 0.06 Aa* | |
WD+Al | −1.65 ± 0.05 Bb* | 86.92 ± 2.93 Bb* | 8.15 ± 0.11 Aa* | 0.29 ± 0.01 Aa* | 1.25 ± 0.03 Aa* | ||
WD+Al+MeJA10 | −2.42 ± 0.25 Bc* | 97.03 ± 4.65 Aa | 8.14 ± 0.08 Aa | 0.28 ± 0.01 Aa | 1.26 ± 0.03 Aa* | ||
WD+Al+MeJA50 | −2.32 ± 0.10 Bc* | 93.68 ± 2.98 Aa* | 8.19 ± 0.06 Aa | 0.28 ± 0.02 Aa* | 1.26 ± 0.03 Aa* | ||
WD+Al+MeJA100 | −1.08 ± 0.19 Bb* | 94.76 ± 2.71 Aa | 8.12 ± 0.05 Aa* | 0.27 ± 0.01 Aa | 1.26 ± 0.02 Aa*1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cáceres, C.; Cazor-Curilef, C.; Delgado-Santibañez, P.; Machado, M.; Delgado, M.; Ribera-Fonseca, A.; Inostroza-Blancheteau, C.; Bravo, L.A.; González-Villagra, J.; Nunes-Nesi, A.; et al. Foliar Methyl Jasmonate Application Activates Antioxidant Mechanisms to Counteract Water Deficits and Aluminum Stress in Vaccinium corymbosum L. Horticulturae 2024, 10, 1172. https://doi.org/10.3390/horticulturae10111172
Cáceres C, Cazor-Curilef C, Delgado-Santibañez P, Machado M, Delgado M, Ribera-Fonseca A, Inostroza-Blancheteau C, Bravo LA, González-Villagra J, Nunes-Nesi A, et al. Foliar Methyl Jasmonate Application Activates Antioxidant Mechanisms to Counteract Water Deficits and Aluminum Stress in Vaccinium corymbosum L. Horticulturae. 2024; 10(11):1172. https://doi.org/10.3390/horticulturae10111172
Chicago/Turabian StyleCáceres, Cristina, Crystal Cazor-Curilef, Patricio Delgado-Santibañez, Mariana Machado, Mabel Delgado, Alejandra Ribera-Fonseca, Claudio Inostroza-Blancheteau, Leon A. Bravo, Jorge González-Villagra, Adriano Nunes-Nesi, and et al. 2024. "Foliar Methyl Jasmonate Application Activates Antioxidant Mechanisms to Counteract Water Deficits and Aluminum Stress in Vaccinium corymbosum L." Horticulturae 10, no. 11: 1172. https://doi.org/10.3390/horticulturae10111172
APA StyleCáceres, C., Cazor-Curilef, C., Delgado-Santibañez, P., Machado, M., Delgado, M., Ribera-Fonseca, A., Inostroza-Blancheteau, C., Bravo, L. A., González-Villagra, J., Nunes-Nesi, A., & Reyes-Díaz, M. (2024). Foliar Methyl Jasmonate Application Activates Antioxidant Mechanisms to Counteract Water Deficits and Aluminum Stress in Vaccinium corymbosum L. Horticulturae, 10(11), 1172. https://doi.org/10.3390/horticulturae10111172