The Effect of Humic-Based Biostimulants on the Yield and Quality Parameters of Chili Peppers
Abstract
:1. Introduction
- To examine the influence of commercial humic-based biostimulants, comprising humic substances, Ascophyllum nodosum seaweed extract, macro-elements, and microelements, on the growth parameters of two chili pepper varieties, Capsicum chinense ‘Habanero Orange’ and Capsicum annuum ‘Kristian’, focusing on yield and fruit weight.
- To assess the effects of biostimulant application on critical qualitative traits, including capsaicinoid concentration, Scoville Heat Units (SHU), carotenoid levels, and ascorbic acid content, in the dried fruits of the aforementioned pepper varieties.
2. Materials and Methods
2.1. Plant Material
2.2. Biostimulants
2.3. Soil Nutrition, Fertilization, and Climatic Conditions
2.4. The Course of the Experiment
2.5. Evaluation of Quantitative Parameters
2.6. Evaluation of Qualitative Parameters
2.6.1. Determination of Capsaicin and Dihydrocapsaicin
2.6.2. Determination of Vitamin C
2.6.3. Determination of SHU (Scoville Heat Units)
2.6.4. Determination of Carotenoids
2.6.5. Data Analysis
3. Results and Discussion
3.1. Quantitative Parameters
3.2. Qualitative Parameters
3.2.1. Capsaicin, Dihydrocapsaicin, and SHU of Dried Chili Pepper Fruits
3.2.2. Ascorbic Acid
3.2.3. Carotenoids
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalita, R.; Bhorali, P.; Gogoi, M.B.; Gogoi, B. Advances in Chilli Pepper (Capsicum spp.) Improvement Using Modern Genetic Tools. In Genetic Engineering of Crop Plants for Food and Health Security; Springer Nature: Singapore, 2023; pp. 151–168. [Google Scholar]
- Jeeatid, N.; Techawongstien, S.; Suriharn, B.; Bosland, P.W.; Techawongstien, S. Light Intensity Affects Capsaicinoid Accumulation in Hot Pepper (Capsicum chinense Jacq.) Cultivars. Hortic. Environ. Biotechnol. 2017, 58, 103–110. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Alqahtani, A.; Ojo, O.A.; Shaheen, H.M.; Wasef, L.; Elzeiny, M.; Ismail, M.; Shalaby, M.; Murata, T.; Zaragoza-Bastida, A.; et al. Biological Properties, Bioactive Constituents, and Pharmacokinetics of Some Capsicum spp. and Capsaicinoids. Int. J. Mol. Sci. 2020, 21, 5179. [Google Scholar] [CrossRef] [PubMed]
- Ao, Z.; Huang, Z.; Liu, H. Spicy Food and Chili Peppers and Multiple Health Outcomes: Umbrella Review. Mol. Nutr. Food Res. 2022, 66, 2200167. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zheng, S.; Feng, Q.; Zhang, Q.; Xiao, X. Dietary Capsaicin and Its Anti-Obesity Potency: From Mechanism to Clinical Implications. Biosci. Rep. 2017, 37, BSR20170286. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Tang, X.; Cui, S.; Zhang, Q.; Liu, X.; Zhao, J.; Zhang, H.; Mao, B.; Chen, W. Capsaicin, the Spicy Ingredient of Chili Peppers: Effects on Gastrointestinal Tract and Composition of Gut Microbiota at Various Dosages. Foods 2022, 11, 686. [Google Scholar] [CrossRef]
- Xia, J.; Gu, L.; Guo, Y.; Feng, H.; Chen, S.; Jurat, J.; Fu, W.; Zhang, D. Gut Microbiota Mediates the Preventive Effects of Dietary Capsaicin Against Depression-Like Behavior Induced by Lipopolysaccharide in Mice. Front. Cell. Infect. Microbiol. 2021, 11, 627608. [Google Scholar] [CrossRef]
- Pasierski, M.; Szulczyk, B. Beneficial Effects of Capsaicin in Disorders of the Central Nervous System. Molecules 2022, 27, 2484. [Google Scholar] [CrossRef]
- Jittiwat, J.; Suksamrarn, A.; Tocharus, C.; Tocharus, J. Dihydrocapsaicin Effectively Mitigates Cerebral Ischemia-Induced Pathological Changes in Vivo, Partly via Antioxidant and Anti-Apoptotic Pathways. Life Sci. 2021, 283, 119842. [Google Scholar] [CrossRef]
- Naqve, M.; Mukhtiar, A.; Arshad, T.; Zia, M.A.; Mahmood, A.; Javaid, M.M.; Aziz, A. Biostimulants in Sustainable Agriculture. In Climate-Resilient Agriculture; Springer International Publishing: Cham, Switzerland, 2023; Volume 1, pp. 535–548. [Google Scholar]
- Gajc-Wolska, J.; Mazur, K.; Niedzińska, M.; Kowalczyk, K.; Żołnierczyk, P. The Influence of Foliar Fertilizers on the Quality and Yield of Sweet Pepper (Capsicum annuum L.). Folia Hortic. 2018, 30, 183–190. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Drobek, M.; Frac, M.; Cybulska, J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef]
- Majkowska-Gadomska, J.; Dobrowolski, A.; Jadwisieńczak, K.K.; Kaliniewicz, Z.; Francke, A. Effect of Biostimulants on the Growth, Yield and Nutritional Value of Capsicum Annuum Grown in an Unheated Plastic Tunnel. Sci. Rep. 2021, 11, 22335. [Google Scholar] [CrossRef]
- Arumugam, R.; Rabert, G.A. Plant Biostimulants: Overview of Categories and Effects. In Biostimulants: Exploring Sources and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–29. [Google Scholar]
- Abou-Sreea, A.I.B.; Azzam, C.R.; Al-Taweel, S.K.; Abdel-Aziz, R.M.; Belal, H.E.E.; Rady, M.M.; Abdel-Kader, A.A.S.; Majrashi, A.; Khaled, K.A.M. Natural Biostimulant Attenuates Salinity Stress Effects in Chili Pepper by Remodeling Antioxidant, Ion, and Phytohormone Balances, and Augments Gene Expression. Plants 2021, 10, 2316. [Google Scholar] [CrossRef] [PubMed]
- Karakurt, Y.; Unlu, H.; Unlu, H.; Padem, H. The Influence of Foliar and Soil Fertilization of Humic Acid on Yield and Quality of Pepper. Acta Agric. Scand. Sect. B Plant Soil Sci. 2009, 59, 233–237. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and Fulvic Acids as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Azcona, I.; Pascual, I.; Aguirreolea, J.; Fuentes, M.; García-Mina, J.M.; Sánchez-Díaz, M. Growth and Development of Pepper Are Affected by Humic Substances Derived from Composted Sludge. J. Plant Nutr. Soil Sci. 2011, 174, 916–924. [Google Scholar] [CrossRef]
- Arthur, J.D.; Li, T.; Bi, G. Plant Growth, Yield, and Quality of Containerized Heirloom Chile Pepper Cultivars Affected by Three Types of Biostimulants. Horticulturae 2022, 9, 12. [Google Scholar] [CrossRef]
- Zamljen, T.; Medic, A.; Hudina, M.; Veberic, R.; Slatnar, A. Biostimulatory Effects of Amino Acids on Phenylalanine Ammonia Lyase, Capsaicin Synthase, and Peroxidase Activities in Capsicum baccatum L. Biology 2022, 11, 674. [Google Scholar] [CrossRef]
- Energen. 2024. Available online: https://www.energen.info/cs/dokumenty-ke-stazeni/ (accessed on 9 September 2024).
- Humix Univerzál®. 2024. Available online: https://www.agrocultur.sk/certifikaty/ (accessed on 9 September 2024).
- Fecenko, J.; Ložek, O. Výživa a hnojenie pol’ných plodín; Slovenská polnohospodárska univerzita v Nitre: Nitre, Slovakia, 2000; 442p, ISBN 80-7137-777-5. [Google Scholar]
- Kočický, D. Regionálny Územný Systém Ekologickej Stability Okresu Nitra. 2019. Available online: https://www.minv.sk/?regionalny-uzemny-system-ekologickej-stability-okresu-nove-zamky (accessed on 12 January 2024).
- Golian, M.; Mezeyová, I.; Andrejiová, A.; Hegedűsová, A.; Adamec, S.; Štefániková, J.; Árvay, J. Effects of Selected Biostimulants on Qualitative and Quantitative Parameters of Nine Cultivars of the Genus Capsicum spp. Open Agric 2024, 9, 20220266. [Google Scholar] [CrossRef]
- Al Othman, Z.A.; Ahmed, Y.B.H.; Habila, M.A.; Ghafar, A.A. Determination of Capsaicin and Dihydrocapsaicin in Capsicum Fruit Samples Using High Performance Liquid Chromatography. Molecules 2011, 16, 8919–8929. [Google Scholar] [CrossRef]
- Hegedusova, A.; Slosar, M.; Mezeyova, I.; Hegedus, O.; Andrejiova, A.; Szarka, K. Methods for Estimation of Selected Biologically Active Substances; Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2018; ISBN 978-80-552-1928-8. [Google Scholar]
- Biehler, E.; Mayer, F.; Hoffmann, L.; Krause, E.; Bohn, T. Comparison of 3 Spectrophotometric Methods for Carotenoid Determination in Frequently Consumed Fruits and Vegetables. J. Food Sci. 2010, 75, C55–C61. [Google Scholar] [CrossRef] [PubMed]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Jan, J.A.; Nabi, G.; Khan, M.; Ahmad, S.; Shah, P.S.; Hussain, S.; Sehrish, S. Foliar Application of Humic Acid Improves Growth and Yield of Chilli (Capsicum annum L.) Varieties. Pak. J. Agric. Res. 2020, 33, 461. [Google Scholar] [CrossRef]
- Suhaini, N.; Singh, D.; Wesley, C.J. Effect of Different Biostimulants on Growth, Yield and Quality of Chilli (Capsicum annuum L.) under Prayagraj Agro Climatic Conditions. Int. J. Environ. Clim. Change 2023, 13, 191–197. [Google Scholar] [CrossRef]
- González-Cortés, A.; Robledo-Torres, V.; Luna-García, L.R.; Mendoza-Villarreal, R.; Pérez-Rodríguez, M.Á. Yield and Antioxidant Quality of Habanero Chili Pepper by Supplementing Potassium with Organic Products. Horticulturae 2023, 9, 797. [Google Scholar] [CrossRef]
- Angmo, P.; Dolma, T.; Phuntsog, N.; Chaurasia, O.P.; Stobdan, T. Effect of Shading and High Temperature Amplitude on Yield and Phenolic Contents of Greenhouse Capsicum (Capsicum annuum L.). Open Access Res. J. Biol. Pharm. 2022, 4, 030–039. [Google Scholar] [CrossRef]
- Deori, M.; Singh, A.K.; Kumari, S. Effect of Foliar Application of Biostimulants on Growth and Yield of Chilli (Capsicum annuum L.). Pharma Innov. J. 2023, 870, 870–874. [Google Scholar]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsicum chinensis L. Growth and Nutraceutical Properties Are Enhanced by Biostimulants in a Long-Term Period: Chemical and Metabolomic Approaches. Front. Plant Sci. 2014, 5, 375. [Google Scholar] [CrossRef]
- Noushad, R.; Singh, D.; Wesley, C.J.; Sneha, M.S. Assessment of Bioefficacy by Using Biostimulants on Growth, Quality, and Yield of Chilli (Capsicum annum L.). Int. J. Environ. Clim. Change 2023, 13, 2152–2162. [Google Scholar] [CrossRef]
- Borges-Gómez, L.; Cervantes Cárdenas, L.; Ruiz Novelo, J.; Soria Fregoso, M.; Reyes Oregel, V.; Villanueva Couoh, E. Capsaicinoids in habanero pepper (Capsicum chinense Jacq.) under various humidity and nutritional conditions. Terra Latinoam. 2010, 28, 35–41. [Google Scholar]
- Blum, E.; Mazourek, M.; O’Connell, M.; Curry, J.; Thorup, T.; Liu, K.; Jahn, M.; Paran, I. Molecular Mapping of Capsaicinoid Biosynthesis Genes and Quantitative Trait Loci Analysis for Capsaicinoid Content in Capsicum. Theor. Appl. Genet. 2003, 108, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Moirangthem, S.S.; Gogoi, S.; Thongbam, P.D.; Ramya, K.T.; Fiyaz, R.A.; Pandey, D.S. Effect of Sowing Time and Crop Geometry on the Capsaicinoid Content in Bhoot Jolokia (Capsicum chinense Jacq.). J. Food Sci. Technol. 2014, 51, 1974–1981. [Google Scholar] [CrossRef] [PubMed]
- Sahid, Z.D.; Syukur, M.; Maharijaya, A. Diversity of Capsaicin Content, Quantitative, and Yield Components in Chili (Capsicum annuum) Genotypes and Their F1 Hybrid. Biodiversitas 2020, 21, 2251. [Google Scholar] [CrossRef]
- Zamljen, T.; Hudina, M.; Veberič, R.; Slatnar, A. Biostimulative Effect of Amino Acids and Green Algae Extract on Capsaicinoid and Other Metabolite Contents in Fruits of Capsicum spp. Chem. Biol. Technol. Agric. 2021, 8, 63. [Google Scholar] [CrossRef]
- Ertani, A.; Sambo, P.; Nicoletto, C.; Santagata, S.; Schiavon, M.; Nardi, S. The Use of Organic Biostimulants in Hot Pepper Plants to Help Low Input Sustainable Agriculture. Chem. Biol. Technol. Agric. 2015, 2, 11. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, X.; Jiang, S.; Zhang, Y.; Zhang, L.; Liu, Y. Multi-Dimensional Pungency and Sensory Profiles of Powder and Oil of Seven Chili Peppers Based on Descriptive Analysis and Scoville Heat Units. Food Chem. 2023, 411, 135488. [Google Scholar] [CrossRef]
- Scoville, W.L. Note on Capsicums. J. Am. Pharm. Assoc. 1912, 1, 453–454. [Google Scholar] [CrossRef]
- Moreb, N.; O’Dwyer, C.; Jaiswal, S.; Jaiswal, A.K. Pepper. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2020; pp. 223–238. [Google Scholar]
- Orobiyi, A.; Ahissou, H.; Gbaguidi, F.; Sanoussi, F.; Houngbèmè, A.; Dansi, A.; Sanni, A. Capsaicin and Ascorbic Acid Content in the High Yielding Chili Pepper (Capsicum annuum L.) Landraces of Northern Benin. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 394–403. [Google Scholar]
- Barrajón-Catalán, E.; Álvarez-Martínez, F.J.; Borrás, F.; Pérez, D.; Herrero, N.; Ruiz, J.J.; Micol, V. Metabolomic Analysis of the Effects of a Commercial Complex Biostimulant on Pepper Crops. Food Chem. 2020, 310, 125818. [Google Scholar] [CrossRef]
- Mohd Hassan, N.; Yusof, N.A.; Yahaya, A.F.; Mohd Rozali, N.N.; Othman, R. Carotenoids of Capsicum Fruits: Pigment Profile and Health-Promoting Functional Attributes. Antioxidants 2019, 8, 469. [Google Scholar] [CrossRef] [PubMed]
- Morales-Soriano, E.; Panozzo, A.; Ugás, R.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Carotenoid Profile and Basic Structural Indicators of Native Peruvian Chili Peppers. Eur. Food Res. Technol. 2019, 245, 717–732. [Google Scholar] [CrossRef]
- Acunha, T.d.S.; Crizel, R.L.; Tavares, I.B.; Barbieri, R.L.; Pereira de Pereira, C.M.; Rombaldi, C.V.; Chaves, F.C. Bioactive Compound Variability in a Brazilian Capsicum Pepper Collection. Crop Sci. 2017, 57, 1611–1623. [Google Scholar] [CrossRef]
- Pugliese, A.; O’Callaghan, Y.; Tundis, R.; Galvin, K.; Menichini, F.; O’Brien, N.; Loizzo, M.R. In Vitro Investigation of the Bioaccessibility of Carotenoids from Raw, Frozen and Boiled Red Chili Peppers (Capsicum annuum). Eur. J. Nutr. 2014, 53, 501–510. [Google Scholar] [CrossRef] [PubMed]
pH | Nan | Nutrient Content (mg·kg−1) (Mehl.III) | Cox (Hummus) | ||||
---|---|---|---|---|---|---|---|
mg·kg−1 | p | K | S | Mg | % | ||
2022 | 6.90 | 191 | 148 | 480 | 27.5 | 1028 | 4.29 |
2023 | 7.45 | 8.9 | 232.5 | 600 | 85.0 | 729 | 4.38 |
Treatment | Number of Repetitions | N Application | Application of Energen Fulhum Plus | Application of Energen Fruktus Plus | Application of Humix (New Composition) Universal |
---|---|---|---|---|---|
N (K) | 3 | 120 kg·ha−1 | - | - | - |
N + Energen Fulhum Plus + Energen Fruktus Plus + | 3 | 120 kg·ha−1 | 0.5 L·ha−1 (0.5%) | 0.5 L·ha−1 (0.5%) | - |
N + Humix (new composition) Univerzál | 3 | 120 kg·ha−1 | - | - | 5 L·ha−1 (1%) |
Month | Normal 1991–2020 (°C) | t (°C) 2022 | Characteristic— 2022 | t (°C) 2023 | Characteristic— 2023 |
---|---|---|---|---|---|
April | 11.4 | 8.5 | very cold | 4.1 | extremely cold |
May | 16.0 | 15.8 | normal | 9.9 | extremely cold |
June | 19.6 | 20.7 | normal | 13.3 | extremely cold |
July | 21.7 | 21.5 | normal | 17.4 | extremely cold |
August | 21.1 | 21.9 | normal | 17.9 | extremely cold |
September | 15.9 | 13.9 | cold | 16.9 | normal |
October | 10.4 | 11.5 | normal | 12.5 | warm |
Month | Normal 1991–2020 (mm) | Precipitation 2022 (mm) | Characteristic—2022 | Precipitation 2023 (mm) | Characteristic—2023 |
---|---|---|---|---|---|
April | 36 | 13 | extremely dry | 40 | normal |
May | 59 | 13 | extremely dry | 111 | extremely wet |
June | 59 | 88 | wet | 83 | wet |
July | 65 | 60 | normal | 8 | extremely dry |
August | 55 | 60 | normal | 46 | normal |
September | 58 | 7 | extremely dry | 79 | wet |
October | 46 | 28 | dry | 36 | normal |
2022 | 2023 | |||
---|---|---|---|---|
Habanero Orange | Kristian | Habanero Orange | Kristian | |
Sowing | 02/02 | 25/02 | 10/02 | 02/03 |
Planting of plants with cotyledons | 11/03 | 11/03 | 14/03 | 20/03 |
Planting in the field with root treatment of transplants with biostimulants | 19/05 | 18/05 | 23/05 | 23/05 |
Spray on the leaf at the beginning of flowering (BF) | 20/06 | 20/06 | 13/06 | 13/06 |
Spray on the leaf at the beginning of the first fruits’ formation (FFF) | 30/06 | 30/06 | 19/06 | 19/09 |
1st harvest | 07/09 | 07/09 | 21/09 | 04/09 |
2nd harvest | 22/09 | 22/09 | 02/10 | 21/09 |
3rd harvest | 20/10 | - | 25/10 | 11/10 |
Treatment | Yield Parameters | Qualitative Parameters | ||||||
---|---|---|---|---|---|---|---|---|
FM (t·ha−1) | DR | Average W1FF (g) | Total FFPP (pcs) | CAPS (µg·g−1) | DIH (µg·g−1) | SHU | ||
Kristian | K | 5.23 a | 4:1 a | 2.93 a | 105.2 a | 1896.1 a | 2083.6 a | 66,051 a |
E | 8.14 b | 4:1 a | 3.23 ab | 111.6 a | 2063.8 a | 2242.4 a | 69,150 a | |
H | 8.11 b | 4:1 a | 4.10 b | 90.0 a | 2110.8 a | 2397.6 a | 61,017 a | |
Habanero Orange | K | 17.70 c | 9:1 b | 5.86 c | 198.2 b | 8029.4 b | 4703.4 b | 200,277 b |
E | 17.60 c | 8:1 b | 5.45 c | 183.0 b | 8081.8 b | 4711.4 b | 199,748 b | |
H | 20.01 d | 9:1 b | 5.68 c | 224.1 b | 8499.9 b | 4790.4 b | 206,537 b |
Treatment | 1st Harvest | 2nd Harvest | 3rd Harvest | ||||
---|---|---|---|---|---|---|---|
t.ha−1 (FM) | t.ha−1 (DM) | t.ha−1 (FM) | t.ha−1 (DM) | t.ha−1 (FM) | t.ha−1 (DM) | ||
2022 | |||||||
Kristian | K | 2.48 ± 2.01 ab | 0.586 ± 0.474 ab | 1.15 ± 0.69 a | 0.251 ± 0.152 a | ||
E | 3.40 ± 0.26 ab | 0.780 ± 0.059 b | 1.09 ± 0.45 a | 0.229 ± 0.094 a | |||
H | 3.36 ± 1.68 ab | 0.943 ± 0.471 b | 1.90 ± 1.68 ab | 0.387 ± 0.341 a | |||
Habanero Orange | K | 3.73 ± 1.05 b | 0.483 ± 0.136 ab | 3.31 ± 0.82 b | 0.381 ± 0.126 a | 7.75 ± 1 a | 1.201 ± 0.7 a |
E | 1.48 ± 0.71 a | 0.199 ± 0.096 a | 1.93 ± 0.79 ab | 0.215 ± 0.088 a | 11.30 ± 1 b | 1.275 ± 0.1 a | |
H | 1.39 ± 0.34 a | 0.197 ± 0.048 a | 2.85 ± 0.52 b | 0.348 ± 0.064 a | 8.44 ± 1 a | 0.953 ± 0.1 a | |
2023 | |||||||
Kristian | K | 2.22 ± 1.62 a | 0.490 ± 0.359 a | 4.62 ± 1.86 ab | 0.984 ± 0.397 a | 5.16 ± 3.60 a | 1.219 ± 0.850 a |
E | 2.07 ± 0.98 a | 0.498 ± 0.236 a | 3.43 ± 1.07 ab | 0.760 ± 0.237 a | 6.32 ± 1.84 a | 1.441 ± 0.419 a | |
H | 0.99 ± 0.26 a | 0.244 ± 0.065 a | 2.61 ± 1.88 a | 0.574 ± 0.412 a | 7.35 ± 2.68 a | 1.653 ± 0.603 a | |
Habanero Orange | K | 3.51 ± 2.63 a | 0.425 ± 0.319 a | 6.82 ± 1.09 ab | 0.792 ± 0.127 a | 10.20 ± 0.85 ab | 1.211 ± 0.100 a |
E | 2.77 ± 1.58 a | 0.390 ± 0.222 a | 7.72 ± 1.39 ab | 0.843 ± 0.151 a | 10.05 ± 3.70 ab | 1.235 ± 0.454 a | |
H | 3.04 ± 1.40 a | 0.368 ± 0.170 a | 8.72 ± 6.55 b | 0.885 ± 0.665 a | 15.57 ± 6.35 b | 1.720 ± 0.701 a | |
2022–2023 | |||||||
Kristian | K | 2.35 ± 1.82 a | 0.538 ± 0.417 ab | 2.89 ± 1.28 ab | 0.618 ± 0.275 a | ||
E | 2.74 ± 0.62 a | 0.639 ± 0.148 b | 2.26 ± 0.76 a | 0.495 ± 0.166 a | |||
H | 2.18 ± 0.97 a | 0.594 ± 0.268 ab | 2.26 ± 1.78 a | 0.481 ± 0.377 a | |||
Habanero Orange | K | 3.62 ± 1.84 a | 0.454 ± 0.228 ab | 5.07 ± 0.96 ab | 0.587 ± 0.127 a | 8.98 ± 0.92 a | 1.210 ± 0.383 a |
E | 2.13 ± 1.15 a | 0.295 ± 0.159 ab | 4.83 ± 1.09 ab | 0.529 ± 0.120 a | 10.67 ± 2.35 a | 1.255 ± 0.277 a | |
H | 2.22 ± 0.87 a | 0.283 ± 0.109 a | 5.79 ± 3.54 b | 0.617 ± 0.365 a | 12.01 ± 3.67 a | 1.337 ± 0.401 a |
Treatment | 1st Harvest | 2nd Harvest | 3rd Harvest | ||||
---|---|---|---|---|---|---|---|
FFPP (pcs) | W1FF (g) | FFPP (pcs) | W1FF (g) | FFPP (pcs) | W1FF (g) | ||
2022 | |||||||
Kristian | K | 21.67 ± 16.68 bc | 2.25 ± 0.10 a | 56.33 ± 35.53 a | 2.19 ± 0.56 a | ||
E | 25.20 ± 0.80 c | 2.70 ± 0.19 a | 56.33 ± 22.12 a | 1.94 ± 0.22 a | |||
H | 26.40 ± 3.33 c | 2.48 ± 1.05 a | 33.67 ± 11.93 a | 5.89 ± 5.95 ab | |||
Habanero Orange | K | 10.73 ± 3.92 ab | 7.11 ± 0.79 b | 43.67 ± 4.62 a | 6.43 ± 0.60 b | 123.65 ± 10.12 a | 6.27 ± 0.99 a |
E | 4.45 ± 1.72 a | 6.58 ± 1.01 b | 33.67 ± 14.84 a | 4.98 ± 0.54 ab | 136.87 ± 13.78 a | 6.60 ± 0.32 a | |
H | 4.30 ± 1.08 a | 6.54 ± 0.98 b | 43.00 ± 1.00 a | 5.82 ± 0.30 ab | 120.76 ± 10.27 a | 5.59 ± 0.09 a | |
2023 | |||||||
Kristian | K | 12.64 ± 9.92 a | 3.61 ± 0.20 a | 27.16 ± 16.01 a | 3.68 ± 0.94 a | 92.67 ± 29.74 a | 2.90 ± 0.60 a |
E | 10.93 ± 5.59 a | 3.82 ± 0.18 a | 20.35 ± 12.27 a | 3.77 ± 1.11 a | 110.33 ± 5.51 a | 3.94 ± 0.25 a | |
H | 5.25 ± 1.56 a | 3.81 ± 0.42 a | 12.44 ± 9.14 a | 4.36 ± 0.37 ab | 102.33 ± 52.35 a | 3.94 ± 0.75 a | |
Habanero Orange | K | 15.00 ± 10.47 a | 4.35 ± 0.71 a | 25.93 ± 4.27 a | 5.25 ± 0.24 b | 177.50 ± 55.15 ab | 6.01 ± 1.39 b |
E | 14.07 ± 5.25 a | 3.77 ± 0.71 a | 28.28 ± 5.66 a | 5.46 ± 0.11 b | 148.06 ± 23.99 ab | 6.08 ± 0.65 b | |
H | 13.48 ± 5.14 a | 4.47 ± 0.81 a | 31.05 ± 21.13 a | 5.42 ± 0.40 b | 235.24 ± 103.08 b | 6.21 ± 0.49 b | |
2022–2023 | |||||||
Kristian | K | 17.16 ± 13.30 a | 2.93 ± 0.15 a | 41.75 ± 25.77 a | 2.94 ± 0.75 a | ||
E | 18.07 ± 3.20 a | 3.26 ± 0.19 a | 38.34 ± 17.20 a | 2.86 ± 0.67 a | |||
H | 15.83 ± 2.45 a | 3.15 ± 0.74 a | 23.06 ± 10.54 a | 5.13 ± 3.16 b | |||
Habanero Orange | K | 12.87 ± 7.20 a | 5.73 ± 0.75 b | 34.80 ± 4.45 a | 5.84 ± 0.42 b | 150.57 ± 32.57 a | 6.14 ± 1.19 a |
E | 9.26 ± 3.49 a | 5.18 ± 0.86 b | 30.98 ± 10.25 a | 5.22 ± 0.33 b | 142.47 ± 16.99 a | 6.34 ± 0.82 a | |
H | 8.89 ± 3.11 a | 5.51 ± 0.90 b | 37.03 ± 11.07 a | 5.62 ± 0.35 b | 178.00 ± 56.54 a | 5.90 ± 0.75 a |
Treatment | 1st Harvest | 2nd Harvest | 3rd Harvest | ||||
---|---|---|---|---|---|---|---|
CAP | DHC | CAP | DHC | CAP | DHC | ||
2022 | |||||||
Kristian | K | 1710.6 ± 24.7 c | 1782.3 ± 91.5 b | 1843.5 ± 12.7 c | 1677.5 ± 115.1 a | ||
E | 1351.4 ± 15.5 a | 1608.3 ± 39.6 a | 1759.6 ± 28.8 b | 1693.2 ± 131.8 a | |||
H | 1474.8 ± 16.7 b | 1585.6 ± 195.3 a | 1619.4 ± 27.8 a | 1507.1 ± 154.6 a | |||
Habanero Orange | K | 7964.4 ± 21.8 d | 4109.9 ± 23.8 c | 8215.9 ± 28.9 f | 5582.7 ± 28.2 c | 8080.7 ± 25.0 a | 4826.3 ± 19.4 c |
E | 8240.8 ± 57.4 e | 4579.8 ± 50.3 d | 7860.7 ± 49.8 d | 3747.9 ± 28.7 b | 8136.4 ± 33.3 a | 4143.6 ± 17.7 a | |
H | 8539.1 ± 139.2 f | 4720.7 ± 24.5 e | 8164.3 ± 48.3 e | 3929.1 ± 243.2 b | 8256.3 ± 52.4 b | 4191.4 ± 30.0 b | |
2023 | |||||||
Kristian | K | 2421.3 ± 8.0 b | 2471.1 ± 57.8 b | 1835.9 ± 28.7 a | 2262.1 ± 17.6 a | 2272.8 ± 10.9 c | 2877.5 ± 20.7 b |
E | 2850.7 ± 13.7 c | 2761.5 ± 68.1 c | 2504.3 ± 8.1 c | 3245.9 ± 222.3 b | 1826.0 ± 3.4 a | 2502.9 ± 12.2 a | |
H | 2184.7 ± 7.0 a | 2283.6 ± 5.8 a | 1984.8 ± 10.3 b | 2300.6 ± 9.6 a | 1977.2 ± 8.2 b | 2596.7 ± 167.1 a | |
Habanero Orange | K | 7328.3 ± 116.8 e | 4200.1 ± 12.9 d | 7724.8 ± 115.9 e | 4587.1 ± 8.5 c | 8905.0 ± 81.3 d | 5643.3 ± 22.8 c |
E | 7086.0 ± 19.6 d | 4261.6 ± 25.1 e | 7592.1 ± 92.1 d | 4783.9 ± 17.4 d | 9528.9 ± 123.1 f | 6368.5 ± 42.4 d | |
H | 7516.2 ± 119.1 f | 4227.7 ± 22.3 de | 8987.1 ± 121.4 f | 5094.2 ± 14.0 e | 9387.6 ± 8.2 e | 5735.5 ± 7.9 c | |
2022–2023 | |||||||
Kristian | K | 2066.0 ± 16.3 a | 2126.7 ± 74.7 a | 1839.7 ± 20.7 a | 1969.8 ± 66.3 a | ||
E | 2101.0 ± 14.6 a | 2184.9 ± 53.9 a | 2132.0 ± 18.4 b | 2469.6 ± 177.0 a | |||
H | 1829.8 ± 11.8 a | 1934.6 ± 100.5 a | 1802.1 ± 19.0 a | 1903.9 ± 82.1 a | |||
Habanero Orange | K | 7646.4 ± 69.3 b | 4155.0 ± 18.4 b | 7970.3 ± 72.4 c | 5084.9 ± 18.3 c | 8492.8 ± 53.2 a | 5234.8 ± 21.1 a |
E | 7663.4 ± 38.5 b | 4420.7 ± 37.7 b | 7726.4 ± 70.9 c | 4265.9 ± 23.1 b | 8832.6 ± 78.2 a | 5256.0 ± 30.0 a | |
H | 8027.7 ± 129.1 b | 4474.2 ± 23.4 b | 8575.7 ± 84.9 d | 4511.7 ± 128.6 bc | 8822.0 ± 30.3 a | 4963.4 ± 18.9 a |
Capsaicin | Dihydrocapsaicin | SHU | |
---|---|---|---|
Year | 0.0333 | 0.0000 *** | 0.0045 * |
Harvest | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Treatment | 0.2885 | 0.3016 | 0.9236 |
Variety | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Harvest | Capsaicin (mg·kg−1) | Dihydrocapsaicin (mg·kg−1) | ||
---|---|---|---|---|
Habanero Orange | Kristian | Habanero Orange | Kristian | |
1 | 7779.2 ± 111.2 a | 1951.9 ± 89.4 a | 4350.0 ± 113.7 a | 2082.1 ± 100.7 a |
2 | 8093.8 ± 119.1 a | 1998.3 ± 83.6 a | 4612.3 ± 121.2 a | 2184.2 ± 107.6 a |
3 | 8794.7 ± 130.3 b | 2025.4 ± 118.3 a | 5223.4 ± 142.5 b | 2659.1 ± 142.3 b |
Treatment | 1st Harvest | 2nd Harvest | 3rd Harvest | ||||
---|---|---|---|---|---|---|---|
Vit. C | Carotenoids | Vit. C | Carotenoids | Vit. C | Carotenoids | ||
Kristian | K | 2480.68 ± 80.78 a | 39.08 ± 7.90 b | 2723.88 ± 60.21 a | 36.65 ± 2.63 b | 2967.08 ± 166.83 ab | 38.41 ± 0.98 b |
E | 2690.78 ± 45.76 b | 27.34 ± 0.61 a | 2766.08 ± 47.55 a | 26.12 ± 4.66 a | 2841.39 ± 94.30 a | 27.24 ± 0.14 a | |
H | 2802.59 ± 92.56 b | 21.87 ± 0.81 a | 2969.40 ± 50.00 b | 46.88 ± 1.92 c | 3136.21 ± 160.24 b | 41.88 ± 1.23 b | |
Habanero Orange | K | 2411.84 ± 169.12 b | 20.96 ± 1.52 a | 1659.07 ± 31.10 a | 34.22 ± 0.61 b | 2045.46 ± 42.52 a | 46.17 ± 4.86 a |
E | 2641.49 ± 99.26 b | 28.55 ± 3.24 b | 1971.52 ± 53.26 b | 29.97 ± 2.83 a | 2216.50 ± 71.12 b | 46.17 ± 2.83 a | |
H | 2003.04 ± 51.61 a | 27.24 ± 0.10 b | 1763.52 ± 87.56 a | 43.54 ± 1.01 c | 1987.22 ± 30.41 a | 52.65 ± 0.40 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezeyová, I.; Kollárová, I.; Golian, M.; Árvay, J.; Mezey, J.; Šlosár, M.; Galovičová, L.; Rosa, R.; Bakalár, M.; Horečná, T. The Effect of Humic-Based Biostimulants on the Yield and Quality Parameters of Chili Peppers. Horticulturae 2024, 10, 998. https://doi.org/10.3390/horticulturae10090998
Mezeyová I, Kollárová I, Golian M, Árvay J, Mezey J, Šlosár M, Galovičová L, Rosa R, Bakalár M, Horečná T. The Effect of Humic-Based Biostimulants on the Yield and Quality Parameters of Chili Peppers. Horticulturae. 2024; 10(9):998. https://doi.org/10.3390/horticulturae10090998
Chicago/Turabian StyleMezeyová, Ivana, Ivana Kollárová, Marcel Golian, Július Árvay, Ján Mezey, Miroslav Šlosár, Lucia Galovičová, Robert Rosa, Martin Bakalár, and Tereza Horečná. 2024. "The Effect of Humic-Based Biostimulants on the Yield and Quality Parameters of Chili Peppers" Horticulturae 10, no. 9: 998. https://doi.org/10.3390/horticulturae10090998
APA StyleMezeyová, I., Kollárová, I., Golian, M., Árvay, J., Mezey, J., Šlosár, M., Galovičová, L., Rosa, R., Bakalár, M., & Horečná, T. (2024). The Effect of Humic-Based Biostimulants on the Yield and Quality Parameters of Chili Peppers. Horticulturae, 10(9), 998. https://doi.org/10.3390/horticulturae10090998