Studying the Combined Impact of Salinity and Drought Stress-Simulated Conditions on Physio-Biochemical Characteristics of Lettuce Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Location and Design
2.2. Irrigation Water Calculation
2.3. Salinity and Drought Treatments
2.4. Plant Growth Parameters
2.5. Chemical Analysis of Lettuce
2.6. Determination of Total Phenolic (TP), Flavonoid (TF) Contents, and Antioxidant Activities
2.7. Stress Tolerance Indices
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelkader, M.; Geioushy, R.A.; Fouad, O.A.; Khaled, A.G. Investigation the Activities of Photosynthetic Pigments, Antioxidant Enzymes and Inducing Genotoxicity of Cucumber Seedling Exposed to Copper Oxides Nanoparticles Stress. Sci. Hortic. 2022, 305, 111364. [Google Scholar] [CrossRef]
- Minhas, P.S.; Rane, J.; Pasala, R.K. Abiotic Stresses in Agriculture: An Overview. In Abiotic Stress Management for Resilient Agriculture; Minhas, P.S., Rane, J., Pasala, R.K., Eds.; Springer Singapore: Singapore, 2017; pp. 3–8. ISBN 978-981-10-5743-4. [Google Scholar]
- Abdelkader, M.; Voronina, L.; Shelepova, O.; Puchkov, M.; Loktionova, E.; Zhanbyrshina, N.; Yelnazarkyzy, R.; Tleppayeva, A.; Ksenofontov, A. Monitoring Role of Exogenous Amino Acids on the Proteinogenic and Ionic Responses of Lettuce Plants under Salinity Stress Conditions. Horticulturae 2023, 9, 626. [Google Scholar] [CrossRef]
- Sourour, A.; Afef, O.; Mounir, R.; Mongi, B.Y. A Review: Morphological, Physiological, Biochemical and Molecular Plant Responses to Water Deficit Stress. Int. J. Eng. Sci. 2017, 6, 1–4. [Google Scholar] [CrossRef]
- Nahar, K.; Hasanuzzaman, M.; Fujita, M. Roles of Osmolytes in Plant Adaptation to Drought and Salinity. In Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies; Iqbal, N., Nazar, R., Khan, N.A., Eds.; Springer India: New Delhi, India, 2016; pp. 37–68. ISBN 978-81-322-2615-4. [Google Scholar]
- Kaur, G.; Asthir, B. Molecular Responses to Drought Stress in Plants. Biol. Plant. 2017, 61, 201–209. [Google Scholar] [CrossRef]
- Cao, H.; Ding, R.; Kang, S.; Du, T.; Tong, L.; Zhang, Y.; Chen, J.; Shukla, M.K. Drought, Salt, and Combined Stresses in Plants: Effects, Tolerance Mechanisms, and Strategies. Adv. Agron. 2023, 178, 107–163. [Google Scholar]
- Zörb, C.; Geilfus, C.-M.; Dietz, K.-J. Salinity and Crop Yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Ahmad, K.; Akhtar, M.A.; Maqbool, M.A. Salinity Stress in Crop Plants: Effects of Stress, Tolerance Mechanisms and Breeding Strategies for Improvement. J. Agric. Basic Sci. 2017, 2, 2518–4210. [Google Scholar]
- Voronina, L.P.; Flerchuk, V.L.; Ponogaybo, K.E.; Sbitnev, A.V.; Abdelkader, M. The Assessment of Potential Risks of Chloride Salts and Their Effect on Seed Germination and Plant Development. Theor. Appl. Ecol. 2024, 156–165. [Google Scholar] [CrossRef]
- Geilfus, C.-M. Chloride: From Nutrient to Toxicant. Plant Cell Physiol. 2018, 59, 877–886. [Google Scholar] [CrossRef]
- Ashraf, M.; Iqbal, M.; Hussain, I.; Rasheed, R. Physiological and Biochemical Approaches for Salinity Tolerance. In Managing Salt Tolerance in Plants: Molecular and Genomic Perspectives; CRC Press: Boca Raton, FL, USA, 2015; p. 79. [Google Scholar]
- Iqbal, S.; Hussain, S.; Qayyaum, M.A.; Ashraf, M.; Saifullah, S. The Response of Maize Physiology under Salinity Stress and Its Coping Strategies. In Plant Stress Physiology; IntechOpen Limited: London, UK, 2020; pp. 1–25. [Google Scholar]
- Hasanuzzaman, M.; Hossain, M.A.; Da Silva, J.A.T.; Fujita, M. Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defense Is a Key Factor. In Crop Stress and Its Management: Perspectives and Strategies; Venkateswarlu, B., Shanker, A.K., Shanker, C., Maheswari, M., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2012; pp. 261–315. ISBN 978-94-007-2219-4. [Google Scholar]
- Kim, E.J. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, by Us Global Change Research Program. J. Am. Plan. Assoc. 2016, 82, 418–419. [Google Scholar] [CrossRef]
- Pérez-López, U.; Miranda-Apodaca, J.; Muñoz-Rueda, A.; Mena-Petite, A. Lettuce Production and Antioxidant Capacity Are Differentially Modified by Salt Stress and Light Intensity under Ambient and Elevated CO2. J. Plant Physiol. 2013, 170, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Viacava, G.E.; Goyeneche, R.; Goni, M.G.; Roura, S.I.; Agero, M.V. Natural Elicitors as Preharvest Treatments to Improve Postharvest Quality of Butterhead Lettuce. Sci. Hortic. 2018, 228, 145–152. [Google Scholar] [CrossRef]
- Aćamović-Djoković, G.; Pavlović, R.; Mladenović, J.; Djurić, M. Vitamin C Content of Different Types of Lettuce Varieties. Acta Agric. Serbica 2011, 16, 83–89. [Google Scholar]
- Li, Y.; Li, H.; Li, Y.; Zhang, S. Improving Water-Use Efficiency by Decreasing Stomatal Conductance and Transpiration Rate to Maintain Higher Ear Photosynthetic Rate in Drought-Resistant Wheat. Crop J. 2017, 5, 231–239. [Google Scholar] [CrossRef]
- Ha, S.; Vankova, R.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.-S.P. Cytokinins: Metabolism and Function in Plant Adaptation to Environmental Stresses. Trends Plant Sci. 2012, 17, 172–179. [Google Scholar] [CrossRef]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of Plants to Water Stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Muchate, N.S.; Nikalje, G.C.; Rajurkar, N.S.; Suprasanna, P.; Nikam, T.D. Plant Salt Stress: Adaptive Responses, Tolerance Mechanism and Bioengineering for Salt Tolerance. Bot. Rev. 2016, 82, 371–406. [Google Scholar] [CrossRef]
- Kumari, N.; Malik, K.; Rani, B.; Jattan, M.; Sushil; Avtar, R.; Devi, S.; Arya, S.S. Insights in the Physiological, Biochemical and Molecular Basis of Salt Stress Tolerance in Plants. In Microorganisms in Saline Environments: Strategies and Functions; Giri, B., Varma, A., Eds.; Soil Biology; Springer International Publishing: Cham, Switzerland, 2019; Volume 56, pp. 353–374. ISBN 978-3-030-18974-7. [Google Scholar]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding Plant Responses to Drought—From Genes to the Whole Plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Shaimaa, M.E.S.; Glala, A.A.; Adam, S.M. Response of Two Celery Cultivars to Partial or Complete Organic Nitrogen Alternation Strategies. Aust. J. Basic Appl. Sci. 2011, 5, 22–29. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. Irrigation and Drainage. FAO 1998, 56, 300. [Google Scholar]
- Santos, C.S.; Montenegro, A.A.; Santos, M.A.; Pedrosa, E.M. Evapotranspiration and Crop Coefficients of Moringa Oleifera under Semi-Arid Conditions in Pernambuco. Rev. Bras. Eng. Agrícola Ambient. 2017, 21, 840–845. [Google Scholar] [CrossRef]
- Abdelkader, M.; Voronina, L.; Baratova, L.; Shelepova, O.; Zargar, M.; Puchkov, M.; Loktionova, E.; Amantayev, B.; Kipshakbaeva, A.; Arinov, B. Biostimulants-Based Amino Acids Augment Physio-Biochemical Responses and Promote Salinity Tolerance of Lettuce Plants (Lactuca sativa L.). Horticulturae 2023, 9, 807. [Google Scholar] [CrossRef]
- Abdelwanis, F.M.; Hosny, A.M.; Abdelhamid, A.N.; Suliman, A.A.; Ezzo, M.I.; Saleh, S.A. Effect of Zinc and Boron Foliar Application on Leaf Chemical Composition of Moringa Oleifera and on Yield and Characters of Its Seed Oil. Egypt. J. Chem. 2022, 65, 87. [Google Scholar] [CrossRef]
- Worsfold, P.; McKelvie, I.; Monbet, P. Determination of Phosphorus in Natural Waters: A Historical Review. Anal. Chim. Acta 2016, 918, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, M.; Elkhawaga, F.A.; Suliman, A.A.; Puchkov, M.; Kuranova, K.N.; Mahmoud, M.H.; Abdelkader, M.F.M. Understanding the Regular Biological Mechanism of Susceptibility of Tomato Plants to Low Incidences of Blossom-End Rot. Horticulturae 2024, 10, 648. [Google Scholar] [CrossRef]
- Cottenie, A.; Verloo, M.; Kiekens, L.; Velghe, G.; Camerlynck, R. Chemical Analysis of Plant and Soil Laboratory of Analytical and Agrochemistry; State University Ghent: Ghent, Belgium, 1982. [Google Scholar]
- Pai, T.V.; Sawant, S.Y.; Ghatak, A.A.; Chaturvedi, P.A.; Gupte, A.M.; Desai, N.S. Characterization of Indian Beers: Chemical Composition and Antioxidant Potential. J. Food Sci. Technol. 2015, 52, 1414–1423. [Google Scholar] [CrossRef]
- Mohammed, D.M.; El-Messery, T.M.; Baranenko, D.A.; Hashim, M.A.; Boulkrane, M.S.; El-Said, M.M. Enhancing Date Seed Phenolic Bioaccessibility in Soft Cheese through a Dehydrated Liposome Delivery System and Its Effect on Testosterone-induced benign prostatic hyperplasia in rats. Front. Nutr. 2023, 10, 1273299. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Bouslama, M.; Schapaugh, W.T. Stress Tolerance in Soybeans. I. Evaluation of Three Screening Techniques for Heat and Drought Tolerance. Crop Sci. 1984, 24, 933–937. [Google Scholar] [CrossRef]
- Rosielle, A.A.; Hamblin, J. Theoretical Aspects of Selection for Yield in Stress and Non-Stress Environment. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Chakherchaman, S.H.; Arbat, H.K.; Yarnia, M.; Mostafaei, H.; Hassanpanah, D.; Dadashi, M.R.; Easazadeh, R. Study on Relations Between Relative Water Content, Cell Membrane Stability and Duration of Growth Period with Grain Yield of Lentil Genotypesunder Drought Stress and Non-Stress Conditions. Adnan Menderes Üniversitesi Ziraat Fakültesi Derg. 2009, 749–755. [Google Scholar]
- Das, K.; Roychoudhury, A. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-Scavengers during Environmental Stress in Plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Singh, M.; Tiwari, N. Microbial Amelioration of Salinity Stress in HD 2967 Wheat Cultivar by Up-Regulating Antioxidant Defense. Commun. Integr. Biol. 2021, 14, 136–150. [Google Scholar] [CrossRef]
- Ma, Y.; Dias, M.C.; Freitas, H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 2020, 11, 591911. [Google Scholar] [CrossRef]
- De Pascale, S.; Ruggiero, C.; Barbieri, G.; Maggio, A. Physiological Responses of Pepper to Salinity and Drought. J. Am. Soc. Hortic. Sci. 2003, 128, 48–54. [Google Scholar] [CrossRef]
- Giordano, M.; Petropoulos, S.A.; Rouphael, Y. Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress. Agriculture 2021, 11, 463. [Google Scholar] [CrossRef]
- Yavuz, D.; Rashid, B.A.R.; Seymen, M. The Influence of NaCl Salinity on Evapotranspiration, Yield Traits, Antioxidant Status, and Mineral Composition of Lettuce Grown under Deficit Irrigation. Sci. Hortic. 2023, 310, 111776. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmed, S.; Roy, S.K.; Woo, S.H.; Sonawane, K.D.; Shohael, A.M. Effect of Salinity on the Morphological, Physiological and Biochemical Properties of Lettuce (Lactuca sativa L.) in Bangladesh. Open Agric. 2019, 4, 361–373. [Google Scholar] [CrossRef]
- Kurunc, A. Effects of Water and Salinity Stresses on Growth, Yield, and Water Use of Iceberg Lettuce. J. Sci. Food Agric. 2021, 101, 5688–5696. [Google Scholar] [CrossRef]
- Angon, P.B.; Tahjib-Ul-Arif, M.; Samin, S.I.; Habiba, U.; Hossain, M.A.; Brestic, M. How Do Plants Respond to Combined Drought and Salinity Stress?—A Systematic Review. Plants 2022, 11, 2884. [Google Scholar] [CrossRef]
- Ahmed, I.M.; Nadira, U.A.; Bibi, N.; Zhang, G.; Wu, F. Tolerance to Combined Stress of Drought and Salinity in Barley. In Combined Stresses in Plants; Mahalingam, R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 93–121. ISBN 978-3-319-07898-4. [Google Scholar]
- Karimzadeh, S.; Hartman, S.; Chiarelli, D.D.; Rulli, M.C.; D’Odorico, P. The Tradeoff between Water Savings and Salinization Prevention in Dryland Irrigation. Adv. Water Resour. 2024, 183, 104604. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Plant Nutrition Manual; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Waraich, E.A.; Ahmad, R.; Ashraf, M.Y.; Saifullah; Ahmad, M. Improving Agricultural Water Use Efficiency by Nutrient Management in Crop Plants. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2011, 61, 291–304. [Google Scholar] [CrossRef]
- Baslam, M.; Goicoechea, N. Water Deficit Improved the Capacity of Arbuscular Mycorrhizal Fungi (AMF) for Inducing the Accumulation of Antioxidant Compounds in Lettuce Leaves. Mycorrhiza 2012, 22, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Baslam, M.; Pascual, I.; Sánchez-Díaz, M.; Erro, J.; García-Mina, J.M.; Goicoechea, N. Improvement of Nutritional Quality of Greenhouse-Grown Lettuce by Arbuscular Mycorrhizal Fungi Is Conditioned by the Source of Phosphorus Nutrition. J. Agric. Food Chem. 2011, 59, 11129–11140. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Yavuz, D.; Kılıç, E.; Seymen, M.; Dal, Y.; Kayak, N.; Kal, Ü.; Yavuz, N. The Effect of Irrigation Water Salinity on the Morph-Physiological and Biochemical Properties of Spinach under Deficit Irrigation Conditions. Sci. Hortic. 2022, 304, 111272. [Google Scholar] [CrossRef]
- Carillo, P.; Giordano, M.; Raimondi, G.; Napolitano, F.; Di Stasio, E.; Kyriacou, M.C.; Sifola, M.I.; Rouphael, Y. Physiological and Nutraceutical Quality of Green and Red Pigmented Lettuce in Response to NaCl Concentration in Two Successive Harvests. Agronomy 2020, 10, 1358. [Google Scholar] [CrossRef]
- Breś, W.; Kleiber, T.; Markiewicz, B.; Mieloszyk, E.; Mieloch, M. The Effect of NaCl Stress on the Response of Lettuce (Lactuca sativa L.). Agronomy 2022, 12, 244. [Google Scholar] [CrossRef]
- Wahab, A.; Abdi, G.; Saleem, M.H.; Ali, B.; Ullah, S.; Shah, W.; Mumtaz, S.; Yasin, G.; Muresan, C.C.; Marc, R.A. Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Plants 2022, 11, 1620. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.B.; Parvin, K.; Bhuiyan, T.F.; Anee, T.I.; Nahar, K.; Hossen, M.S.; Zulfiqar, F.; Alam, M.M.; Fujita, M. Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. Int. J. Mol. Sci. 2020, 21, 8695. [Google Scholar] [CrossRef]
- Rajendran, K.; Tester, M.; Roy, S.J. Quantifying the Three Main Components of Salinity Tolerance in Cereals. Plant Cell Environ. 2009, 32, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Nagaz, K.; El-Mokh, F.; Masmoudi, M.M.; Ben Mechlia, N. Soil Salinity, Yield and Water Productivity of Lettuce under Irrigation Regimes with Saline Water in Arid Conditions of Tunisia. Int. J. Agron. Plant Prod. 2013, 4, 892–900. [Google Scholar]
- Jiménez-Arias, D.; García-Machado, F.J.; Morales-Sierra, S.; Luis, J.C.; Suarez, E.; Hernández, M.; Valdés, F.; Borges, A.A. Lettuce Plants Treated with L-Pyroglutamic Acid Increase Yield under Water Deficit Stress. Environ. Exp. Bot. 2019, 158, 215–222. [Google Scholar] [CrossRef]
- Damerum, A.; Smith, H.K.; Clarkson, G.; Truco, M.J.; Michelmore, R.W.; Taylor, G. The Genetic Basis of Water-use Efficiency and Yield in Lettuce. BMC Plant Biol. 2021, 21, 237. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Staggenborg, S.A.; Ristic, Z. Impacts of Drought and/or Heat Stress on Physiological, Developmental, Growth, and Yield Processes of Crop Plants. In Advances in Agricultural Systems Modeling; Ahuja, L.R., Reddy, V.R., Saseendran, S.A., Yu, Q., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2015; pp. 301–355. ISBN 978-0-89118-188-0. [Google Scholar]
- Franzoni, G.; Cocetta, G.; Ferrante, A. Effect of Glutamic Acid Foliar Applications on Lettuce under Water Stress. Physiol. Mol. Biol. Plants 2021, 27, 1059–1072. [Google Scholar] [CrossRef]
- Adhikari, B. Response of Lettuce (Lactuca sativa L.) to Salt Stress; Mississippi State University: Starkville, MS, USA, 2023. [Google Scholar]
- Parkash, V. Production of Cucumber Under Deficit Irrigation and Eggplant Under Salinity Stress: Assessment of Physiology, Growth, Yield and Water Use Efficiency. Ph.D. Thesis, Texas Tech University, Lubbock, TX, USA, 2020. [Google Scholar]
- Schrader, S.E. Salinity Tolerance of Lettuce Cultivars in Controlled Environment; The University of Arizona: Tucson, AZ, USA, 2017. [Google Scholar]
- Trușcă, M.; Gâdea, Ș.; Vidican, R.; Stoian, V.; Vâtcă, A.; Balint, C.; Stoian, V.A.; Horvat, M.; Vâtcă, S. Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress. Agriculture 2023, 13, 734. [Google Scholar] [CrossRef]
Physical Analysis | Chemical Analysis | ||||
---|---|---|---|---|---|
Cations (meq/L) | Anions (meq/L) | ||||
Ca++ | 8.7 | CO3− | 0.0 | ||
Sand | 84.2% | Mg++ | 4.0 | HCO3− | 0.52 |
Silt | 11.8% | Na+ | 2.3 | Cl− | 11.48 |
Clay | 4.1% | K+ | 1.0 | SO4− | 4.0 |
Texture class: | Loamy sand | ||||
Soil pH | 7.7 | Available N | 0.78% | ||
EC (dS/m) | 1.6 | Available P | 0.32% | ||
Organic matter | 3.54% | Available K | 0.46% |
pH | 7.23 | Dissolved Cations (mEq/L) | Dissolved Anions (mEq/L) | ||
---|---|---|---|---|---|
Ca++ | 2.9 | CO3−2 | - | ||
EC (dSm−1) | 0.95 | Mg++ | 1.5 | HCO3− | 0.9 |
EC ppm | 608.0 | Na+ | 4.3 | Cl− | 5.2 |
K+ | 0.5 | SO4−2 | 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelkader, M.; Suliman, A.A.; Salem, S.S.; Assiya, A.; Voronina, L.; Puchkov, M.; Loktionova, E.; Bhuker, A.; Ataya, F.S.; Mahmoud, M.H.; et al. Studying the Combined Impact of Salinity and Drought Stress-Simulated Conditions on Physio-Biochemical Characteristics of Lettuce Plant. Horticulturae 2024, 10, 1186. https://doi.org/10.3390/horticulturae10111186
Abdelkader M, Suliman AA, Salem SS, Assiya A, Voronina L, Puchkov M, Loktionova E, Bhuker A, Ataya FS, Mahmoud MH, et al. Studying the Combined Impact of Salinity and Drought Stress-Simulated Conditions on Physio-Biochemical Characteristics of Lettuce Plant. Horticulturae. 2024; 10(11):1186. https://doi.org/10.3390/horticulturae10111186
Chicago/Turabian StyleAbdelkader, Mostafa, Ahmad A. Suliman, Salem S. Salem, Ansabayeva Assiya, Luidmila Voronina, Mikhail Puchkov, Elena Loktionova, Axay Bhuker, Farid Shokry Ataya, Mohamed H. Mahmoud, and et al. 2024. "Studying the Combined Impact of Salinity and Drought Stress-Simulated Conditions on Physio-Biochemical Characteristics of Lettuce Plant" Horticulturae 10, no. 11: 1186. https://doi.org/10.3390/horticulturae10111186
APA StyleAbdelkader, M., Suliman, A. A., Salem, S. S., Assiya, A., Voronina, L., Puchkov, M., Loktionova, E., Bhuker, A., Ataya, F. S., Mahmoud, M. H., & Abdelkader, M. F. M. (2024). Studying the Combined Impact of Salinity and Drought Stress-Simulated Conditions on Physio-Biochemical Characteristics of Lettuce Plant. Horticulturae, 10(11), 1186. https://doi.org/10.3390/horticulturae10111186