The Applications of Different Glycine Betaine Doses on Young Pear Trees Under Drought Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Plant Material
2.2. The Mixed Soil and Irrigation Water
2.3. Irrigation and Glycine Betaine Treatments
2.4. Plant Water Consumption
2.5. Photosynthetic Rate (Pn), Stomatal Conductance (gsw), and Transpiration Rate (Tr)
2.6. Vegetative Growth Parameters
2.7. Experimental Design and Statistical Analysis
3. Results
3.1. Plant Water Consumption (ET, Evapotranspiration)
3.2. Photosynthetic Rate (Pn), Stomatal Conductance (gsw), and Transpiration Rate (Tr)
3.3. Vegetative Parameters
3.3.1. Trunk Diameter
3.3.2. Fresh Root Weight
3.3.3. Shoot Length
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bharwana, S.A.; Ali, S.; Farooq, M.A.; Iqbal, N.; Hameed, A.; Abbas, F.; Ahmad, M.S.A. Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turk. J. Bot. 2014, 38, 281–292. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture—Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; 180p. [Google Scholar]
- Comas, L.H.; Trout, T.J.; DeJonge, K.C.; Zhang, H.; Gleason, S.M. Water productivity under strategic growth stage-based deficit irrigation in maize. Agric. Water Manag. 2019, 212, 433–440. [Google Scholar] [CrossRef]
- Farooq, A.; Bukhari, S.A.; Akram, N.A.; Ashraf, M.; Wijaya, L.; Alyemeni, M.N. Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants 2020, 9, 104. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Xiong, L.; Shi, H.; Yang, S.; Herrera-Estrella, L.R.; Xu, G. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 2020, 63, 635–674. [Google Scholar] [CrossRef] [PubMed]
- Bodner, G.; Nakhforoosh, A.; Kaul, H.P. Management of crop water under drought: A review. Agron. Sustain. Dev. 2015, 35, 1044–1054. [Google Scholar] [CrossRef]
- Gosal, S.S.; Wani, S.H.; Kang, M.S. Biotechnology and drought tolerance. J. Crop Improv. 2009, 23, 1044–1054. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, G.; Shimizu, H. Plant responses to drought and rewatering. Plant Signal. Behav. 2010, 5, 1044–1054. [Google Scholar] [CrossRef]
- Shahzad, A.S.; Ullah, A.A.; Dar, M.F.; Sardar, T.; Mehmood, M.A.; Tufail, A.; Shakoor, A.; Haris, M. Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environ. Sci. Pollut. Res. 2021, 28, 14211–14232. [Google Scholar] [CrossRef]
- Dikilitaş, M.; Şimşek, E.; Roychoudhury, A. Role of Proline and Glycine Betaine in OvercomingAbiotic Stresses. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives, 1st ed.; Aryadeep, R., Durgesh, K.T., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 1–23. [Google Scholar]
- Ünay, A.; Başal, H. Multi-directional durability breeding in cotton. Adnan Menderes Univ. J. Agric. Fac. 2004, 1, 17–20. [Google Scholar]
- Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, D.; Hanson, A. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 357–384. [Google Scholar] [CrossRef]
- Mickelbart, M.V.; Chapman, P.; Collier-Christian, L. Endogenous levels and exogenous application of glycinebetaine to grapevines. Sci. Hortic. 2006, 111, 7–16. [Google Scholar] [CrossRef]
- Chen, T.H.; Murata, N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell Environ. 2011, 34, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Miyake, H.; Takeoka, Y. Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Prod. Sci. 2002, 5, 33–44. [Google Scholar] [CrossRef]
- Demiral, T.; Türkan, I. Does exogenous glycine betaine affect antioxidative system of rice seed-lings under NaCl treatment? J. Plant Phys. 2004, 161, 1089–1100. [Google Scholar] [CrossRef]
- Oukarroum, A.; El Madidi, S.; Strasser, R.J. Exogenous glycine betaine and proline play a protective role in heat-stressed barley leaves (Hordeum vulgare L.): A Chlorophyll a fluorescence study. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2012, 146, 1037–1043. [Google Scholar]
- Shan, T.; Jin, P.; Zhang, Y.; Huang, Y.; Wang, X.; Zheng, Y. Exogenous glycine betaine treatment enhances chilling tolerance of peach fruit during cold storage. Postharvest Biol. Technol. 2016, 114, 104–110. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Ashraf, M.; Siddique, K.H. Role of glycine betaine in the thermotolerance of plants. Agronomy 2022, 12, 276. [Google Scholar] [CrossRef]
- Larher, F.R.; Lugan, R.; Gagneul, D.; Guyot, S.; Monnier, C.; Lespinasse, Y.; Bouchereau, A. A Reassessment of the Prevalent Organic Solutes Constitutively Accumulated and Potentially Involved in Osmotic Adjustment in Pear Leaves. Environ. Exp. Bot. 2009, 66, 230–241. [Google Scholar] [CrossRef]
- Hozman, S. Effects of Water Stress and Osmoprotectant Applications on Physiological and Morphological Characteristics in Chestnut Seedlings. Master’s Thesis, Adnan Menderes University, Natural Applied Sciences Institute, Department of Horticulture, Aydın, Turkey, 2016; 137p. [Google Scholar]
- Akyüz, H. The Determination of Effects of Water Stress and Osmoprotectant Applications on the Physiological and Morphologıcal Properties of the ‘Yamalak Sarısı’ Olive (Olea europaea L.) Nursery Trees. Master’s Thesis, Adnan Menderes University, Natural Applied Sciences Institute, Department of Horticulture, Aydın, Turkey, 2017; 135p. [Google Scholar]
- FAO. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 June 2024).
- Küçükyumuk, C. Drought response of young pear trees (Pyrus comminus). Appl. Ecol. Environ. Res. 2020, 18, 7769–7781. [Google Scholar] [CrossRef]
- Sakaldaş, M.; Gündoğdu, M.A. The Effects of preharvest 1-methylcyclopropene (harvista) applications on fruit drop and maturity of ‘deveci’ pear cultivar. Fruit Sci. 2016, 105–111. [Google Scholar] [CrossRef]
- Ayers, R.S.; Wescot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29 Rev.; FAO: Rome, Italy, 1989; 186p. [Google Scholar]
- SAS Institute. JMP Statistics; SAS Institute, Inc.: Cary, NC, USA, 2002; p. 707. [Google Scholar]
- Kalaji, M.H.; Pietkiewicz, S. Some physiological indices to be exploited as a crucial tool in plant breeding. Plant Breed. Seeds Sci. 2004, 49, 19–39. [Google Scholar]
- Pérez, C.; Val, J.; Monge, E. Photosynthetic changes of “Prunus avium L.” grafted on different rootstocks in relation to mineral deficiencies. Acta Hortic. 1997, 448, 81–85. [Google Scholar] [CrossRef]
- Liu, B.H.; Cheng, L.; Liang, D.; Zou, Y.J.; Ma, F.W. Growth, gas exchange, water use efficiency, and carbon isotope composition of ‘Gala Gala’ apple trees grafted onto 9 Chinese rootstocks in response to drought stress. Photosynthetica 2012, 50, 401–410. [Google Scholar] [CrossRef]
- Viljevac, M.; Dugalić, K.; Mihaljević, I.; Šimić, D.; Sudar, R.; Jurković, Z.; Lepeduš, H. Chlorophylls content and photosynthetic efficiency in two sour cherry Prunus cerasus (L.) genotypes under drought stress. Acta Bot. Croat. 2013, 72, 221–235. [Google Scholar] [CrossRef]
- Bhusal, N.; Han, S.G.; Yoon, T.M. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus domestica Borkh.). Sci. Hortic. 2019, 246, 535–543. [Google Scholar] [CrossRef]
- Roussos, P.A.; Denaxa, N.K.; Damvakaris, T.; Stournaras, V.; Argyrokastritis, I. Effect of alleviating products with diffrent mode of action on physiology and yield of olive under drought. Sci. Hort. 2010, 125, 700–711. [Google Scholar] [CrossRef]
- Takahashi, S.; Murata, N. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 2008, 13, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.P. Response of plants to water stress. Front Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef]
- Islam, S.; Parrey, Z.; Shah, S.H.; Mohammad, F. Glycine betaine mediated changes in growth, photosynthetic efficiency, antioxidant system, yield and quality of mustard. Sci. Hort. 2021, 285, 110170. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, J.; Merewitz, E.; Huang, B. Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species. J. Am. Soc. Hort. Sci. 2012, 137, 96–106. [Google Scholar] [CrossRef]
- Nomura, M.; Hibino, T.; Takabe, T.; Sugiyama, T.; Yokota, A.; Miyake, H.; Takabe, T. Transgenically produced glycinebetaine protects ribulose-1, 5-biophosphate carboxylase/oxygenase from inactivation of Synechococcus sp. PCC7942 under salt stress. Plant Cell Physiol. 1998, 32, 425–432. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Wang, W.; Li, Y.H.; Li, D.Q.; Zou, Q. Alleviation of photoinhibition in drought-stressed wheat (Tiriticum aestivum) by foliar-applied glycine betaine. J. Plant Phys. 2006, 163, 165–175. [Google Scholar] [CrossRef]
- Fisher, A. The Impact of Glycine Betaine Applications on Drought Response in Wild Blueberries. Master’s Thesis, The Graduate School of Natural and Applied Science of Universtiy of Maine, Orono, ME, USA, 2022; 40p. [Google Scholar]
- Tasuku, H.; Mitsuya, S.; Fujiwara, T.; Jagendorf, A.T.; Takabe, T. Tissue specificity of glycinebetaine synthesis in barley. Plant Sci. 2009, 176, 112–118. [Google Scholar]
- Abbas, W.; Ashraf, M.; Akram, N.A. Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by glycinebetaine and sugar beet extracts. Sci. Hortic. 2010, 125, 188–195. [Google Scholar] [CrossRef]
- Kalefetoğlu, T.; Ekmekçi, Y. Effects of drought stress and resistance mechanism on plants. Gazi Univ. J. Nat. Sci. 2005, 18, 723–740. [Google Scholar]
- Kocaçalışkan, İ. Plant Phsiology, 5th ed.; Dumlupınar University: Kütahya, Turkey, 2005; 318p. [Google Scholar]
- Jalil, J.O.T. Effects of Glycine Betaine Applications on Development of The Vines Cultivated Under Deficit Irrigation Conditions. Master’s Thesis, Selçuk University, The Graduate School of Natural and Applied Science, Konya, Turkey, 2017; 35p. [Google Scholar]
- González-Fernández, A.B.; Rodríguez-Pérez, J.R.; Marabel, M.; Álvarez-Taboada, F. Spectroscopic estimation of leaf water content in commercial vineyards using continuum removal and partial least squares regression. Sci. Hortic. 2015, 188, 15–22. [Google Scholar] [CrossRef]
- Kaya, Ü. Effect of different irrigation levels on some growth parameters in Ayvalık and Gemlik olive nurseries. Olive Sci. 2012, 3, 35–42. [Google Scholar]
- Kayak, N.; Kal, Ü.; Dal, Y.; Yavuz, D.; Seymen, M. Do proline and glycine betaine mitigate the adverse effects of water stress in spinach? Gesunde Pflanzen 2023, 75, 97–113. [Google Scholar] [CrossRef]
- Şahin, A.Ş. The Effects of Glycine Betaine And Proline Applications on Onion in Flooding Stress Conditions. Master’s Thesis, The Graduate School of Natural and Applied Science of Selçuk University, Konya, Turkey, 2022; 71p. [Google Scholar]
- Khadouri, H.K.; Kandhan, K.; Salem, M.A. Effects of Glycine Betaine on plant growth and performance of Medicago sativa and Vigna unguiculata under water deficit conditions. J. Phytol. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- El-wahab, M.A.A.; Shakweer, N.H. Potential impacts of amino acids, putrescine and glycine betaine on productivity and fruit attributes of “Le-Conte” pear trees grown under water scarcity stress. Fayoum J. Agric. Res. Dev. 2024, 38, 15–35. [Google Scholar] [CrossRef]
- Ragab, M.E.; Helal, N.A.S.; Sawan, O.M.; Fawzy, Z.F.; ElSawy, S.M. Foliar application of glycine betaine for alleviating water stress of tomato plants grown under sandy soil conditions. Int. J. ChemTech Res. 2015, 8, 52–67. [Google Scholar]
Treatments | Plant Water Consumption, ET (L/Plant) | Decrease (%) |
---|---|---|
I100-GB0 | 54.2 | 0 |
I50-GB0 | 33.8 | 37.6 |
I50-GB1 | 35.2 | 35.1 |
I50-GB5 | 38.0 | 29.9 |
I50-GB10 | 42.0 | 22.5 |
I25-GB0 | 25.1 | 53.7 |
I25-GB1 | 26.0 | 52.0 |
I25-GB5 | 29.5 | 45.6 |
I25-GB10 | 33.7 | 37.8 |
Treatments | Pn (μmol m−2 s−1) | gsw (mol m−2 s−1) | Tr (mmol H2O m−2 s−1) | ||
---|---|---|---|---|---|
I100-GB0 | 12.83 ± 0.93 a ** | 0.189 ± 0.009 a ** | 5.68 ± 0.04 a ** | ||
I50-GB0 | 8.45 ± 0.68 cd | 0.135 ± 0.025 bcde | 4.00 ± 0.18 c | ||
I50-GB1 | 8.53 ± 0.75 cd | 0.140 ± 0.035 bc | 4.32 ± 0.39 bc | ||
I50-GB5 | 8.95 ± 0.75 c | 0.154 ± 0.018 b | 4.51 ± 0.29 bc | ||
I50-GB10 | 10.06 ± 0.82 b | 0.160 ± 0.009 b | 4.76 ± 0.22 b | ||
I25-GB0 | 7.55 ± 0.78 f | 0.108 ± 0.008 e | 3.78 ± 0.16 c | ||
I25-GB1 | 7.70 ± 0.74 ef | 0.110 ± 0.008 de | 3.80 ± 0.10 c | ||
I25-GB5 | 8.20 ± 0.95 de | 0.120 ± 0.009 cde | 4.10 ± 0.45 bc | ||
I25-GB10 | 9.05 ± 0.98 c | 0.138 ± 0.009 bcd | 4.26 ± 0.25 bc | ||
Pn | gsw | Tr | |||
I100 12.82 A ** | GB0 9.61 ns | I100 0.189 A ** | GB0 0.144 ns | I100 5.68 A ** | GB0 4.49 ns |
I50 9.00 B | GB1 8.11 | I50 0.147 B | GB1 0.125 | I50 4.40 B | GB1 4.06 |
I25 8.13 C | GB5 8.58 | I25 0.119 C | GB5 0.137 | I25 3.94 C | GB5 4.31 |
GB10 9.55 | GB10 0.149 | GB10 4.51 | |||
p 0.001 | p 0.4309 | p 0.001 | p 0.6503 | p 0.001 | p 0.7277 |
Treatments | Trunk Diameter | Increasing Rates (%) | |
---|---|---|---|
I100-GB0 | 13.87 ± 0.96 a ** | 33.4 | |
I50-GB0 | 11.13 ± 0.74 ef | 10.2 | |
I50-GB1 | 11.49 ± 0.82 cde | 12.7 | |
I50-GB5 | 11.76 ± 0.79 bc | 14.2 | |
I50-GB10 | 11.98 ± 0.96 b | 17.5 | |
I25-GB0 | 10.95 ± 0.80 f | 7.4 | |
I25-GB1 | 11.08 ± 0.94 ef | 7.6 | |
I25-GB5 | 11.28 ± 0.98 def | 10.6 | |
I25-GB10 | 11.60 ± 0.92 bcd | 12.6 | |
I100 | 13.86 A ** | GB0 | 11.98 ns |
I50 | 11.59 B | GB1 | 11.29 |
I25 | 11.23 C | GB5 | 11.52 |
GB10 | 11.79 | ||
p | 0.001 | p | 0.4876 |
Treatments | Fresh Root Weight | ||
---|---|---|---|
I100-GB0 | 43.4 ± 2.98 a ** | ||
I50-GB0 | 32.0 ± 2.30 bc | ||
I50-GB1 | 34.0 ± 3.91 bc | ||
I50-GB5 | 34.6 ± 2.05 bc | ||
I50-GB10 | 35.5 ± 2.5 ab | ||
I25-GB0 | 27.0 ± 1.28 c | ||
I25-GB1 | 27.1 ± 1.67 c | ||
I25-GB5 | 30.4 ± 1.51 bc | ||
I25-GB10 | 31.0 ± 1.76 bc | ||
I100 | 43.4 A ** | GB0 | 34.1 ns |
I50 | 34.0 B | GB1 | 30.6 |
I25 | 28.9 C | GB5 | 32.5 |
GB10 | 33.3 | ||
p | 0.0001 | p | 0.7749 |
Treatments | Shoot Length | Increasing Rates (%) | |
---|---|---|---|
I100-GB0 | 31.8 ± 1.48 a * | 65.8 | |
I50-GB0 | 22.3 ± 1.43 b | 17.3 | |
I50-GB1 | 23.3 ± 1.40 b | 20.9 | |
I50-GB5 | 24.4 ± 1.94 ab | 23.5 | |
I50-GB10 | 25.7 ± 2.25 ab | 31.0 | |
I25-GB0 | 21.0 ± 0.90 b | 10.5 | |
I25-GB1 | 21.8 ± 0.96 b | 12.4 | |
I25-GB5 | 22.4 ± 0.46 b | 13.1 | |
I25-GB10 | 23.6 ± 0.51 b | 19.8 | |
I100 | 31.8 A ** | GB0 | 25.0 ns |
I50 | 23.9 B | GB1 | 22.5 |
I25 | 22.2 B | GB5 | 23.4 |
GB10 | 24.6 | ||
p | 0.0015 | p | 0.7484 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Küçükyumuk, C.; Küçükyumuk, Z.; İmrak, B.; Çömlekçioğlu, S. The Applications of Different Glycine Betaine Doses on Young Pear Trees Under Drought Stress Conditions. Horticulturae 2024, 10, 1217. https://doi.org/10.3390/horticulturae10111217
Küçükyumuk C, Küçükyumuk Z, İmrak B, Çömlekçioğlu S. The Applications of Different Glycine Betaine Doses on Young Pear Trees Under Drought Stress Conditions. Horticulturae. 2024; 10(11):1217. https://doi.org/10.3390/horticulturae10111217
Chicago/Turabian StyleKüçükyumuk, Cenk, Zeliha Küçükyumuk, Burhanettin İmrak, and Songül Çömlekçioğlu. 2024. "The Applications of Different Glycine Betaine Doses on Young Pear Trees Under Drought Stress Conditions" Horticulturae 10, no. 11: 1217. https://doi.org/10.3390/horticulturae10111217
APA StyleKüçükyumuk, C., Küçükyumuk, Z., İmrak, B., & Çömlekçioğlu, S. (2024). The Applications of Different Glycine Betaine Doses on Young Pear Trees Under Drought Stress Conditions. Horticulturae, 10(11), 1217. https://doi.org/10.3390/horticulturae10111217