Analysis of the Effects of Organic and Synthetic Mulching Films on the Weed, Root Yield, Essential Oil Yield, and Chemical Composition of Angelica archangelica L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial
2.2. Weed Flora, Density, and Total Dry Weed Biomass
2.3. Roots Harvesting
2.4. Essential Oil Extraction and Chemical Compound Identification
2.5. Statistical Analysis
3. Results
3.1. The Mulches’ Effect on Weediness
3.2. A. archangelica Fresh Root Yield
3.3. A. archangelica Essential Oil Yield and Its Chemical Composition
4. Discussion
4.1. Mulching Effects on Weediness
4.2. Mulching Effects on Fresh Root Yield
4.3. Mulching Effects on EO Chemical Composition and Yield
5. Conclusions
- Agrotextile black and silver–brown mulch foils have the best effect on weed suppression (100%);
- Agrotextile black mulch foil had the best effect on A. archangelica fresh root yield, EO yield, and its chemical composition;
- The effect of wheat straw and sawdust on weediness was not satisfactory;
- Wheat straw had a positive effect on EO yield and the content of some compounds.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Canter, P.H.; Thomas, H.; Ernst, E. Bringing medicinal plants into cultivation: Opportunities and challenges for biotechnology. Trends Biotechnol. 2005, 23, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.A.; Kumar, D.; Shah, M.Y. Angelica archangelica Linn. is an angel on earth for the treatment of diseases. Int. J. Nutr. Pharmacol. Neurol. Dis. 2011, 1, 36–50. [Google Scholar]
- Aćimović, M.; Rat, M.; Pezo, L.; Lončar, B.; Pezo, M.; Miljković, A.; Lazarević, J. Biological and chemical diversity of Angelica archangelica L.—Case study of essential oil and its biological activity. Agronomy 2022, 12, 1570–1583. [Google Scholar] [CrossRef]
- Forycka, A.; Buchwald, W. Variability of composition of essential oil and coumarin compounds of Angelica archangelica L. Herba Pol. 2019, 65, 62–75. [Google Scholar] [CrossRef]
- Pasqua, G.; Monacelli, B.; Silvestrini, A. Accumulation of essential oils in relation to root differentiation in Angelica archangelica L. Eur. J. Histochem. 2003, 47, 87–90. [Google Scholar] [CrossRef]
- Chauhan, R.S.; Nautiyal, M.C.; Cecotti, R.; Mella, M.; Tava, A. Variation in the essential oil composition of Angelica archangelica from three different altitudes in Western Himalaya, India. Ind. Crops Prod. 2016, 94, 401–404. [Google Scholar] [CrossRef]
- Anupam, M.; Subash, V.; Vijay, G.; Shankar, M.B. Angelica archangelica L.—A phytochemical and pharmacological review. Asian J. Res. Chem. 2017, 10, 852–856. [Google Scholar]
- Sowndhararajan, K.; Deepa, P.; Kim, M.; Park, S.J.; Kim, S. A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species. Sci. Pharm. 2017, 85, 33. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.R.; Spindola, D.G.; Garcia, D.M.; Erustes, A.; Bechara, A.; Palmeira-dos-Santos, C.; Viriato, E.P. Medicinal properties of Angelica archangelica root extract: Cytotoxicity in breast cancer cells and its protective effects against in vivo tumor development. J. Integr. Med. 2019, 17, 132–140. [Google Scholar] [CrossRef]
- Fraternale, D.; Flamini, G.; Ricci, D. Essential oil composition and antimicrobial activity of Angelica archangelica L. (Apiaceae) roots. J. Med. Food 2014, 17, 1043–1047. [Google Scholar] [CrossRef]
- Aćimović, M.; Pavlović, S.; Varga, A.; Filipović, V.; Cvetković, M.; Stanković, J.; Čabarkapa, I. Chemical composition and antibacterial activity of Angelica archangelica root essential oil. Nat. Prod. Commun. 2017, 12, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Lazarević, J.; Aćimović, M.; Đurović-Pejčev, R.; Lončar, B.; Vukić, V.; Pezo, L.; Roljević-Nikolić, S.; Vrbničanin, S.; Božić, D. Linking weed control techniques to anti-inflammatory potential: Comparative analysis of Angelica archangelica L. root essential oil profiles. Ind. Crops Prod. 2024, 216, 118656. [Google Scholar] [CrossRef]
- Mohammadhosseini, M. Chemical composition of the essential oils and volatile fractions from flowers, stems and roots of Salvia multicaulis Vahl. by using MAHD, SFME and HS-SPME methods. J. Essent. Oil Bear. Plants 2015, 18, 1360–1371. [Google Scholar] [CrossRef]
- Nekoei, M.; Mohammadhosseini, M. Chemical compositions of the essential oils from the aerial parts of Achillea wilhelmsii using traditional hydrodistillation, microwave assisted hydrodistillation and solvent-free microwave extraction methods: Comparison with the volatile compounds obtained by headspace solid phase microextraction. J. Essent. Oil Bear. Plants 2016, 19, 59–75. [Google Scholar]
- Nivinskiene, O.; Butkiene, R.; Mockute, D. The chemical composition of the essential oil of Angelica archangelica L. roots growing wild in Lithuania. J. Essent. Oil Res. 2005, 17, 373–377. [Google Scholar] [CrossRef]
- Fraternale, D.; Flamini, G.; Ricci, D. Essential oil composition of Angelica archangelica L. (Apiaceae) roots and its antifungal activity against plant pathogenic fungi. Plant Biosyst. 2016, 150, 558–563. [Google Scholar] [CrossRef]
- Upadhyay, R.; Baksh, H.; Patra, D.; Tewari, S.; Sharma, S.; Katiyar, R. Integrated weed management of medicinal plants in India. Int. J. Med. Aromat. Plants 2012, 1, 51–56. [Google Scholar]
- Matković, A.; Marković, T.; Filipović, V.; Radanović, D.; Vrbničanin, S.; Božić, D. Preliminary investigation of efficiency of milches and other mechanical weeding methods applied in Mentha piperita L. cultivation. Nat. Med. Mater. 2016, 36, 61–74. [Google Scholar]
- Lazarević, J.; Dragumilo, A.; Marković, T.; Savić, A.; Božić, D. Suzbijanje korova u usevu angelike (Angelica archangelica L). Acta Herbol. 2020, 29, 129–139. [Google Scholar] [CrossRef]
- Dragumilo, A.; Marković, T.; Vrbničanin, S.; Prijić, Ž.; Mrđan, S.; Radanović, D.; Božić, D. Weed suppression by mulches in Mentha x piperita L. J. Appl. Res. Med. Aromat. Plants 2023, 35, 100499. [Google Scholar] [CrossRef]
- Carrubba, A.; Militello, M. Nonchemical weeding of medicinal and aromatic plants. Agron. Sustain. Dev. 2013, 33, 551–561. [Google Scholar] [CrossRef]
- Ferguson, J.; Rathinasabapathi, B.; Warren, C. Southern red cedar and southern magnolia wood chip mulches for weed suppression in containerized woody ornamentals. Hortic. Technol. 2008, 18, 266–270. [Google Scholar]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, H.; Wan, X.; Li, Y. The effects of different types of mulch on soil properties and tea production and quality. J. Sci. Food Agric. 2020, 100, 5292–5300. [Google Scholar]
- Pavlů, L.; Kodešová, R.; Fér, M.; Nikodem, A.; Němec, F.; Prokeš, R. The impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil Tillage Res. 2021, 205, 104748. [Google Scholar] [CrossRef]
- Lalljee, B. Mulching as a mitigation agricultural technology against land degradation in the wake of climate change. Int. Soil Water Conserv. Res. 2013, 3, 68–74. [Google Scholar] [CrossRef]
- Iriany, A.; Chanan, M.; Djoyowasito, G. Organic mulch sheet formulation as an effort to help plants adapt to climate change. Int. J. Recycl. Org. Waste Agric. 2018, 7, 41–47. [Google Scholar] [CrossRef]
- Shehata, S.A.; Abouziena, H.F.; Abdelgawad, K.F.; Elkhawaga, F.A. Weed control efficacy, growth and yield of potato (Solanum tuberosum L.) as affected by alternative weed control methods. Potato Res. 2019, 62, 139–155. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Matković, A.; Božić, D.; Filipović, B.; Radanović, D.; Vrbničanin, S.; Marković, T. Mulching as a physical weed control method applicable in medicinal plants cultivations. Nat. Med. Mater. 2015, 35, 37–51. [Google Scholar] [CrossRef]
- Pupalienė, R.; Sinkevičienė, A.; Jodaugienė, D.; Bajorienė, K. Weed control by organic mulch in organic farming system. Weed Biol. Control 2015, 35, 65–86. [Google Scholar]
- Mzabri, I.; Rimani, M.; Charif, K.; Kouddane, N.; Berrichi, A. Study of the effect of mulching materials on weed control in saffron cultivation in Eastern Morocco. Sci. World J. 2021, 2021, 9727004. [Google Scholar] [CrossRef] [PubMed]
- Asil, H.; Celik, F.; Tasgin, S.; Celik, M.; Uremis, I. Effects of some weed control methods on stigma in saffron (Crocus sativus L.) cultivation. J. Agric. Sci. Technol. 2023, 25, 115–124. [Google Scholar] [CrossRef]
- Hutabarat, R.T.; Nurjanah, U.; Fahrurrozi, F. Effects of mulching on weed growth and cucumber yield. J. Appl. Hortic. 2021, 23, 125–129. [Google Scholar] [CrossRef]
- Jodaugienė, D.; Pupalienė, R.; Urbonienė, M.; Pranckietis, V.; Pranckietienė, I. The impact of different types of organic mulches on weed emergence. Agron. Res. 2006, 4, 197–201. [Google Scholar]
- Asif, M.; Nadeem, M.A.; Azizs, A.; Safdar, M.E.; Adnan, M.; Ali, A.; Ullah, N.; Akhtar, N.; Abbas, B. Mulching improves weeds management, soil carbon and productivity of spring planted maize (Zea mays L.). Int. J. Bot. Stud. 2020, 5, 57–61. [Google Scholar]
- Taku, A.; Tzudir, L.; Kumari, S.; Nongmaithen, D. Weed management strategies in summer blackgram (Vigna mungo L. Hepper) grown in sandy loam soils of Western Nagaland. Biol. Forum Int. J. 2023, 15, 719–723. [Google Scholar]
- Radanović, D.; Pljevljakušić, D.; Marković, T.; Ristić, M.; Dragoja, R.; Marković, T. Influence of fertilization model and PE mulch on yield and quality of arnica (A. montana) at dystric cambisol. Soil Plant 2007, 56, 85–95. [Google Scholar]
- Radanović, D.; Marković, T.; Vasin, J.; Banjac, D. The efficiency of using different mulch films in the cultivation of yellow gentian (Gentiana lutea L.) in Serbia. Field Veg. Crops Res. 2016, 53, 30–37. [Google Scholar] [CrossRef]
- Marković, T.; Radanović, D.; Nastasijević, B.; Antić-Mladenović, S.; Vasić, V.; Matković, A. Yield, quality and safety of yellow gentian roots produced under dry-farming conditions in various single basal fertilization and planting density models. Ind. Crops Prod. 2019, 132, 236–244. [Google Scholar] [CrossRef]
- Hoeberechts, J.; Nicola, S.; Fontana, E. Growth of lavander (Lavandula officinalis) and rosemary (Rosmarinus officinalis) in response to different mulches. Acta Hortic. 2004, 629, 245–251. [Google Scholar] [CrossRef]
- Wang, X.L.; Yang, Z.L.; Liu, X. The composition characteristics of different crop straw types and their multivariate analysis and comparison. Waste Manag. 2020, 110, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Sun, Y.; Hui, X.; Jiang, M.; Xiang, K.; Wu, Y.; Zhang, Q.; Tang, Y.; Yang, Z.; Sun, Y.; et al. The effect of straw mulch on nitrogen, phosphorus and potassium uptake and use in hybrid rice. Paddy Water Environ. 2019, 17, 23–33. [Google Scholar] [CrossRef]
- Ochmian, I.; Grajkowski, J.; Skupieñ, K. Effect of substrate type on the field performance and chemical composition of highbush blueberry cv. Patriot. Agric. Food Sci. 2010, 19, 69–80. [Google Scholar] [CrossRef]
- Sullivan, D.M.; Strik, B.C.; Bryla, D.R. Evaluation of alternative mulches for blueberry over five production seasons. Acta Hortic. 2015, 1076, 171–178. [Google Scholar] [CrossRef]
- Yimer, O. Different mulch material on growth, performance and yield of garlic: A review. Int. J. Sci. Food Agric. 2020, 4, 38–42. [Google Scholar] [CrossRef]
pH | CaCO3 (%) | Humus (%) | N (%) | P2O5 (mg/100 g) | K2O (mg/100 g) | |
---|---|---|---|---|---|---|
H2O | KCl | |||||
6.20 | 5.50 | 0.00 | 2.24 | 0.15 | 63.10 | 128.00 |
Weed Species | Season I | Season II | ||||
---|---|---|---|---|---|---|
SW | S | WCT | SW | S | WCT | |
Abutilon theophrasti | 0 | 0 | 0 | 0.09 | 0 | 0 |
Agropyrum repens | 55.18 | 0 | 4.24 | 0 | 0 | 0 |
Amaranthus retroflexus | 0 | 0 | 0 | 0.09 | 0 | 0 |
Ambrosia artemisiifolia | 29.05 | 15.33 | 19.05 | 5.68 | 6.99 | 22.92 |
Anagalis arvensis | 0 | 0.71 | 0 | 0 | 0 | 0 |
Artemisia vulgaris | 0 | 0 | 0.09 | 0 | 0 | 0 |
Aster litoralis | 3.04 | 1.07 | 6.43 | 0 | 0 | 0 |
Avena fatua | 0 | 0 | 0 | 0 | 0 | 4.91 |
Capsella bursa-pastoris | 0 | 0 | 2.23 | 0 | 0 | 0 |
Carduus acanthoides | 0 | 0.09 | 0.27 | 0 | 0 | 0 |
Carex myosuroides | 0 | 54.46 | 0 | 0 | 0 | 0 |
Chenopodium album | 0.27 | 1.13 | 2.08 | 10.89 | 3.21 | 21.96 |
Cichorium intybus | 0.45 | 0 | 0.45 | 0.27 | 0.18 | 0.51 |
Cirsium arvense | 15.67 | 0 | 0 | 0.09 | 10.71 | 0 |
Convolvulus arvensis | 0 | 0 | 0 | 1.34 | 0 | 1.92 |
Datura stramonium | 0 | 0 | 0 | 0.18 | 0 | 0 |
Daucus carota | 1.73 | 0.09 | 0.36 | 0 | 0 | 0 |
Echinocloa crus-galii | 7.95 | 0 | 0 | 0.27 | 0 | 0 |
Erigeron canadensis | 0 | 0.27 | 0.71 | 0 | 0.09 | 0.09 |
Fragaria vesca | 1.52 | 0.54 | 0.31 | 0 | 0 | 0 |
Lactuca serriola | 0 | 0 | 0.39 | 0 | 0 | 0.31 |
Lolium multiflorum | 0 | 0 | 3.13 | 0 | 0 | 0 |
Mentha longifolia | 1.96 | 0 | 0 | 0 | 0 | 0 |
Pastinaca sativa | 0 | 0.18 | 0 | 0 | 0 | 0 |
Picris hieracoides | 0.09 | 0 | 0 | 0 | 0 | 0 |
Plantago major | 0 | 0.27 | 0.58 | 0 | 0 | 0 |
Polygonum aviculare | 9.26 | 7.11 | 10.63 | 0.22 | 0.09 | 3.72 |
Polygonum lapathyfolium | 7.17 | 9.11 | 4.49 | 0 | 0 | 0.18 |
Setaria viridis | 0 | 0 | 0 | 2.05 | 0.80 | 0 |
Solanum nigrum | 0 | 0 | 0 | 0 | 0 | 0.09 |
Taraxacum officinale | 0.36 | 1.61 | 0.54 | 0 | 0 | 0 |
Trifolium pratense | 0 | 0 | 0 | 0.18 | 0 | 0 |
Trifolium repens | 0 | 0 | 0.18 | 0 | 0 | 0 |
Triticum vulgare | 0 | 6.70 | 0 | 0 | 0 | 0 |
Vicia sativa | 0.18 | 0 | 0 | 0 | 0 | 0 |
Xanthium strumarium | 0 | 0 | 0 | 0.09 | 0 | 0.09 |
Experimental Season | ATF | SBF | S | SW |
---|---|---|---|---|
season I | 100% | 100% | 14.22% | 9.79% |
season II | 100% | 100% | 63.58% | 40.38% |
A | ||||||
---|---|---|---|---|---|---|
Components | ATF | SBF | S | SW | WCT | WFC |
α-pinene | 11.89 | 9.57 | 13.13 | 7.80 | 13.05 | 9.07 |
mircene | 2.44 | 4.69 | 2.75 | / | 3.36 | 2.03 |
α-phellandrene | 3.01 | 0.55 | 1.61 | / | 1.43 | 1.01 |
δ-3-carene | 6.45 | 14.09 | 7.37 | 4.41 | 9.3 | 8.32 |
p-cymene | 7.97 | 6.44 | 9.51 | 10.25 | 8.73 | 6.61 |
β-phellandrene | 13.01 | 11.47 | 17.23 | 6.71 | 13.53 | 10.79 |
(E)-β-ocimen | 1.43 | 1.63 | 1.61 | / | 1.48 | 1.09 |
α-copaen | 4.63 | 3.30 | 3.33 | 7.05 | 2.99 | 2.78 |
(2E.4E)-decadienale | 6.77 | 3.03 | 5.49 | 1.46 | 3.19 | 2.27 |
Total yield | 0.41 | 0.30 | 0.34 | 0.18 | 0.31 | 0.32 |
B | ||||||
Components | ATF | SBF | S | SW | WCT | WFC |
α-pinene | 19.42 | 16.34 | 28.20 | 16.70 | 14.20 | 16.21 |
mircene | 4.42 | 5.08 | 3.37 | 6.80 | 4.35 | 5.9 |
α-phellandrene | 7.91 | 12.67 | 8.14 | 9.32 | 10.13 | 4.91 |
δ-3-carene | 10.22 | 11.54 | 12.52 | 9.54 | 10.55 | 10.23 |
p-cymene | 6.18 | 5.07 | 4.03 | 4.59 | 6.80 | 9.23 |
β-phellandrene | 27.36 | 22.79 | 18.85 | 23.10 | 26.45 | 29.69 |
(E)-β-ocimen | 3.71 | 5.27 | 4.12 | 6.86 | 4.89 | 4.03 |
α-copaen | 1.71 | 2.92 | 2.43 | 1.90 | 2.95 | 2.13 |
Total yield | 0.43 | 0.32 | 0.41 | 0.37 | 0.51 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarević, J.; Vrbničanin, S.; Dragumilo, A.; Marković, T.; Đurović Pejčev, R.; Roljević Nikolić, S.; Božić, D. Analysis of the Effects of Organic and Synthetic Mulching Films on the Weed, Root Yield, Essential Oil Yield, and Chemical Composition of Angelica archangelica L. Horticulturae 2024, 10, 1199. https://doi.org/10.3390/horticulturae10111199
Lazarević J, Vrbničanin S, Dragumilo A, Marković T, Đurović Pejčev R, Roljević Nikolić S, Božić D. Analysis of the Effects of Organic and Synthetic Mulching Films on the Weed, Root Yield, Essential Oil Yield, and Chemical Composition of Angelica archangelica L. Horticulturae. 2024; 10(11):1199. https://doi.org/10.3390/horticulturae10111199
Chicago/Turabian StyleLazarević, Jovan, Sava Vrbničanin, Ana Dragumilo, Tatjana Marković, Rada Đurović Pejčev, Svetlana Roljević Nikolić, and Dragana Božić. 2024. "Analysis of the Effects of Organic and Synthetic Mulching Films on the Weed, Root Yield, Essential Oil Yield, and Chemical Composition of Angelica archangelica L." Horticulturae 10, no. 11: 1199. https://doi.org/10.3390/horticulturae10111199
APA StyleLazarević, J., Vrbničanin, S., Dragumilo, A., Marković, T., Đurović Pejčev, R., Roljević Nikolić, S., & Božić, D. (2024). Analysis of the Effects of Organic and Synthetic Mulching Films on the Weed, Root Yield, Essential Oil Yield, and Chemical Composition of Angelica archangelica L. Horticulturae, 10(11), 1199. https://doi.org/10.3390/horticulturae10111199