Comparative Evaluation of Structural Characteristics of Starch from 10 Varieties of Lotus Root
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Separation of Lotus Root Starch
2.3. Color Measurement
2.4. Starch and Amylose Content Measurement
2.5. Light Transmittance Measurement
2.6. Swelling Power and Solubility
2.7. Morphology Observation of Lotus Root Starch
2.8. Scanning Electron Microscope (SEM) Analysis
2.9. X-Ray Powder Diffractometry (XRD) Analysis
2.10. 13C Solid-State NMR Analysis
2.11. ATR-FTIR Analysis
2.12. Thermal Performance Analysis
2.13. Lamellar Structure
2.14. Gel Texture Analysis
2.15. Statistical Analysis of Data
3. Results and Discussion
3.1. Color of Lotus Root Starch
3.2. Starch Content of Lotus Root
3.3. Light Transmittance of Lotus Root Starch
3.4. Swelling Power and Solubility of Lotus Root Starch
3.5. Observation of Starch Particle Morphology
3.6. 13C CP-MAS NMR Analysis of Starch
3.7. XRD Analysis of Starch
3.8. ATR-FTIR Analysis of Starch
3.9. DSC Analysis of Starch
3.10. SAXS Analysis of Starch
3.11. Gel Texture Analysis of Starch
3.12. Analysis of Starch Quality Indexes Correlation in 10 Varieties of Lotus Root
3.13. Principal Component Analysis of Starch Indexes in 10 Varieties of Lotus Root
3.14. Establishment of Evaluation Methods of Starch Quality from 10 Varieties of Lotus Root
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Lu, X.; Zeng, S.S.; Huang, X.H.; Guo, Z.B.; Zheng, Y.F.; Tian, Y.T.; Zheng, B.D. Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: A review. Phytochem. Rev. 2015, 14, 321–334. [Google Scholar] [CrossRef]
- Arooj, M.; Imran, S.; Inam-ur-Raheem, M.; Rajoka, M.S.R.; Sameen, A.; Siddique, R.; Sahar, A.; Tariq, S.; Riaz, A.; Hussain, A. Lotus seeds (Nelumbinis semen) as an emerging therapeutic seed: A comprehensive review. Food Sci. Nutr. 2021, 9, 3971–3987. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Mukherjee, D.; Maji, A.K.; Rai, S.; Heinrich, M. The sacred lotus (Nelumbo nucifera)–phytochemical and therapeutic profile. J. Pharm. Pharmacol. 2009, 61, 407–422. [Google Scholar]
- Li, S.; Li, X.; Lamikanra, O.; Luo, Q.; Liu, Z.W.; Yang, J. Effect of cooking on physicochemical properties and volatile compounds in lotus root (Nelumbo nucifera Gaertn). Food Chem. 2017, 216, 316–323. [Google Scholar] [CrossRef]
- Chiang, P.Y.; Luo, Y.Y. Effects of pressurized cooking on the relationship between the chemical compositions and texture changes of lotus root (Nelumbo nucifera Gaertn.). Food Chem. 2007, 105, 480–484. [Google Scholar] [CrossRef]
- Punia, S.; Dhull, S.B.; Kunner, P.; Rohilla, S.S. Effect of γ-radiation on physicochemical, morphological and thermal characteristics of lotus seed (Nelumbo nucifera) starch. Int. J. Biol. Macromol. 2020, 157, 584–590. [Google Scholar] [CrossRef]
- Pérez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch-Stärke 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Corre, D.L.; Angellier-Coussy, H. Preparation and application of starch nanoparticles for nanocomposites: A review. React. Funct. Polym. 2014, 85, 97–120. [Google Scholar] [CrossRef]
- Yu, H.; Cheng, L.; Yin, J.; Yan, S.J.; Liu, K.J.; Zhang, F.M.; Xu, B.; Li, L.J. Structure and physicochemical properties of starches in lotus (Nelumbo nucifera Gaertn.) rhizome. Food Sci. Nutr. 2013, 1, 273–283. [Google Scholar] [CrossRef]
- Malumba, P.; Bungu, M.D.; Katanga, K.J.; Doran, L.; Danthine, S.; Béra, F. Structural and physicochemical characterization of Sphenostylis stenocarpa (Hochst. ex A. Rich.) Harms tuber starch. Food Chem. 2016, 212, 305–312. [Google Scholar] [CrossRef]
- Sun, S.L.; Zhang, G.W.; Ma, C.Y. Preparation, physicochemical characterization and application of acetylated lotus rhizome starches. Carbohydr. Polym. 2016, 135, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Dudu, O.E.; Li Lin Oyedeji, A.B.; Oyeyinka, S.A.; Ma, Y. Structural and functional characteristics of optimised dry-heat-moisture treated cassava flour and starch. Int. J. Biol. Macromol. 2019, 133, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Jiang, B.; Zhang, T.; Jin, Z.Y.; Mu, W.M. Impact ofmild acid hydrolysis on structure and digestion properties of waxy maize starch. Food Chem. 2011, 126, 506–513. [Google Scholar] [CrossRef]
- Man, J.; Yang, Y.; Zhang, C.; Jin, Z.Y.; Mu, W.M. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion. J. Agric. Food Chem. 2012, 60, 9332–9341. [Google Scholar] [CrossRef]
- Yong, H.M.; Wang, X.C.; Sun, J.; Fang, Y.; Liu, J.; Jin, C.H. Comparison of the structural characterization and physicochemical properties of starches from seven purple sweet potato varieties cultivated in China. Int. J. Biol. Macromol. 2018, 120, 1632–1638. [Google Scholar] [CrossRef]
- Wei, C.X.; Qin, F.L.; Zhou, W.D.; Xu, B.; Chen, C.; Chen, Y.F.; Wang, Y.P.; Gu, M.H.; Liu, Q.Q. Comparison of the crystalline properties and structural changes of starches from high- amylose transgenic rice and its wild type during heating. Food Chem. 2011, 128, 645–652. [Google Scholar] [CrossRef]
- Yuryev, V.P.; Krivandin, A.V.; Kiseleva, V.I.; Wasserman, L.A.; Genkina, N.K.; Fornal, J.; Blaszczak, W.; Schiraldi, A. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohydr. Res. 2004, 339, 2683–2691. [Google Scholar] [CrossRef]
- Ali, N.A.; Dash, K.K.; Routray, W. Physicochemical characterization of modified lotus seed starch obtained through acid and heat moisture treatment. Food Chem. 2020, 319, 126513. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Li, G.T.; Zhu, F. A novel starch from lotus (Nelumbo nucifera) seeds: Composition, structure, properties and modifications. Food Hydrocoll. 2021, 120, 106899. [Google Scholar] [CrossRef]
- Punia, S.; Kumar, M.; Siroha, A.K.; Kennedy, J.F.; Dhull, S.B.; Whiteside, W.S. Pearl millet grain as an emerging source of starch: A review on its structure, physicochemical properties, functionalization, and industrial applications. Carbohydr. Polym. 2021, 260, 117776. [Google Scholar] [CrossRef]
- Zhu, D.W.; Fang, C.Y.; Qian, Z.H.; Guo, B.W.; Huo, Z.Y. Differences in starch structure, physicochemical properties and texture characteristics in superior and inferior grains of rice varieties with different amylose contents. Food Hydrocoll. 2021, 110, 106170. [Google Scholar] [CrossRef]
- Dhull, S.B.; Chandak, A.; Chawla, P.; Goksen, G.; Rose, P.K.; Rani, J. Modifications of native lotus (Nelumbo nucifera G.) rhizome starch and its overall characterization: A review. Int. J. Biol. Macromol. 2023, 253, 127543. [Google Scholar] [CrossRef] [PubMed]
- Man, J.M.; Cai, J.W.; Cai, C.H.; Xu, B.; Huai, H.Y.; Wei, C.X. Comparison of physicochemical properties of starches from seed and rhizome of lotus. Carbohydr. Polym. 2012, 88, 676–683. [Google Scholar] [CrossRef]
- Li, Q.; Wu, Q.Y.; Jiang, W.; Qian, J.Y.; Zhang, L.; Wu, M.G.; Rao, S.Q.; Wu, C.S. Effect of pulsed electric field on structural properties and digestibility of starches with different crystalline type in solid state. Carbohydr. Polym. 2019, 207, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X.; Wen, F.; Zhang, S.R.; Shen, R.R.; Jiang, W.; Kan, J.; Jin, C.H. Morphology, structural and physicochemical properties of starch from the root of Cynanchum auriculatum Royle ex Wight. Int. J. Biol. Macromol. 2016, 93, 107–116. [Google Scholar] [CrossRef]
- Tan, I.; Flanagan, B.M.; Halley, P.J.; Whittaker, A.K.; Gidley, M.J. Amethod for estimating the nature and relative proportions of amorphous, single, and double-helical com-ponents instarchgranulesby 13C CP/MAS NMR. Biomacromolecules 2007, 8, 885–891. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, F.; Liu, F.; Wang, Z.W. Study on structural changes of microwave heat-moisture treated resistant Canna edulis Ker starch during digestion in vitro. Food Hydrocoll. 2010, 24, 27–34. [Google Scholar] [CrossRef]
- Jeong, O.; Shin, M. Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch. Food Chem. 2018, 256, 77–84. [Google Scholar] [CrossRef]
- Blazek, J.; Gilberta, E.P. Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review. Carbohydr. Polym. 2011, 85, 281–293. [Google Scholar] [CrossRef]
- Cheetham, N.W.H.; Tao, L. Variation in crystalline type with amylose con-tent in maize starch granules: An X-ray powder diffraction study. Carbohydr. Polym. 1998, 36, 277–284. [Google Scholar] [CrossRef]
- Chandak, A.; Dhull, S.B.; Chawla, P.; Fogarasi, M.; Fogarasi, S. Effect of single and dual modifications on properties of lotus rhizome starch modified by microwave and γ-irradiation: A comparative study. Foods 2022, 11, 2969. [Google Scholar] [CrossRef] [PubMed]
- Sukhija, S.; Singh, S.; Riar, C.S. Isolation of starches from different tubers and study of their physicochemical, thermal, rheological and morphological characteristics. Starch-Stärke 2015, 68, 160–168. [Google Scholar] [CrossRef]
- Zhong, G.; Chen, Z.D.; We, Y.M. Physicochemical properties of lotus (Nelumbo nucifera Gaertn.) and kudzu (Pueraria hirsute Matsum.) starches. Int. J. Food Sci. Technol. 2007, 42, 1449–1455. [Google Scholar]
- Gani, A.; Masoodi, F.A.; Wani, S.M. Characterization of lotus stem (Nelumbo nucifera) starches purified from three lakes of India. J. Aquat. Food Prod. Technol. 2013, 22, 605–618. [Google Scholar] [CrossRef]
- Lin, H.M.; Chang, Y.H.; Lin, J.H.; Jane, J.L.; Sheu, M.J.; Lu, T.J. Heterogeneity of lotus rhizome starch granules as revealed by a-amylase degradation. Carbohydr. Polym. 2006, 66, 528–536. [Google Scholar] [CrossRef]
- Dhull, S.B.; Chandak, A.; Collins, M.N.; Bangar, S.P.; Chawla, P.; Singh, A. Lotus seed starch: A novel functional ingredient with promising properties and applications in food—A review. Starch-Stärke 2022, 74, 2200064. [Google Scholar] [CrossRef]
- Baldwin, P.M.; Adler, J.; Davies, M.; Melia, C. Holes in Starch Granules: Confocal, SEM and Light Microscopy Studies of Starch Granule Structure. Starch-Stärke 2010, 46, 341–346. [Google Scholar] [CrossRef]
- Buleon, A.; Colonna, P.; Planchot, V.; Ball, S. Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol. 1998, 23, 85–112. [Google Scholar] [CrossRef]
- Sevenou, O.; Hill, S.E.; Farhat, I.A.; Mitchell, J.R. Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int. J. Biol. Macromol. 2002, 31, 79–85. [Google Scholar]
- Zheng, M.J.; You, Q.X.; Lin, Y.; Lan, F.Y.; Luo, M.L.; Zeng, H.L.; Zheng, B.D.; Zhang, Y. Effect of guar gum on the physicochemical properties and in vitro digestibility of lotus seed starch. Food Chem. 2018, 272, 286–291. [Google Scholar]
- Mishra, S.; Rai, T. Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocoll. 2005, 20, 557–566. [Google Scholar] [CrossRef]
- Chung, H.J.; Liu, Q.; Lee, L.; Wei, D.Z. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocoll. 2011, 25, 968–975. [Google Scholar] [CrossRef]
- Miao, M.; Zhang, T.; Jiang, B. Characterisations of kabuli and desi chickpea starches cultivated in China. Food Chem. 2009, 113, 1025–1032. [Google Scholar] [CrossRef]
- Kong, X.L.; Zhu, P.; Sui, Z.Q.; Bao, J.S. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chem. 2015, 172, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Li, X.P.; Ma, Z.; Hu, X.Z.; Wang, X.L.; Zhang, D.Y. Multiscale structural changes and retrogradation effects of addition of sodium alginate to fermented and native wheat starch. Int. J. Biol. Macromol. 2020, 163, 2286–2294. [Google Scholar] [CrossRef]
- Wang, X.C.; Wen, F.T.; Zhang, S.R.; Shen, R.R.; Jiang, W.; Liu, J. Effect of acid hydrolysis on mor-phology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight. Int. J. Biol. Macromol. 2017, 96, 807–816. [Google Scholar] [CrossRef]
- Xie, Y.L.; Yan, M.X.; Yuan, S.S.; Sun, S.M.; Huo, Q.G. Effect of microwave treatment on the physicochemical properties of potato starch granules. BMC Chem. 2013, 7, 113. [Google Scholar] [CrossRef] [PubMed]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Optimization of textural properties of noodles with soluble fiber, dough mixing time and different water levels. J. Cereal Sci. 2016, 69, 104–110. [Google Scholar] [CrossRef]
- Tobin, A.B.; Heunemann, P.; Wemmer, J.; Stokes, R.; Nicholson, T.; Windhab, E.J.; Fischer, P. Cohesiveness and flowability of particulated solid and semi-solid food systems. Food Funct. 2017, 8, 3647–3653. [Google Scholar] [CrossRef]
- Xu, H.; Xu, S.Q.; Xu, Y.; Jiang, Y.J.; Li, T.; Zhang, X.X.; Yang, J.; Wang, L. Relationship between the physicochemical properties and amylose content of rice starch in rice varieties with the same genetic background. J. Cereal Sci. 2024, 118, 103932. [Google Scholar] [CrossRef]
- Lin, L.S.; Guo, D.W.; Huang, J.; Zhang, X.D.; Zhang, L.; Wei, C.X. Molecular structure and enzymatic hydrolysis properties of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocoll. 2016, 58, 246–254. [Google Scholar] [CrossRef]
- Teng, B.; Zhang, Y.; Du, S.Y.; Wu, J.D.; Li, Z.F.; Luo, Z.X.; Yang, J.D. Crystalline, thermal and swelling properties of starches from single-segment substitution lines with different Wx alleles in rice (Oryza sativa L.). J. Sci. Food Agric. 2017, 97, 108–114. [Google Scholar] [CrossRef] [PubMed]
Photo | Epidermis | Length | Starch | |
---|---|---|---|---|
Yeyong | Dark yellow with a rough surface | The main lotus root is about 40 cm long, while the lotus root section is about 10 cm long and slender | 11.88%; Powdery lotus root | |
MRHZ | Yellow with a smooth surface | The main lotus root is about 36 cm long, while the lotus root section is about 18 cm long and slender | 10.28%; Powdery lotus root | |
Zhonghua | Yellow with a slightly rough surface | The main lotus root is about 45 cm long, while the lotus root section is about 13 cm long and slender | 10.54%; Crispy lotus root | |
Suiningbaiou | Bright yellow with a smooth surface | The main lotus root is about 40 cm long, while the lotus root section is about 13 cm long and elliptical | 11.47%; Powdery lotus root | |
Zaohua | Milky white with a rough and uneven surface | The main lotus root is about 50 cm long, while the lotus root section is about 14 cm long and elliptical | 11.84%; Powdery lotus root | |
Meirenhong | Pale yellow with a smooth surface | The main lotus root is about 32 cm long, while the lotus root section is about 10 cm long and slender | 10.13%; Crispy lotus root | |
E9:11 | Milky white with a slightly rough surface | The main lotus root is about 48 cm long, while the lotus root section is about 13 cm long and slender | 12.11%; Powdery lotus root | |
Huchengyeou | Pale yellow with a smooth surface | The main lotus root is about 47 cm long, while the lotus root section is about 12 cm long, and slender | 10.54%; Crispy lotus root | |
Peixianyeou | Yellow with a slightly rough surface | The main lotus root is about 46 cm long, while the lotus root section is about 10 cm long and elliptical | 10.78%; Crispy lotus root | |
Xin No.5 | Mmilky white with a smooth surface | The main lotus root is about 40 cm long, while the lotus root section is about 13 cm long and elliptical | 11.03%; Crispy lotus root |
L* | a* | b* | Starch Content % | Amylose Content % | Amylopectin Content % | |
---|---|---|---|---|---|---|
Yeyong | 78.92 ± 0.03 g | 2.96 ± 0.06 ef | 15.84 ± 0.14 cd | 81.72 ± 3.87 h | 17.47 ± 0.63 bc | 64.25 |
MRHZ | 81.08 ± 0.15 b | 2.63 ± 0.12 g | 14.90 ± 0.17 ef | 95.78 ± 3.15 c | 20.25 ± 0.26 ab | 75.53 |
Zhonghua | 80.34 ± 0.15 cd | 3.21 ± 0.14 cd | 15.59 ± 0.11 d | 92.78 ± 4.22 e | 15.53 ± 0.69 c | 77.25 |
Suiningbaiou | 81.41 ± 0.32 a | 2.41 ± 0.10 h | 14.43 ± 0.15 g | 97.02 ± 2.16 b | 23.54 ± 0.37 a | 73.48 |
Zaohua | 79.86 ± 0.11 e | 3.02 ± 0.05 de | 15.19 ± 0.17 e | 87.61 ± 3.45 f | 18.73 ± 0.70 bc | 68.88 |
Meirenhong | 80.60 ± 0.10 c | 2.79 ± 0.12 fg | 14.71 ± 0.21 fg | 99.54 ± 1.34 a | 15.70 ± 0.72 c | 83.84 |
E9:11 | 79.55 ± 0.04 f | 3.00 ± 0.10 def | 15.56 ± 0.05 d | 84.76 ± 2.68 g | 17.81 ± 0.19 bc | 66.95 |
Huchengyeou | 76.24 ± 0.08 h | 4.62 ± 0.17 a | 17.53 ± 0.32 a | 94.38 ± 3.01 d | 15.44 ± 0.09 c | 78.94 |
Peixianyeou | 80.08 ± 0.04 de | 3.31 ± 0.10 c | 16.08 ± 0.05 bc | 92.74 ± 4.61 e | 16.37 ± 0.46 c | 76.37 |
Xin No. 5 | 77.69 ± 0.06 i | 3.60 ± 0.06 b | 16.38 ± 0.19 b | 84.57 ± 3.42 g | 15.95 ± 0.30 c | 68.62 |
FTIR Ratio | Relative Crystallization % | SAXS Parameters | ||||
---|---|---|---|---|---|---|
1047/1022 (cm−1) | 1022/995 (cm−1) | Smax (nm−1) | d (nm) | Imax | ||
Yeyong | 0.652 | 0.845 | 21.43 ± 0.55 ab | 0.598 | 10.507 | 97.696 |
MRHZ | 0.658 | 0.861 | 21.07 ± 1.18 ab | 0.598 | 10.507 | 82.701 |
Zhonghua | 0.662 | 0.837 | 20.87 ± 1.12 ab | 0.598 | 10.507 | 72.158 |
Suiningbaiou | 0.651 | 0.849 | 18.27 ± 0.15 c | 0.598 | 10.507 | 62.999 |
Zaohua | 0.656 | 0.853 | 18.73 ± 0.47 c | 0.598 | 10.507 | 69.786 |
Meirenhong | 0.652 | 0.853 | 19.93 ± 0.61 bc | 0.598 | 10.507 | 77.421 |
E9:11 | 0.649 | 0.863 | 18.43 ± 0.40 c | 0.612 | 10.267 | 68.123 |
Huchengyeou | 0.648 | 0.862 | 22.10 ± 1.31 a | 0.584 | 10.759 | 80.054 |
Peixianyeou | 0.651 | 0.856 | 19.77 ± 0.96 bc | 0.612 | 10.267 | 81.398 |
Xin No. 5 | 0.641 | 0.863 | 20.73 ± 1.66 ab | 0.598 | 10.507 | 64.347 |
T0 (°C) | TP (°C) | TC (°C) | ΔH (J/g) | |
---|---|---|---|---|
Yeyong | 59.82 ± 0.30 ab | 65.36 ± 0.85 ef | 69.82 ± 2.36 c | 12.06 ± 0.06 ab |
MRHZ | 62.50 ± 4.66 ab | 70.84 ± 0.05 a | 74.24 ± 0.09 ab | 13.00 ± 1.66 ab |
Zhonghua | 60.67 ± 0.59 ab | 64.85 ± 0.03 ef | 70.02 ± 0.09 c | 12.64 ± 0.86 ab |
Suiningbaiou | 61.96 ± 4.30 ab | 65.71 ± 1.17 def | 77.23 ± 0.68 a | 11.41 ± 3.68 ab |
Zaohua | 66.21 ± 2.69 a | 67.52 ± 0.49 bcd | 74.16 ± 0.81 ab | 10.80 ± 1.82 ab |
Meirenhong | 62.28 ± 0.74 ab | 66.61 ± 0.28 cde | 72.18 ± 2.91 bc | 7.10 ± 3.35 b |
E9:11 | 58.28 ± 0.49 b | 64.41 ± 0.01 f | 69.05 ± 0.03 c | 11.77 ± 0.07 ab |
Huchengyeou | 62.52 ± 1.48 ab | 69.27 ± 0.62 ab | 74.10 ± 1.13 ab | 13.57 ± 1.09 a |
Peixianyeou | 61.95 ± 1.12 ab | 68.13 ± 0.50 bc | 74.59 ± 0.76 ab | 12.19 ± 0.32 ab |
Xin No. 5 | 59.90 ± 0.86 ab | 65.46 ± 1.92 ef | 69.59 ± 0.82 c | 15.22 ± 3.84 a |
Hardness/gf | Elasticity | Chewiness/gf | Cohesion | Adhesiveness/gf | Gel Strength/g·cm | |
---|---|---|---|---|---|---|
Yeyong | 218.68 ± 4.07 a | 0.8518 ± 0.00 a | 158.74 ± 5.52 a | 0.8789 ± 0.01 ab | 186.33 ± 10.77 a | 147.74 ± 4.08 a |
MRHZ | 198.08 ± 7.27 bcd | 0.7719 ± 0.03 cd | 130.44 ± 6.38 bc | 0.8533 ± 0.01 abc | 169.06 ± 8.34 ab | 132.72 ± 4.87 abc |
Zhonghua | 200.42 ± 11.40 abcd | 0.7218 ± 0.04 e | 117.68 ± 7.85 c | 0.8118 ± 0.03 d | 162.68 ± 10.93 ab | 112.24 ± 7.36 c |
Suiningbaiou | 193.60 ± 10.89 cd | 0.7787 ± 0.03 bcd | 128.10 ± 5.68 bc | 0.8508 ± 0.02 abc | 164.55 ± 5.49 ab | 132.67 ± 4.97 abc |
Zaohua | 196.06 ± 8.50 cd | 0.8221 ± 0.01 ab | 139.49 ± 5.78 abc | 0.8655 ± 0.01 abc | 169.72 ± 8.14 ab | 132.07 ± 7.70 abc |
Meirenhong | 198.69 ± 11.67 abcd | 0.7677 ± 0.01 cde | 128.50 ± 7.81 bc | 0.8434 ± 0.01 bcd | 167.50 ± 12.59 ab | 128.52 ± 3.38 abc |
E9:11 | 212.48 ± 3.13 abc | 0.7684 ± 0.03 cde | 135.66 ± 5.84 abc | 0.8301 ± 0.01 cd | 176.40 ± 5.56 ab | 133.18 ± 5.11 abc |
Huchengyeou | 216.82 ± 4.56 ab | 0.8241 ± 0.02 ab | 147.40 ± 5.38 ab | 0.8876 ± 0.02 a | 178.37 ± 10.87 ab | 141.86 ± 4.38 ab |
Peixianyeou | 182.84 ± 11.78 d | 0.8123 ± 0.01 abc | 128.22 ± 6.51 bc | 0.8636 ± 0.01 abc | 157.77 ± 9.43 b | 130.66 ± 6.22 abc |
Xin No. 5 | 183.83 ± 8.37 d | 0.7442 ± 0.01 de | 116.07 ± 6.44 c | 0.8474 ± 0.02 bcd | 155.77 ± 8.42 b | 123.60 ± 5.64 bc |
Principal Component | Characteristic Value | Contribution Rate of Variance % | Cumulative Variance Contribution Rate % |
---|---|---|---|
1 | 2.847 | 35.753 | 35.753 |
2 | 2.131 | 28.723 | 64.477 |
3 | 1.267 | 24.741 | 89.218 |
Index | Component | ||
---|---|---|---|
1 | 2 | 3 | |
Gel strength | 0.833 | 0.510 | |
Elasticity | 0.798 | ||
Amylose content | 0.588 | −0.541 | |
Adhesiveness | 0.507 | 0.761 | |
TP | 0.656 | −0.66 | |
T0 | 0.773 | ||
Light transmittance | −0.553 | 0.610 |
Index | Factor | ||
---|---|---|---|
1 | 2 | 3 | |
Amylose content | −0.033 | 0.442 | −0.03 |
Light transmittance | 0.015 | −0.523 | 0.198 |
T0 | −0.012 | −0.193 | 0.627 |
TP | −0.044 | 0.181 | 0.387 |
Elasticity | 0.352 | −0.097 | 0.189 |
Adhesiveness | 0.374 | −0.054 | −0.147 |
Gel strength | 0.375 | 0.083 | −0.056 |
Sample | F1 | F2 | F3 | Ft | Reorder |
---|---|---|---|---|---|
Suiningbaiou | −0.37917 | 2.58344 | 0.24572 | 0.75 | 1 |
Yeyong | 1.95755 | −0.09887 | −0.97823 | 0.48 | 2 |
Huchengyeou | 1.11050 | −0.33099 | 0.45269 | 0.46 | 3 |
Zaohua | 0.31421 | −0.59055 | 1.85601 | 0.45 | 4 |
MRHZ | −0.13401 | 0.44588 | 0.42135 | 0.21 | 5 |
Peixianyeou | −0.25569 | −0.033145 | 0.78455 | 0.01 | 6 |
Meirenhong | −0.30503 | −0.44567 | 0.14486 | −0.23 | 7 |
E9:11 | 0.28874 | −0.15502 | −1.56573 | −0.37 | 8 |
Xin No. 5 | −1.12521 | 0.07265 | −0.94611 | −0.69 | 9 |
Zhonghua | −1.47188 | −1.14941 | −0.41511 | −1.07 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Xu, M.; Jiang, Y.; Zhang, B.; Shao, Y.; Liu, J.; Kan, J.; Zhang, M.; Xiao, L.; Qi, X.; et al. Comparative Evaluation of Structural Characteristics of Starch from 10 Varieties of Lotus Root. Horticulturae 2024, 10, 1200. https://doi.org/10.3390/horticulturae10111200
Wang F, Xu M, Jiang Y, Zhang B, Shao Y, Liu J, Kan J, Zhang M, Xiao L, Qi X, et al. Comparative Evaluation of Structural Characteristics of Starch from 10 Varieties of Lotus Root. Horticulturae. 2024; 10(11):1200. https://doi.org/10.3390/horticulturae10111200
Chicago/Turabian StyleWang, Fei, Minghui Xu, Yaying Jiang, Bei Zhang, Yuyang Shao, Jun Liu, Juan Kan, Man Zhang, Lixia Xiao, Xiaohua Qi, and et al. 2024. "Comparative Evaluation of Structural Characteristics of Starch from 10 Varieties of Lotus Root" Horticulturae 10, no. 11: 1200. https://doi.org/10.3390/horticulturae10111200
APA StyleWang, F., Xu, M., Jiang, Y., Zhang, B., Shao, Y., Liu, J., Kan, J., Zhang, M., Xiao, L., Qi, X., Li, L., Zhao, S., & Qian, C. (2024). Comparative Evaluation of Structural Characteristics of Starch from 10 Varieties of Lotus Root. Horticulturae, 10(11), 1200. https://doi.org/10.3390/horticulturae10111200