Chemical Analysis and Biological Potential of Cotton Lavender Ethanolic Extract (Santolina chamaecyparissus L., Asteraceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Extract Preparation
2.3. Chemical Characterization of Cotton Lavender Extract
2.4. Antioxidant Activity
2.5. Antihyperglycemic Potential
2.6. In Silico Molecular Modeling
2.7. Statistical Processing
3. Results
3.1. Chemical Characterization of Cotton Lavender Ethanolic Extract
3.2. Antioxidant Activity of Cotton Lavender Ethanolic Extract
3.3. Antihypergicemic Potential of Cotton Lavender Ethanolic Extract
3.4. In Silico Molecular Modeling of Cotton Lavender Ethanolic Extract Potential on α-Glucosidase Inhibition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zaiter, L.; Benayache, F.; Beghidja, N.; Figueredo, G.; Chalard, P.; Chalchat, J.-C.; Marchioni, E.; Benayache, S. Essential oils of Santolina africana Jord. & Fourr. and Santolina chamaecyparissus L. J. Essent. Oil-Bear. Plants 2015, 18, 1338–1342. [Google Scholar] [CrossRef]
- Mutavski, Z.; Vladić, J.; Vidović, S.; Nastić, N.; Aćimović, M. High pressure and ultrasound-assisted extraction of bioactive compounds from Santolina chamaecypatissus L. Croat. J. Food Sci. Technol. 2022, 14, 8–14. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [PubMed]
- Petrović, S.; Kukić-Marković, J.; Pavlović-Drobac, M. Biljni lekoviti proizvodi: Uslovi za bezbednu primenu. Arh. Farm. 2012, 62, 119–135. (In Serbian) [Google Scholar]
- Joffre, J.; Hellman, J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid. Redox Signal. 2021, 35, 1291–1307. [Google Scholar] [CrossRef]
- Ruiz-Navajas, Y.; Viuda-Martos, M.; Perez-Alvarez, J.A.; Sendra, E.; Fernandez-Lopez, J. Chemical characterization and antibacterial activity of two aromatic herbs (Santolina chamaecyparissus and Sideritis angustifolia) widely used in the folk medicine. J. Food Saf. 2012, 32, 426–434. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R. A review of the traditional uses, phytochemistry and biological activities of the genus Santolina. Planta Med. 2018, 84, 627–637. [Google Scholar] [CrossRef]
- Giaco, A.; De Giorgi, P.; Astuti, G.; Caputo, P.; Serrano, M.; Carballal, R.; Sáez, L.; Bacchetta, G.; Peruzzi, L. A Morphometric analysis of the Santolina chamaecyparissus Complex (Asteraceae). Plants 2022, 11, 3458. [Google Scholar] [CrossRef]
- Giaco, A.; Astuti, G.; Peruzzi, L. Typification and nomenclature of the names in the Santolina chamaecyparissus species complex (Asteraceae). Taxon 2021, 70, 189–201. [Google Scholar] [CrossRef]
- Khubeiz, M.J.; Mansour, G. In vitro antifungal, antimicrobial properties and chemical composition of Santolina chamaecyparissus essential oil in Syria. Int. J. Toxicol. Pharm. Res. 2016, 8, 372–378. [Google Scholar]
- Garg, S.; Gupta, D.; Mehta, V.; Kumar, S. Volatile constituents of the essential oil of Santolina chamaecyparissus Linn, from the Southern hills of India. J. Essent. Oil Res. 2001, 13, 234–235. [Google Scholar] [CrossRef]
- Pérez-Alonso, M.; Velasco-Negueruela, A. Essential oil components of Santolina chamaecyparissus L. Flavour Fragr. J. 1992, 7, 37–41. [Google Scholar] [CrossRef]
- Süfer, Ö.; Ceylan, A.; Onbaşili, D.; Yuvali, G.Ç.; Bozok, F. Chemical compounds and biological activity of Turkish Santolina chamaecyparissus L. essential oil by microwave assisted distillation. Kastamonu Univ. J. For. 2021, 21, 165–175. [Google Scholar] [CrossRef]
- Suresh, B.; Sriram, S.; Dhanaraj, S.; Elango, K.; Chinnaswamy, K. Anticandidal activity of Santolina chamaecyparissus volatile oil. J. Ethnopharmacol. 1997, 55, 151–159. [Google Scholar] [CrossRef]
- Božin, B.; Kladar, N.; Grujić, N.; Anačkov, G.; Samojlik, I.; Gavarić, N.; Čonić, B.S. Impact of origin and biological source on chemical composition, anticholinesterase and antioxidant properties of some St. John’s wort species (Hypericum spp., Hypericaceae) from the Central Balkans. Molecules 2013, 18, 11733–11750. [Google Scholar] [CrossRef]
- Gavarić, N.; Kladar, N.; Mišan, A.; Nikolić, A.; Samojlik, I.; Mimica-Dukić, N.; Božin, B. Postdistillation waste material of thyme (Thymus vulgaris L., Lamiaceae) as a potential source of biologically active compounds. Ind. Crops Prod. 2015, 74, 457–464. [Google Scholar] [CrossRef]
- Salaj, N.; Kladar, N.; Čonić, B.S.; Jeremić, K.; Hitl, M.; Gavarić, N.; Božin, B. Traditional multi-herbal formula in diabetes therapy—Antihyperglycemic and antioxidant potential. Arab. J. Chem. 2021, 14, 103347. [Google Scholar] [CrossRef]
- Kladar, N.; Mrđanović, J.; Anačkov, G.; Šolajić, S.; Gavarić, N.; Srđenović, B.; Božin, B. Hypericum perforatum: Synthesis of active principles during flowering and fruitification—Novel aspects of biological potential. Evid.-Based Complement. Altern. Med. 2017, 2017, 2865610. [Google Scholar] [CrossRef]
- Mun’im, A.; Katrin, K.; Azizahwati, A.; Andriani, A.; Mahmudah, K.; Mashita, M. Screening of α-glucosidase inhibitory activity of some Indonesian medicinal plants. Int. J. Med. Arom. Plants 2013, 3, 144–150. [Google Scholar]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein—Ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef]
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 2011, 51, 69–82. [Google Scholar] [CrossRef]
- Roig-Zamboni, V.; Cobucci-Ponzano, B.; Iacono, R.; Ferrara, M.C.; Germany, S.; Bourne, Y.; Parenti, G.; Moracci, M.; Sulzenbacher, G. Structure of human lysosomal acid α-glucosidase—A guide for the treatment of Pompe disease. Nat. Commun. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Giner, R.M.; Rios, J.L.; Villar, A. CNS depressant effects, antiinflammatory activity and actions of Santolina chamaecyparissus extracts. Phytother. Res. 1988, 2, 37–41. [Google Scholar] [CrossRef]
- Giner, R.M.; Rios, J.L.; Villar, A. Inhibitory effects of Santolina chamaecyparissus extracts against spasmogen agonists. J. Ethnopharmacol. 1989, 27, 1–6. [Google Scholar] [CrossRef]
- Rios, J.L.; Giner, R.M.; Villar, A. Isolation and identification of an anti-inflammatory principle from Santolina chamaecyparissus. Phytother. Res. 1989, 3, 212–214. [Google Scholar] [CrossRef]
- Sala, A.M.; Recio, C.; Giner, R.M.; Manez, S.; Rios, J.L. Anti-phospholipase A2 and anti-inflammatory activity of Santolina chamaecyparissus. Life Sci. 2000, 66, 35–40. [Google Scholar] [CrossRef]
- Shabani-Nooshabadi, M.; Ghandchi, M.S. Santolina chamaecyparissus extract as natural source inhibitor for 304 stainless steel corrosion in 3.5% NaCl. J. Ind. Eng. Chem. 2015, 31, 231–237. [Google Scholar] [CrossRef]
- Boudoukha, C.; Bouriche, H.; Ortega, E.; Senator, A. Immunomodulatory effects of Santolina chamaecyparissus leaf extracts on human neutrofil functions. Pharm. Biol. 2016, 54, 667–673. [Google Scholar] [CrossRef]
- Messaoudi, D.; Bouriche, H.; Demirtas, I.; Senator, A. Phytochemical analysis and hepatoprotective activity of Algerian Santolina chamaecyparissus L. extracts. Annu. Rev. Plant Biol. 2018, 25, 1–12. [Google Scholar] [CrossRef]
- Boudoukha, C. Antioxidant capacity and phenolic content of Santolina chamaecyparissus L. methanol extract. Int. J. Green Pharm. 2019, 13, 260–267. [Google Scholar] [CrossRef]
- Ali, A.; Ali, A.; Warsi, M.H.; Ahmad, W. Chemical characterization, antidiabetic and anticancer activities of Santolina chamaecyparissus. Saudi J. Biol. Sci. 2021, 28, 4575–4580. [Google Scholar] [CrossRef]
- Aourach, M.; Barbero, G.F.; de Peredo, A.V.G.; Diakite, A.; El Boukari, M.; Essalmani, H. Composition and antifungal effects of aqueous extracts of Cymbopogon citratus, Laurus nobilis and Santolina chamaecyparyssus on the growth of Fusarium oxysporum f. sp. lentis. Arch. Phytopathol. Pflanzenschutz 2021, 19–20, 2141–2159. [Google Scholar] [CrossRef]
- Aourach, M.; González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Essalmani, H.; Palma, M.; Barbero, G.F. Optimization and comparison of ultrasound and microwave-assisted extraction of phenolic compounds from cotton-lavender (Santolina chamaecyparissus L.). Agronomy 2021, 11, 84. [Google Scholar] [CrossRef]
- Al-Ramamneh, E.A.-D.; Alsharafa, K.Y.; Rababah, T.; Rahahleh, R.J.; Al-Rimawi, F.; Shakya, A.K.; Ghrair, A.M.; Alu’datt, M.H.; Alnawafleh, M.K. Silver nanoparticles and biostimulants affect chemical constituents, total phenolics, antioxidants, and potential antimicrobial activities of Santolina chamaecyparissus. Horticulturae 2024, 10, 26. [Google Scholar] [CrossRef]
- Azevedo, T.; Silva, J.; Faustino-Rocha, A.I.; Valada, A.; Anjos, L.; Moura, T.; Ferreira, R.; Santos, M.; Pires, M.J.; Neuparth, M.J.; et al. The role of natural compounds in rat mammary cancer: The beneficial effects of Santolina chamaecyparissus L. aqueous extract. Vet. Stanica 2024, 55, 45–61. [Google Scholar] [CrossRef]
- Muhammad Abdul Kadar, N.N.; Ahmad, F.; Teoh, S.L.; Yahaya, M.F. Caffeic acid on metabolic syndrome: A review. Molecules 2021, 26, 5490. [Google Scholar] [CrossRef]
- Das, A.K.; Dewanjee, S. Optimization of extraction using mathematical models and computation. In Computational Phytochemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 75–106. [Google Scholar]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chem. Biodivers. 2021, 18, 2100345. [Google Scholar] [CrossRef]
- Hitl, M.; Bijelić, K.; Stilinović, N.; Božin, B.; Srđenović-Čonić, B.; Torović, L.; Kladar, N. Phytochemistry and antihyperglycemic potential of Cistus salviifolius L., Cistaceae. Molecules 2022, 27, 8003. [Google Scholar] [CrossRef]
- Ansari, P.; Choudhury, S.T.; Seidel, V.; Rahman, A.B.; Aziz, M.A.; Richi, A.E.; Rahman, A.; Jafrin, U.H.; Hannan, J.; Abdel-Wahab, Y.H. Therapeutic potential of quercetin in the management of type-2 diabetes mellitus. Life 2022, 12, 1146. [Google Scholar] [CrossRef]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Kladar, N.; Anačkov, G.; Srđenović, B.; Gavarić, N.; Hitl, M.; Salaj, N.; Jeremić, K.; Babović, S.; Božin, B. St. John’s wort herbal teas—Biological potential and chemometric approach to quality control. Plant Foods Hum. Nutr. 2020, 75, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tian, J.; Yang, W.; Chen, S.; Liu, D.; Fang, H.; Zhang, H.; Ye, X. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chem. 2020, 317, 126346. [Google Scholar] [CrossRef]
- Narasimhan, A.; Chinnaiyan, M.; Karundevi, B. Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Appl. Physiol. Nutr. Metab. 2015, 40, 8. [Google Scholar] [CrossRef]
Preliminary Test | Value (Mean ± SD) |
---|---|
Extraction yield (%) | 7.08 ± 0.18 |
Content of total phenolics (mg GAE/g d.e.) | 96.04 ± 5.03 |
Content of total flavonoids (mg QE/g d.e.) | 15.82 ± 0.21 |
Phenolic Compounds * | trans-Cinnamic Acid | p-Coumaric Acid | Quercetin | Ferulic Acid | Rutin |
---|---|---|---|---|---|
Structural formula | |||||
Content (µg/g d.e.) | 141.06 ± 12.58 | 312.43 ± 24.11 | 49.71 ± 3.86 | 1163.64 ± 97.18 | 95.47 ± 7.46 |
Assay | DPPH | OH• | NO• | LP |
---|---|---|---|---|
Extract | 17.38 ± 0.71 a | 203.86 ± 1.23 a | 233.21 ± 2.84 a | 716.23 ± 12.73 a |
PG | 0.63 ± 0.04 b | 10.21 ± 0.72 b | 8.65 ± 0.63 b | / |
BHT | / | 0.04 ± 0.00 c | / | 8.12 ± 0.71 b |
QDH | 0.99 ± 0.07 c | / | / | / |
AA | / | 2.34 ± 0.16 d | / | / |
Enzyme | Cotton Lavender Extract | Acarbose | Statistics |
---|---|---|---|
IC50 (µg/mL) | |||
α-amylase | 552.23 ± 12.25 a | 4.53 ± 0.21 b | z = 1.96, p = 0.04 |
α-glucosidase | 61.55 ± 1.32 a | 42.35 ± 3.88 a | z = 1.74, p = 0.08 |
Ref. | Type of Extract | Yield (%) | Total Phenolic Content | Total Flavonoid Content | Polyphenolic Compounds | Biological Activity |
---|---|---|---|---|---|---|
[24] | hexane | - | - | - | - | Analgesic, anti-inflammatory, anti-cholinergic |
chloroform | ||||||
ethyl acetate | ||||||
methanol | ||||||
aqueous | ||||||
[25] | hexane | 2.9 | - | - | - | Spasmolytic |
chloroform | 3.9 | |||||
ethyl acetate | 1.0 | |||||
methanol | 4.7 | |||||
aqueous | 6.8 | |||||
[26] | chloroform | 8.2 | - | - | - | Anti-inflammatory |
[27] | methanol | - | - | - | - | Anti-inflammatory |
dichloromethane | ||||||
[28] | methanol | - | - | - | - | Anti-corrosive |
[29] | aqueous | - | 132 mg GAE/g | 4.8 mg QE/g | - | Anti-inflammatory and immunomodulatory |
polyphenolic | 213 mg GAE/g | 49.8 mg QE/g | ||||
[30] | aqueous | - | 86.14 μg GAE/mg | 17.10 μg QE/mg | chlorgenic acid (1958.21 mg/kg); apigenin-7-glycoside (42.44 mg/kg); gentistic acid (33.18 mg/kg); caffeic acid (31.68 mg/kg); 4-hydroxybenzoic acid (28.09 mg/kg); rutin (11.84 mg/kg); vanillic acid (10.19 mg/kg); quercitin (3.66 mg/kg); protocatechic acid (3.29 mg/kg); ferulic acid (3.02 mg/kg); gallic acid (2.72 mg/kg) | Hepatoprotective |
ethanol | 108.61 μg GAE/mg | 23.29 μg QE/mg | chlorgenic acid (2726.57 mg/kg); apigenin-7-glycoside (66.63 mg/kg); 4-hydroxybenzoic acid (51.91 mg/kg); caffeic acid (43.64 mg/kg); gentisic acid (19.52 mg/kg); quercitin (11.95 mg/kg); rutin (10.28 mg/kg); gallic acid (3.60 mg/kg); acide salicylique (2.33 mg/kg); acide cichorique (2.22 mg/kg); protocatechic acid (1.87 mg/kg); kampferol (1.05 mg/kg); ferulic acid (0.96 mg/kg); | |||
[31] | methanol | - | 156 mg GAE/g | 32.8 mg/g | luteolin 7-glucoside (62.97 mg/g d.e.); luteolin (18.99 mg/g d.e.); rutin (14.83 mg/g d.e.); quercitin (5.84 mg/g d.e.); p-coumaric acid (0.83 mg/g d.e.); caffeic acid (0.56 mg/g d.e.); | Antioxidant |
[32] | ethyl acetate | - | - | - | - | Antidiabetic and anticancer |
[33] | aqueous | - | 17.28 mg GAE/g d.w. | 7.28 mg CE/g d.w. | cynarin (2.0 mg/g); chlorogenic acid (0.7 mg/g); quercetin 3-O-glucoside (0.07 mg/g); isoorientin (0.04 mg/g); quercetin 3-O-galactoside (0.01 mg/g) | Antioxidant and antimicrobial |
[34] | MAE | - | 17.57–38.15 * mg/g | - | cynarin (8.0 mg/g d.w.); chlorogenic acid (2.7 mg/g d.w.); quercetin 3-O-glucoside (0.05 mg/g d.w.); quercetin 3-O-galactoside (0.3 mg/g d.w.); isoorientin (0.2 mg/g d.w.) | - |
UAE | - | 10.35–31.39 * mg/g | - | - | ||
[2] | SFE-CO2 | 3.98 | - | - | - | - |
[2] | UAE | 22.15–28.48 * mg/mL | 1.3752–2.4477 * mg GAE/mL | 0.7837–1.3104 * mg CE/mL | - | Antioxidant |
[35] | methanol | - | 1273.2 mg GAE/100 g | - | thymol (23.6 μg/g); gallic acid (14.1 μg/g); quercitin (3.9 μ/g) | Antioxidant and antimicrobial |
[36] | aqueous | - | 373.0 μg/mL | 71.7 μg/mL | 1,3-O-di-caffeoylquinic acid (165 μg/mL); dimer of 3-O-caffeoylqunic acid (45.1 μg/mL); myricetin-O-glucuronide (38.5 μg/mL); 1,5-O-dicaffeoylquinic acid (27.0 μg/mL); 1,4-O-dicaffeoylquinic acid (13.0 μg/mL); quercetin-3-O-galactoside (12.3 μg/mL); coutaric acid hexoside (9.4 μg/mL); 4,5-O-dicaffeoylquinic acid (8.8 μg/mL); apigenin-C-hexoside-C-hexoside (8.6 μg/mL); 3-O-caffeoylquinic acid (7.7 μg/mL); chlorogenic acid (6.8 μg/mL); chlorogenic acid hexoside (6.8 μg/mL); medioresinol-O-hexoside (4.6 μg/mL); myricetin-3-O-hexoside (4.1 μg/mL); 1,3,5-O-tricaffeoylquinic acid (4.1 μg/mL); myricetin-O-malonylhexoside (3.8 μg/mL); dimer of chlorogenic acid (2.9 μg/mL); apigenin-6-C-pentoside-8-C-hexoside-7-O-hexoside (2.3 μg/mL); quercetin-3-O-glucoside (2.2 μg/mL) | Anticancer |
TS | ethanol | 7.08 | 96.04 mg GAE/g d.e. | 15.82 mg QE/g d.e. | ferulic acid (1163.64 µg/g d.e.); p-coumaric acid (312.43 µg/g d.e.); trans-cinnamic acid (141.06 µg/g d.e.); rutin (95.47 µg/g d.e.); quercetin (49.71 µg/g d.e.) | Antioxidant and antihyperglycemic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radovanović, K.; Vukić, D.; Kladar, N.; Hitl, M.; Gavarić, N.; Aćimović, M. Chemical Analysis and Biological Potential of Cotton Lavender Ethanolic Extract (Santolina chamaecyparissus L., Asteraceae). Horticulturae 2024, 10, 1247. https://doi.org/10.3390/horticulturae10121247
Radovanović K, Vukić D, Kladar N, Hitl M, Gavarić N, Aćimović M. Chemical Analysis and Biological Potential of Cotton Lavender Ethanolic Extract (Santolina chamaecyparissus L., Asteraceae). Horticulturae. 2024; 10(12):1247. https://doi.org/10.3390/horticulturae10121247
Chicago/Turabian StyleRadovanović, Katarina, Dajana Vukić, Nebojša Kladar, Maja Hitl, Neda Gavarić, and Milica Aćimović. 2024. "Chemical Analysis and Biological Potential of Cotton Lavender Ethanolic Extract (Santolina chamaecyparissus L., Asteraceae)" Horticulturae 10, no. 12: 1247. https://doi.org/10.3390/horticulturae10121247
APA StyleRadovanović, K., Vukić, D., Kladar, N., Hitl, M., Gavarić, N., & Aćimović, M. (2024). Chemical Analysis and Biological Potential of Cotton Lavender Ethanolic Extract (Santolina chamaecyparissus L., Asteraceae). Horticulturae, 10(12), 1247. https://doi.org/10.3390/horticulturae10121247