Seasonality’s Effects on the Chemical Composition and Antiradical Capacity of the Floral Essential Oil of Acmella oleracea (L.) R.K. Jansen Cultivated in the Brazilian Amazon
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Cultivation and Botanical Identification
2.2. Climate Data Collection
2.3. Drying and Processing of Botanical Material
2.4. Essential Oil Extraction
2.5. Essential Oil Yield Calculation
2.6. Chemical Composition Analysis
2.7. Analysis of Antiradical Capacity by DPPH Radical Scavenging
2.8. Statistical Analysis
3. Results and Discussion
3.1. Seasonal Conditions and Essential Oil Yield
3.2. Seasonal Conditions and Chemical Composition
3.3. Seasonal Conditions and Antiradical Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kostić, A.Ž.; Janaćković, P.; Kolašinac, S.M.; Dajić Stevanović, Z.P. Balkans’ Asteraceae species as a source of biologically active compounds for the parmaceutical and food industry. Chem. Biodivers. 2020, 17, e2000097. [Google Scholar] [CrossRef] [PubMed]
- Mandel, J.R.; Dikow, R.B.; Siniscalchi, C.M.; Thapa, R.; Watson, L.E.; Funk, V.A. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl. Acad. Sci. USA 2019, 116, 14083–14088. [Google Scholar] [CrossRef]
- Smith, R.I.L.; Richardson, M. Fuegian plants in antarctica: Natural or anthropogenically assisted immigrants? Biol. Invasions 2011, 13, 1–5. [Google Scholar] [CrossRef]
- Flora e Funga do Brasil. Asteraceae in Flora e Funga do Brasil. Available online: https://floradobrasil.jbrj.gov.br/FB55 (accessed on 24 July 2024).
- Rondanelli, M.; Fossari, F.; Vecchio, V.; Braschi, V.; Riva, A.; Allegrini, P.; Petrangolini, G.; Iannello, G.; Faliva, M.A.; Peroni, G.; et al. Acmella oleracea for pain management. Fitoterapia 2020, 140, 104419. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, J. Acmella in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available online: https://floradobrasil.jbrj.gov.br/FB15913 (accessed on 28 June 2024).
- Khan, M.N.N.A.; Abidem, M. An overview on Spilanthues acmella. Int. J. Adv. Res. 2020, 8, 322–331. [Google Scholar] [CrossRef]
- Spinozzi, E.; Pavela, R.; Bonacucina, G.; Perinelli, D.R.; Cespi, M.; Petrelli, R.; Cappellacci, L.; Fiorini, D.; Scortichini, S.; Garzoli, S.; et al. Spilanthol-rich essential oil obtained by microwave-assisted extraction from Acmella oleracea (L.) R.K. Jansen and its nanoemulsion: Insecticidal, cytotoxic and anti-inflammatory activities. Ind. Crops Prod. 2021, 172, 114027. [Google Scholar] [CrossRef]
- Stein, R.; Berger, M.; Santana de Cecco, B.; Mallmann, L.P.; Terraciano, P.B.; Driemeier, D.; Rodrigues, E.; Beys-da-Silva, W.O.; Konrath, E.L. Chymase inhibition: A key factor in the anti-inflammatory activity of ethanolic extracts and spilanthol isolated from Acmella oleracea. J. Ethnopharmacol. 2021, 270, 113610. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Drenaggi, E.; Maggi, F. Insecticidal efficacy of the essential oil of jambú (Acmella oleracea (L.) R.K. Jansen) cultivated in central Italy against filariasis mosquito vectors, houseflies and moth pests. J. Ethnopharmacol. 2019, 229, 272–279. [Google Scholar] [CrossRef]
- do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; Vieira, M.d.C.; Góis Ruiz, A.L.T.; Ann Foglio, M.; de Carvalho, J.E.; et al. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. [Google Scholar] [CrossRef]
- Padhan, D.; Pattnaik, S.; Behera, A. Growth-arresting activity of Acmella essential oil and its isolated component d-limonene (1, 8 p-mentha diene) against Trichophyton rubrum (microbial type culture collection 296). Pharmacogn. Mag. 2017, 13, 555. [Google Scholar] [CrossRef]
- Borges, L.d.S.; Vieira, M.A.R.; Marques, M.O.M.; Vianello, F.; Lima, G.P.P. Influence of organic and mineral soil fertilization on essential oil of Spilanthes oleracea cv. Jambuarana. Am. J. Plant Physiol. 2012, 7, 135–142. [Google Scholar] [CrossRef]
- Gobbo-Neto, L.; Lopes, N.P. Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Quim. Nova 2007, 30, 374–381. [Google Scholar] [CrossRef]
- Silva, S.G.; Figueiredo, P.L.B.; Nascimento, L.D.; da Costa, W.A.; Maia, J.G.S.; Andrade, E.H.A. Planting and seasonal and circadian evaluation of a thymol-type oil from Lippia thymoides Mart. & Schauer. Chem. Cent. J. 2018, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- INMET, Instituto Nacional de Metereologia, Brazilian Government. Available online: http://www.inmet.gov.br/portal (accessed on 23 July 2022).
- Santos, P.V.L.; da Cruz, E.d.N.S.; Barroso, A.d.S.; Mourão, R.H.V.; Setzer, W.N.; da Silva, J.K.; do Nascimento, W.M.O.; da Costa, J.S.; Figueiredo, P.L.B. Chemometric analysis of the seasonal variation in the essential oil composition of Psidium acutangulum growing in the Brazilian Amazon. Biochem. Syst. Ecol. 2022, 105, 104528. [Google Scholar] [CrossRef]
- Maia, J.G.S.; Andrade, E.H.A. Database of the Amazon aromatic plants and their essential oils. Quim. Nova 2009, 32, 595–622. [Google Scholar] [CrossRef]
- Mondello, L. FFNSC 2: Flavors and Fragrances of Natural and Synthetic Compounds, Mass Spectral Database; John Wiley & Sons Inc: Hoboken, NJ, USA, 2011; ISBN 1118145836. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- van Den Dool, H.; Kratz, P. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Barros, L.d.S.P.; Santos da Cruz, E.d.N.; de Araújo Guimarães, B.; Setzer, W.N.; Veras Mourão, R.H.; do Rosário da Silva, J.K.; Silva da Costa, J.; Baia Figueiredo, P.L. Chemometric analysis of the seasonal variation in the essential oil composition and antioxidant activity of a new geraniol chemotype of Lippia alba (Mill.) N.E.Br. Ex Britton & P. Wilson from the Brazilian Amazon. Biochem. Syst. Ecol. 2022, 105, 104503. [Google Scholar] [CrossRef]
- Figueiredo, P.L.B.; Pinto, L.C.; da Costa, J.S.; da Silva, A.R.C.; Mourão, R.H.V.; Montenegro, R.C.; da Silva, J.K.R.; Maia, J.G.S. Composition, antioxidant capacity and cytotoxic activity of Eugenia uniflora L. chemotype-oils from the Amazon. J. Ethnopharmacol. 2019, 232, 30–38. [Google Scholar] [CrossRef]
- Loureiro, R.d.S.; Saraiva, J.M.; Saraiva, I.; Senna, R.C.; Fredó, A.S. Estudo dos eventos extremos de precipitação ocorridos em 2009 no Estado do Pará. Rev. Bras. Meteorol. 2014, 29, 83–94. [Google Scholar] [CrossRef]
- Elsharkawy, E.; Nahed, N.E.-D.M. Effect of seasonal variations on the yield of essential oil and antioxidant of Achillea fragrantissima (Forssk) Sch. Bip. African J. Biotechnol. 2018, 17, 892–897. [Google Scholar] [CrossRef]
- Huang, M.; Sanchez-Moreiras, A.M.; Abel, C.; Sohrabi, R.; Lee, S.; Gershenzon, J.; Tholl, D. The Major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2012, 193, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, V.B.; Askari, V.R. A mechanistic review on immunomodulatory effects of selective type two cannabinoid receptor β-caryophyllene. BioFactors 2022, 48, 857–882. [Google Scholar] [CrossRef] [PubMed]
- Jirovetz, L.; Buchbauer, G.; Wobus, A.; Shafi, M.P.; Abraham, G.T. Essential oil analysis of Spilanthes acmella Murr. fresh plants from southern India. J. Essent. Oil Res. 2005, 17, 429–431. [Google Scholar] [CrossRef]
- Delgado, C.; Mendez-Callejas, G.; Celis, C. Caryophyllene oxide, the active compound isolated from leaves of Hymenaea courbaril L. (Fabaceae) with antiproliferative and apoptotic effects on PC-3 androgen-independent prostate cancer cell line. Molecules 2021, 26, 6142. [Google Scholar] [CrossRef]
- da Cruz, E.d.N.S.; Peixoto, L.d.S.; da Costa, J.S.; Mourão, R.H.V.; do Nascimento, W.M.O.; Maia, J.G.S.; Setzer, W.N.; da Silva, J.K.; Figueiredo, P.L.B. Seasonal variability of a caryophyllane chemotype essential oil of Eugenia patrisii Vahl occurring in the Brazilian Amazon. Molecules 2022, 27, 2417. [Google Scholar] [CrossRef]
- Baruah, R.N.; Leclercq, P.A. Characterization of the essential oil from flower heads of Spilanthes acmella. J. Essent. Oil Res. 1993, 5, 693–695. [Google Scholar] [CrossRef]
- Li, J.; Hu, H.; Chen, Y.; Xie, J.; Li, J.; Zeng, T.; Wang, M.; Luo, J.; Zheng, R.; Jongsma, M.A.; et al. Tissue specificity of (E)-β-farnesene and germacrene D accumulation in pyrethrum flowers. Phytochemistry 2021, 187, 112768. [Google Scholar] [CrossRef]
- Đukić, N.; Andrić, G.; Glinwood, R.; Ninkovic, V.; Andjelković, B.; Radonjić, A. The Effect of 1-pentadecene on Tribolium castaneum behaviour: Repellent or attractant? Pest Manag. Sci. 2021, 77, 4034–4039. [Google Scholar] [CrossRef]
- Bai, X.; Tang, J. Myrcene exhibits antitumor activity against lung cancer cells by inducing oxidative stress and apoptosis mechanisms. Nat. Prod. Commun. 2020, 15, 1934578X2096118. [Google Scholar] [CrossRef]
- Kadir, H.A.; Zakaria, M.B.; Kechil, A.A.; Azirun, M.D.S. Toxicity and electrophysiological effects of Spilanthes acmella Murr. extracts on Periplaneta americana L. Pestic. Sci. 1989, 25, 329–335. [Google Scholar] [CrossRef]
- Sun, J.S.; Feng, Y.; Wang, Y.; Li, J.; Zou, K.; Liu, H.; Hu, Y.; Xue, Y.; Yang, L.; Du, S.; et al. α-Pinene, caryophyllene and β-myrcene from Peucedanum terebinthaceum essential oil: Insecticidal and repellent effects on three stored-product insects. Rec. Nat. Prod. 2020, 14, 177–189. [Google Scholar] [CrossRef]
- Jirovetz, L.; Buchbauer, G.; Abraham, G.T.; Shafi, M.P. Chemical composition and olfactoric characterization of Acmella radicans (Jacq.) R.K. Jansen var. radicans from southern India. Flavour Fragr. J. 2006, 21, 88–91. [Google Scholar] [CrossRef]
- Ney, P.; Boland, W. Biosynthesis of 1-alkenes in higher plants. Eur. J. Biochem. 1987, 162, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Robustelli della Cuna, F.S.; Cortis, P.; Esposito, F.; De Agostini, A.; Sottani, C.; Sanna, C. Chemical composition of essential oil from four sympatric orchids in NW-Italy. Plants 2022, 11, 826. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Charoimek, N.; Phusuwan, S.; Petcharak, C.; Huanhong, K.; Prasad, S.K.; Junmahasathien, T.; Khemacheewakul, J.; Sommano, S.R.; Sunanta, P. Do abiotic stresses affect the aroma of damask roses? Plants 2023, 12, 3428. [Google Scholar] [CrossRef]
- de Araújo, I.F.; de Araújo, P.H.F.; Ferreira, R.M.A.; Sena, I.D.S.; Lima, A.L.; Carvalho, J.C.T.; Ferreira, I.M.; Souto, R.N.P. Larvicidal effect of hydroethanolic extract from the leaves of Acmella oleracea L. R. K. Jansen in Aedes aegypti and Culex quinquefasciatus. South Afr. J. Bot. 2018, 117, 134–140. [Google Scholar] [CrossRef]
- Wongsawatkul, O.; Prachayasittikul, S.; Isarankura-Na-Ayudhya, C.; Satayavivad, J.; Ruchirawat, S.; Prachayasittikul, V. Vasorelaxant and antioxidant activities of Spilanthes acmella Murr. Int. J. Mol. Sci. 2008, 9, 2724–2744. [Google Scholar] [CrossRef]
- Calleja, M.A.; Vieites, J.M.; Montero-Meterdez, T.; Torres, M.I.; Faus, M.J.; Gil, A.; Suárez, A. The Antioxidant effect of β-caryophyllene protects rat liver from carbon tetrachloride-induced fibrosis by inhibiting hepatic stellate cell activation. Br. J. Nutr. 2013, 109, 394–401. [Google Scholar] [CrossRef]
- Alves, C.Q.; David, J.M.; David, J.P.; Bahia, M.V.; Aguiar, R.M. Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Quim. Nova 2010, 33, 2202–2210. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Pastor, J.; García, M.; Steinbauer, S.; Setzer, W.N.; Scull, R.; Gille, L.; Monzote, L. Combinations of ascaridole, carvacrol, and caryophyllene oxide against Leishmania. Acta Trop. 2015, 145, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Xanthis, V.; Fitsiou, E.; Voulgaridou, G.-P.; Bogadakis, A.; Chlichlia, K.; Galanis, A.; Pappa, A. Antioxidant and cytoprotective potential of the essential oil Pistacia lentiscus var. chia and its major components myrcene and α-pinene. Antioxidants 2021, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
RIC | RIL | Month | May | Jul | Sep | |
---|---|---|---|---|---|---|
Essential Oil Yield | 1.61 | 0.81 | 0.58 | |||
Constituents | (%) * | |||||
1 | 883 | 883 b | 2-Butylfuran | 0.03 | ||
2 | 934 | 934 a | α-Pinene | 0.11 | 1.04 | |
3 | 973 | 969 a | Sabinene | 0.37 | 1.94 | |
4 | 977 | 974 a | β-Pinene | 1.36 | 0.53 | 6.4 |
5 | 991 | 998 a | Myrcene | 1.24 | 1.08 | 11.99 |
6 | 1005 | 1003 a | p-Mentha-1(7),8-diene | 0.07 | 0.44 | |
7 | 1024 | 1020 a | p-Cymene | 0.04 | ||
8 | 1024 | 1025 a | Limonene | 0.47 | ||
9 | 1028 | 1031 b | β-Phellandrene | 0.54 | 7.27 | |
10 | 1036 | 1035 b | Z-β-Ocimene | 0.23 | 1.7 | |
11 | 1100 | 1095 a | Linalool | 0.04 | 0.29 | |
12 | 1177 | 1174 a | Terpinen-4-ol | 0.2 | ||
13 | 1182 | 1178 a | Naphthalene | 0.04 | 0.05 | |
14 | 1190 | 1186 a | α-Terpineol | 0.07 | ||
15 | 1205 | 1201 a | n-Decanal | 0.02 | ||
16 | 1338 | 1135 a | δ-Elemene | 0.45 | 0.5 | 0.64 |
17 | 1357 | 1356 a | Eugenol | 0.06 | ||
18 | 1392 | 1389 a | β-Elemene | 0.45 | 0.29 | 0.18 |
19 | 1400 | 1398 a | Cyperene | 0.43 | 0.38 | 0.2 |
20 | 1407 | 1402 a | α-Funebrene | 0.03 | ||
21 | 1421 | 1417 a | E-Caryophyllene | 13.57 | 25.74 | 23.48 |
22 | 1434 | 1434 a | γ-Elemene | 0.02 | ||
23 | 1454 | 1452 a | α-Humulene | 1.23 | 2.1 | 1.91 |
24 | 1457 | 1454 a | E-β-Farnesene | 0.05 | 0.04 | |
25 | 1473 | 1468 b | Dodec-8Z-en-1-ol | 5.69 | 4.84 | 2.15 |
26 | 1478 | 1476 b | γ-Gurjunene | 0.15 | ||
27 | 1478 | 1478 a | γ-Muurolene | 0.06 | ||
28 | 1482 | 1484 a | Germacrene D | 0.14 | 14.76 | 15.17 |
29 | 1493 | 1492 c | 1-Pentadecene | 16.58 | 11.39 | 5.42 |
30 | 1496 | 1495 a | 2-Tridecanone | 0.58 | ||
31 | 1497 | 1497 a | Bicyclogermacrene | 0.36 | 0.44 | |
32 | 1501 | 1500 a | α-Muurolene | 0.11 | 0.07 | |
33 | 1505 | 1509 a | α-Bulnesene | 0.08 | 0.07 | |
34 | 1508 | 1505 a | E,E-α-Farnesene | 0.49 | 0.33 | |
35 | 1524 | 1522 a | δ-Cadinene | 0.29 | ||
36 | 1529 | 1529 a | Kessane | 0.77 | 0.48 | 0.34 |
37 | 1549 | 1548 a | Elemol | 0.03 | ||
38 | 1558 | 1559 a | Germacrene B | 0.08 | 0.68 | 0.67 |
39 | 1563 | 1561 a | E-Nerolidol | 0.05 | ||
40 | 1579 | 1577 a | Spathulenol | 0.13 | ||
41 | 1585 | 1582 a | Caryophyllene oxide | 31.72 | 2.12 | 0.88 |
42 | 1609 | 1607 a | β-Oplopenone | 0.25 | ||
43 | 1610 | 1608 a | Humulene epoxide II | 1.97 | ||
44 | 1621 | 1618 a | 1,10-di-epi-Cubenol | 0.08 | ||
45 | 1637 | 1639 a | Caryophylla-4(12),8(13)-dien-5β-ol | 0.14 | ||
46 | 1655 | 1659 b | Cadin-4-en-10-ol | 0.11 | ||
47 | 1655 | 1652 a | α-Cadinol | 0.37 | 0.2 | |
48 | 1686 | 1685 a | Germacra-4(15),5,10(14)-trien-1α-ol | 0.18 | 0.21 | |
49 | 1737 | 1740 a | Mint sulfide | 0.06 | 0.03 | |
50 | 1845 | 1841 b | Phytone | 0.39 | 0.17 | |
51 | 1888 | 1888 d | Spilanthol | 0.66 | 5.2 | 2.64 |
52 | 2109 | 2106 b | Phytol | 0.37 | ||
53 | 2295 | 2300 a | n-Tricosane | 0.80 | 0.38 | 0.18 |
54 | 2394 | 2400 a | n-Tetracosane | 0.47 | 0.16 | 0.09 |
55 | 2494 | 2500 a | n-Pentacosane | 3.69 | 1.17 | 0.77 |
56 | 2693 | 2700 a | n-Heptacosane | 0.25 | ||
Monoterpene hydrocarbons | 3.66 | 2.38 | 30.78 | |||
Oxygenated monoterpenes | 0.04 | 0 | 0.56 | |||
Sesquiterpene hydrocarbons | 16.35 | 46.01 | 43.28 | |||
Oxygenated sesquiterpenes | 35.28 | 3.06 | 1.69 | |||
Others | 29.51 | 23.37 | 11.36 | |||
Total identified | 84.84 | 74.82 | 87.67 |
Parameters | E-Caryophyllene | Caryophyllene Oxide | 1-Pentadecene | Germacrene D | Myrcene | Spilanthol |
---|---|---|---|---|---|---|
Precipitation | −0.99 * | −0.98 | −0.78 | −0.99 | −0.38 | −0.88 |
Temperature | 0.89 | −0.96 | −0.96 | 0.96 | 0.72 | 0.62 |
Humidity | −0.85 | 0.94 | 0.98 | −0.94 | −0.77 | −0.56 |
Insolation | 0.96 | −0.99 * | −0.88 | 0.99 * | 0.55 | 0.78 |
Sample | Inhibition (%) | Trolox Equivalent (mg·TE/g) |
---|---|---|
May | 7.53 ± 0.3 a | 64.7 ± 2.8 |
July | 7.96 ± 0.1 a | 68.4 ± 1.6 |
September | 7.68 ± 0.5 a | 66.0 ± 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerônimo, L.B.; de Araújo, J.A.C.; da Silva, J.K.R.; Mourão, R.H.V.; Setzer, W.N.; Figueiredo, P.L.B. Seasonality’s Effects on the Chemical Composition and Antiradical Capacity of the Floral Essential Oil of Acmella oleracea (L.) R.K. Jansen Cultivated in the Brazilian Amazon. Horticulturae 2024, 10, 925. https://doi.org/10.3390/horticulturae10090925
Jerônimo LB, de Araújo JAC, da Silva JKR, Mourão RHV, Setzer WN, Figueiredo PLB. Seasonality’s Effects on the Chemical Composition and Antiradical Capacity of the Floral Essential Oil of Acmella oleracea (L.) R.K. Jansen Cultivated in the Brazilian Amazon. Horticulturae. 2024; 10(9):925. https://doi.org/10.3390/horticulturae10090925
Chicago/Turabian StyleJerônimo, Lucas Botelho, José Augusto C. de Araújo, Joyce Kelly R. da Silva, Rosa Helena V. Mourão, William N. Setzer, and Pablo Luis B. Figueiredo. 2024. "Seasonality’s Effects on the Chemical Composition and Antiradical Capacity of the Floral Essential Oil of Acmella oleracea (L.) R.K. Jansen Cultivated in the Brazilian Amazon" Horticulturae 10, no. 9: 925. https://doi.org/10.3390/horticulturae10090925
APA StyleJerônimo, L. B., de Araújo, J. A. C., da Silva, J. K. R., Mourão, R. H. V., Setzer, W. N., & Figueiredo, P. L. B. (2024). Seasonality’s Effects on the Chemical Composition and Antiradical Capacity of the Floral Essential Oil of Acmella oleracea (L.) R.K. Jansen Cultivated in the Brazilian Amazon. Horticulturae, 10(9), 925. https://doi.org/10.3390/horticulturae10090925