Antifungal and Antioomycete Activities of a Curcuma longa L. Hydroethanolic Extract Rich in Bisabolene Sesquiterpenoids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms, Culture Media, and Growth Conditions
2.2. Plant Material and Extraction Procedure
2.3. Extract Characterization
2.4. Phytotoxicity Assay with a Lettuce Model
2.5. In vitro Antifungal and Antioomycete Activities
2.6. Protection Tests on Artificially Inoculated Excised Stems
2.7. Statistical Analysis
3. Results
3.1. CE Chemical Characterization
3.1.1. ATR–FTIR Vibrational Characterization
3.1.2. GC–MS Analysis
3.2. In Vitro Antimicrobial Activity
3.3. In Vitro Germination and Early Growth of Lettuce Seedlings
3.4. Protection of Excised Stems against P. cinnamomi
4. Discussion
4.1. Phytochemical Profile
4.2. On the Antimicrobial Activity
4.2.1. Broad Spectrum of the Antifungal and Antioomycete Activities of CE
4.2.2. Comparison of Treatment Effectiveness in Excised Stems
4.3. Plant Toxicity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strange, R.N.; Scott, P.R. Plant disease: A threat to global food security. Annu. Rev. Phytopathol. 2005, 43, 83–116. [Google Scholar] [CrossRef] [PubMed]
- Letourneau, D.; van Bruggen, A. Crop Protection in organic agriculture. In Organic Agriculture: A Global Perspective; Kristiansen, P., Taji, A., Reganold, J., Eds.; CSIRO Publishing: Collingwood, PI, USA; CABI: Wallingford, CT, USA; Cornell University Press: Ithaca, NY, USA; Manaaki Whenua Press: Lincoln, Australia, 2006; pp. 93–121. [Google Scholar]
- Brauer, V.S.; Rezende, C.P.; Pessoni, A.M.; De Paula, R.G.; Rangappa, K.S.; Nayaka, S.C.; Gupta, V.K.; Almeida, F. Antifungal agents in agriculture: Friends and foes of public health. Biomolecules 2019, 9, 521. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.A.A.; Najeeb, S.; Hussain, S.; Xie, B.; Li, Y. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms 2020, 8, 817. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, S.; Furzer, O.; Jones, J.D.G.; Judelson, H.S.; Ali, G.S.; Dalio, R.J.D.; Roy, S.G.; Schena, L.; Zambounis, A.; Panabières, F.; et al. The top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 2014, 16, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.Q.; Ba, D.T.; Dao, N.T.; Choi, G.J.; Vu, T.T.; Kim, J.-C.; Giang, T.P.L.; Vu, H.D.; Le Dang, Q. Antimicrobial efficacy of extracts and constituents fractionated from Rheum tanguticum Maxim. ex Balf. rhizomes against phytopathogenic fungi and bacteria. Ind. Crops Prod. 2017, 108, 442–450. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Dowling, M.; Peres, N.; Villani, S.; Schnabel, G. Managing Colletotrichum on fruit crops: A “complex” challenge. Plant Dis. 2020, 104, 2301–2316. [Google Scholar] [CrossRef]
- Moricca, S.; Linaldeddu, B.T.; Ginetti, B.; Scanu, B.; Franceschini, A.; Ragazzi, A. Endemic and emerging pathogens threatening cork oak trees: Management options for conserving a unique forest ecosystem. Plant Dis. 2016, 100, 2184–2193. [Google Scholar] [CrossRef]
- Scherm, B.; Balmas, V.; Spanu, F.; Pani, G.; Delogu, G.; Pasquali, M.; Migheli, Q. Fusarium culmorum: Causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 2013, 14, 323–341. [Google Scholar] [CrossRef]
- Hardham, A.R.; Blackman, L.M. Phytophthora cinnamomi. Mol. Plant Pathol. 2017, 19, 260–285. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef]
- Callaway, E. Devastating wheat fungus appears in Asia for first time. Nature 2016, 532, 421–422. [Google Scholar] [CrossRef] [PubMed]
- Martelli, G.; Giacomini, D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur. J. Med. Chem. 2018, 158, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Arif, T.; Bhosale, J.D.; Kumar, N.; Mandal, T.K.; Bendre, R.S.; Lavekar, G.S.; Dabur, R. Natural products—Antifungal agents derived from plants. J. Asian Nat. Prod. Res. 2009, 11, 621–638. [Google Scholar] [CrossRef] [PubMed]
- Madhumitha, G.; Saral, A.M. Preliminary phytochemical analysis, antibacterial, antifungal and anticandidal activities of successive extracts of Crossandra infundibuliformis. Asian Pac. J. Trop. Med. 2011, 4, 192–195. [Google Scholar] [CrossRef]
- Sakka Rouis-Soussi, L.; Boughelleb-M’Hamdi, N.; El Ayeb-Zakhama, A.; Flamini, G.; Ben Jannet, H.; Harzallah-Skhiri, F. Phytochemicals, antioxidant and antifungal activities of Allium roseum var. grandiflorum subvar. typicum Regel. S. Afr. J. Bot. 2014, 91, 63–70. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, J.; Sharma, V.K.; Singh, D.K.; Kumari, P.; Nishad, J.H.; Gautam, V.S.; Kharwar, R.N. Phytochemical analysis and antimicrobial activity of an endophytic Fusarium proliferatum (ACQR8), isolated from a folk medicinal plant Cissus quadrangularis L. S. Afr. J. Bot. 2021, 140, 87–94. [Google Scholar] [CrossRef]
- Chen, I.N.; Chang, C.-C.; Ng, C.-C.; Wang, C.-Y.; Shyu, Y.-T.; Chang, T.-L. Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods Hum. Nutr. 2007, 63, 15–20. [Google Scholar] [CrossRef]
- Ferreira, F.D.; Mossini, S.A.G.; Ferreira, F.M.D.; Arrotéia, C.C.; da Costa, C.L.; Nakamura, C.V.; Machinski Junior, M. The inhibitory effects of Curcuma longa L. essential oil and curcumin on Aspergillus flavus Link growth and morphology. Sci. World J. 2013, 2013, 343804. [Google Scholar] [CrossRef]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef]
- Singh, G.; Singh, O.P.; Maurya, S. Chemical and biocidal investigations on essential oils of some Indian Curcuma species. Prog. Cryst. Growth Charact. Mater. 2002, 45, 75–81. [Google Scholar] [CrossRef]
- Braga, M.E.M.; Leal, P.F.; Carvalho, J.E.; Meireles, M.A.A. Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J. Agric. Food Chem. 2003, 51, 6604–6611. [Google Scholar] [CrossRef]
- Hu, Y.; Kong, W.; Yang, X.; Xie, L.; Wen, J.; Yang, M. GC-MS combined with chemometric techniques for the quality control and original discrimination of Curcumae longae rhizome: Analysis of essential oils. J. Sep. Sci. 2014, 37, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, M.D.; Blázquez, M.A. Curcuma longa L. rhizome essential oil from extraction to its agri-food applications. A review. Plants 2021, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Silva, A.S.; Varshney, R.; Chávez-González, M.L.; Singh, P. Curcuma-based botanicals as crop protectors: From knowledge to application in food crops. Curr. Res. Biotechnol. 2021, 3, 235–248. [Google Scholar] [CrossRef]
- Sarwar, S.; Netzel, G.; Netzel, M.E.; Mereddy, R.; Phan, A.D.T.; Hong, H.T.; Cozzolino, D.; Sultanbawa, Y. Impact of curcumin-mediated photosensitization on fungal growth, physicochemical properties and nutritional composition in Australian grown strawberry. Food Anal. Methods 2020, 14, 465–472. [Google Scholar] [CrossRef]
- Jung, S.; Cui, Y.; Barnes, M.; Satam, C.; Zhang, S.; Chowdhury, R.A.; Adumbumkulath, A.; Sahin, O.; Miller, C.; Sajadi, S.M.; et al. Multifunctional bio-nanocomposite coatings for perishable fruits. Adv. Mater. 2020, 32, 1908291. [Google Scholar] [CrossRef] [PubMed]
- De Paula, R.L.; Maniglia, B.C.; Assis, O.B.G.; Tapia-Blácido, D.R. Evaluation of the turmeric dye extraction residue in the formation of protective coating on fresh bananas (Musa acuminata cv. ‘Maçã’). J. Food Sci. Technol. 2018, 55, 3212–3220. [Google Scholar] [CrossRef] [PubMed]
- Matheron, M.; Mircetich, S. Seasonal variation in susceptibility of Juglans hindsii and paradox rootstocks of English walnut trees to Phytophthora citricola. Phytopathology 1985, 75, 970–972. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Teixeira, A.; Pereira, C.; Cruz, A.; Martín-Gil, J.; Oliveira, R.; Martín-Ramos, P. Chemical constituents and antimicrobial activity of a Ganoderma lucidum (Curtis.) P. Karst. aqueous ammonia extract. Plants 2023, 12, 2271. [Google Scholar] [CrossRef]
- Khalil, M.M.H.; Mahdy, H.; Sabry, D.Y.; Ismail, E.H. Synthesis and characterization of some ternary metal complexes of curcumin with 1,10-phenanthroline and their anticancer applications. J. Sci. Res. 2014, 6, 509–519. [Google Scholar] [CrossRef]
- Pintatum, A.; Maneerat, W.; Logie, E.; Tuenter, E.; Sakavitsi, M.E.; Pieters, L.; Berghe, W.V.; Sripisut, T.; Deachathai, S.; Laphookhieo, S. In vitro anti-inflammatory, anti-oxidant, and cytotoxic activities of four Curcuma species and the isolation of compounds from Curcuma aromatica rhizome. Biomolecules 2020, 10, 799. [Google Scholar] [CrossRef] [PubMed]
- Alvindia, D.d.G.; Mangoba, M.A.A.; Abduzukhurov, J.T.; Santiago, E.F. Biocidal activities of Curcuma longa L. against anthracnose of mango fruits caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. Arch. Phytopathol. Pflanzenschutz 2022, 55, 515–526. [Google Scholar] [CrossRef]
- Singh, G.; Kapoor, I.P.S.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A.N. Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food Chem. Toxicol. 2010, 48, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Losso, K.; Bec, K.B.; Mayr, S.; Grabska, J.; Stuppner, S.; Jones, M.; Jakschitz, T.; Rainer, M.; Bonn, G.K.; Huck, C.W. Rapid discrimination of Curcuma longa and Curcuma xanthorrhiza using direct analysis in real time mass spectrometry and near infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 265, 120347. [Google Scholar] [CrossRef]
- Menelaou, M.A.; Macias, F.A.; Weidenhamer, J.D.; Williamson, G.B.; Fischer, N.H. Sesquiterpenes from Chrysoma pauciflosculosa. Spectrosc. Lett. 1995, 28, 1061–1074. [Google Scholar] [CrossRef]
- Fujiwara, M.; Yagi, N.; Miyazawa, M. Acetylcholinesterase inhibitory activity of volatile oil from Peltophorum dasyrachis Kurz ex Bakar (yellow batai) and bisabolane-type sesquiterpenoids. J. Agric. Food. Chem. 2010, 58, 2824–2829. [Google Scholar] [CrossRef]
- Pradeep Kumar, S.; Vijender, S.; Mohammed, A. Chemical composition and antimicrobial activity of fresh rhizome essential oil of Zingiber Officinale Roscoe. Pharmacogn. J. 2016, 8, 185–190. [Google Scholar] [CrossRef]
- Jakupovic, J.; Schuster, A.; Wasshausen, D.C. Acetylenes and labdanes from Baccharis pedunculata. Phytochemistry 1991, 30, 2785–2787. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.; Ayatollahi, S.; Kobarfard, F.; Ibrahim, S.; Mnayer, D.; Zakaria, Z.; et al. Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules 2017, 22, 2145. [Google Scholar] [CrossRef]
- Timilsina, R.; Tandukar, P.; Pathak, I. Biological and chemical studies of essential oil and extracts of rhizome of Acorus calamus Linn. J. Nepal Chem. Soc. 2022, 43, 35–42. [Google Scholar] [CrossRef]
- Asai, T. Chemical activation of natural product biosynthesis in filamentous fungi. In Comprehensive Natural Products III: Chemistry and Biology; Liu, H.-W., Begley, T.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 7, pp. 475–486. [Google Scholar]
- RajanBabu, T.V.; Smith, C.R. Reduction: Enantioselective hydrovinylation of alkenes. In Comprehensive Chirality; Carreira, E.M., Yamamoto, H., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2012; Volume 5, pp. 355–398. [Google Scholar]
- Kumar Rai, S.; Chauhan, R. Phytochemicals in drug discovery. In Phytochemicals in Medicinal Plants; Arora, C., Kumar Verma, D., Aslam, J., Kumar Mahish, P., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2023; pp. 331–346. [Google Scholar]
- Kim, M.-K.; Choi, G.-J.; Lee, H.-S. Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. J. Agric. Food. Chem. 2003, 51, 1578–1581. [Google Scholar] [CrossRef] [PubMed]
- Kai, K.; Hua, C.; Sui, Y.; Bi, W.; Shi, W.; Zhang, D.; Ye, Y. Curcumin triggers the immunity response in kiwifruit against Botrytis cinerea. Sci. Hortic. 2020, 274, 109685. [Google Scholar] [CrossRef]
- Cho, J.-Y.; Choi, G.J.; Lee, S.-W.; Jang, K.S.; Lim, H.K.; Lim, C.H.; Lee, S.O.; Cho, K.Y.; Kim, J.-C. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 2006, 16, 280–285. [Google Scholar]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals 2020, 13, 153. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Long, L.; Zhang, F.; Chen, Q.; Chen, C.; Yu, X.; Liu, Q.; Bao, J.; Long, Z. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PLoS ONE 2018, 13, e0194284. [Google Scholar] [CrossRef]
- Avanço, G.B.; Ferreira, F.D.; Bomfim, N.S.; Santos, P.A.d.S.R.d.; Peralta, R.M.; Brugnari, T.; Mallmann, C.A.; Abreu Filho, B.A.d.; Mikcha, J.M.G.; Machinski, M., Jr. Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control 2017, 73, 806–813. [Google Scholar] [CrossRef]
- Naveen Kumar, K.; Venkataramana, M.; Allen, J.A.; Chandranayaka, S.; Murali, H.S.; Batra, H.V. Role of Curcuma longa L. essential oil in controlling the growth and zearalenone production of Fusarium graminearum. LWT—Food Sci. Technol. 2016, 69, 522–528. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; González-García, V.; Casanova-Gascón, J.; Barriuso-Vargas, J.J.; Balduque-Gil, J.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Valorization of Quercus suber L. bark as a source of phytochemicals with antimicrobial activity against apple tree diseases. Plants 2022, 11, 3415. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Balduque-Gil, J.; González-García, V.; Barriuso-Vargas, J.J.; Casanova-Gascón, J.; Martín-Gil, J.; Martín-Ramos, P. Phytochemical profiling of Sambucus nigra L. flower and leaf extracts and their antimicrobial potential against almond tree pathogens. Int. J. Mol. Sci. 2023, 24, 1154. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Balduque-Gil, J.; Barriuso-Vargas, J.J.; Casanova-Gascón, J.; González-García, V.; Cuchí-Oterino, J.A.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) bark aqueous ammonia extract for the control of invasive forest pathogens. Int. J. Mol. Sci. 2022, 23, 11882. [Google Scholar] [CrossRef] [PubMed]
- Burgess, T.I.; Scott, J.K.; McDougall, K.L.; Stukely, M.J.C.; Crane, C.; Dunstan, W.A.; Brigg, F.; Andjic, V.; White, D.; Rudman, T.; et al. Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Glob. Chang. Biol. 2016, 23, 1661–1674. [Google Scholar] [CrossRef] [PubMed]
- Linaldeddu, B.T.; Scanu, B.; Maddau, L.; Franceschini, A.; Belbahri, L. Diplodia corticola and Phytophthora cinnamomi: The main pathogens involved in holm oak decline on Caprera Island (Italy). For. Pathol. 2013, 44, 191–200. [Google Scholar] [CrossRef]
- Sena, K.; Crocker, E.; Vincelli, P.; Barton, C. Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. For. Ecol. Manag. 2018, 409, 799–807. [Google Scholar] [CrossRef]
- Visakh, N.U.; Pathrose, B.; Chellappan, M.; Ranjith, M.T.; Sindhu, P.V.; Mathew, D. Extraction and chemical characterisation of agro-waste from turmeric leaves as a source of bioactive essential oils with insecticidal and antioxidant activities. Waste Manag. 2023, 169, 1–10. [Google Scholar] [CrossRef]
- Khattak, S.; Saeed ur, R.; Ullah Shah, H.; Ahmad, W.; Ahmad, M. Biological effects of indigenous medicinal plants Curcuma longa and Alpinia galanga. Fitoterapia 2005, 76, 254–257. [Google Scholar] [CrossRef]
Peak | RT (min) | Area (%) | Chemical Species | Qual |
---|---|---|---|---|
1 | 10.5118 | 0.1164 | Ethanone, 1-(3-methoxyphenyl)- | 45 |
2 | 11.0935 | 0.1303 | Phenol, 2-methoxy-4-(2-propenyl)- (or eugenol) | 90 |
3 | 11.3902 | 0.4714 | 3,5,7-trimethyl-2E,4E,6E,8E-decatetraene | 43 |
4 | 11.7167 | 0.2603 | Isobenzofuran | 43 |
5 | 11.7463 | 0.1743 | Benzoic acid, 3,5-dimethyl-, (3,5-dimethylphenyl)methyl ester | 55 |
6 | 11.9837 | 0.1657 | 2-Methylbicyclo[4.3.0]nona-2,9-diene dimer | 35 |
7 | 12.2805 | 1.0108 | Phenol, 2-methoxy-4-(1-propenyl)- | 83 |
8 | 12.4170 | 0.1431 | Oxime-, methoxy-phenyl- | 38 |
9 | 12.4823 | 0.2227 | Hydrazinecarboxamide, 2-(1-phenylethylidene)- | 50 |
10 | 12.6604 | 0.3421 | γ-curcumene | 93 |
11 | 12.7019 | 0.3560 | Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl- | 99 |
12 | 12.8503 | 0.4319 | Zingiberene | 90 |
13 | 12.8859 | 0.8048 | 3,5-dimethoxy-2-methylnaphthalene | 86 |
14 | 12.9749 | 1.9900 | 1-phenyl-2-(p-tolyl)-propane | 72 |
15 | 13.0521 | 0.1909 | 1H-Benzocycloheptene, 2,4a,5,6,7,8-hexahydro-3,5,5,9-tetramethyl-, (R)- | 38 |
16 | 13.2124 | 0.6186 | β-Sesquiphellandrene | 98 |
17 | 13.2479 | 0.4825 | Dispiro[2.6.2.5]undecane, 10-methylen- | 50 |
18 | 13.5447 | 1.4773 | Trans-isoelemicin | 90 |
19 | 13.5981 | 0.4081 | 3-Acetyl-2-methyl-4-phenylfuran | 50 |
20 | 13.7169 | 0.4141 | Acetic acid 2-acetylamino-phenyl ester | 58 |
21 | 13.7999 | 0.4219 | (E)-1-ethylidene-4,5,8-trimethyl-1,2,3,4-tetrahydronaphthalene | 90 |
22 | 13.8474 | 0.3407 | 3,4-Dimethoxyphenylacetone | 68 |
23 | 14.0374 | 0.4407 | 3,4-Dimethylbenzyl isothiocyanate | 42 |
24 | 14.1798 | 3.4372 | Benzene, 1-ethyl-4-(2-methylpropyl)- | 74 |
25 | 14.8089 | 4.4816 | Benzene, 1,2,4-trimethyl- | 43 |
26 | 14.8920 | 28.9413 | β-Tumerone | 96 |
27 | 14.9336 | 15.3193 | ar-Tumerone | 90 |
28 | 15.1295 | 0.3430 | 2,3,3a,8a-Tetrahydro-2,4-dihydroxy-6-methoxy-furo[2,3-b]benzofuran | 83 |
29 | 15.1710 | 0.4089 | 3(5)-(4′-Methylphenyl)- 4-amino-5(3)-ethylaminopyrazole | 83 |
30 | 15.2363 | 0.7148 | Pyridine, 4-[(3-methoxyphenyl)methyl]- | 58 |
31 | 15.2956 | 13.2673 | α-Tumerone | 91 |
32 | 15.4262 | 1.6288 | Tetradecanoic acid, methyl ester | 96 |
33 | 15.4856 | 0.3040 | 1,3-Cyclohexanedione, 2,2,5,5-tetramethyl- | 43 |
34 | 15.5330 | 0.4373 | 3,7,7-Trimethyl-1-(3-oxo-but-1-enyl)-2-oxa-bicyclo[3.2.0]hept-3-en-6-one | 38 |
35 | 15.7764 | 1.4119 | 1-Formyl-2-methoxybenzene | 72 |
36 | 15.8239 | 1.8154 | Tetradecanoic acid | 99 |
37 | 16.0732 | 2.9617 | (+)-α-Atlantone | 68 |
38 | 16.2987 | 0.6141 | 1-Isopropenyl-3,3-dimethyl-5-(3-methyl-1-oxo-2-butenyl)cyclopentane | 27 |
39 | 16.4233 | 0.1388 | 2-Methylthio-3,4-dihydronaphtho[2,1-c]thiophene | 53 |
40 | 16.6964 | 0.0922 | 2H-1-Benzopyran, 3,5,6,8a-tetrahydro-2,5,5,8a-tetramethyl-, cis- | 44 |
41 | 16.7438 | 0.1690 | 7(1H)-Quinolinone, octahydro-4a-(2-propenyl)-, trans-(.+-.)- | 35 |
42 | 17.4680 | 0.1231 | Methyl 3,5-bis(ethylamino)benzoate | 30 |
43 | 17.5095 | 0.2790 | Hexadecanoic acid, methyl ester | 96 |
44 | 17.8538 | 0.6914 | n-Hexadecanoic acid | 99 |
45 | 19.5394 | 1.7381 | 9-Octadecenoic acid (Z)- | 99 |
46 | 19.7412 | 0.3431 | 1H-Indole-3-carboxylic acid, 5-hydroxy- | 44 |
47 | 24.1214 | 0.5540 | Gibberellin A3 | 43 |
48 | 24.2401 | 0.1306 | 6 Methyl-2 phenylindole | 38 |
49 | 24.9524 | 1.0139 | Hexahydropyridine, 1-methyl-4-[4,5-dihydroxyphenyl]- | 46 |
M. domestica Variety | Treatment | Mean of Ranks | Groups | |||
---|---|---|---|---|---|---|
Golden | Positive control | 96.333 | D | |||
CE | 30.500 | A | ||||
Negative control | 30.500 | A | ||||
Starking Delicious | Positive control | 84.633 | C | |||
CE | 30.500 | A | ||||
Negative control | 30.500 | A | ||||
Reinette | Positive control | 68.033 | B | |||
CE | 30.500 | A | ||||
Negative control | 30.500 | A |
Source of Excised Stems | Pathogen | Natural Product | Effectiveness | Ref. |
---|---|---|---|---|
Malus domestica | Phytophthora cinnamomi | Curcuma longa | Full protection at 3000 µg·mL−1 | This work |
Quercus ilex | COS—Ganoderma lucidum | Full protection at 782 µg·mL−1 | [31] | |
Prunus amygdalus x P. persica | Q. ilex subsp. ballota | Full protection at 782 µg·mL−1 | [55] | |
Phytophthora cactorum | COS—Q. suber | Full protection at 3750 µg·mL−1 | [53] | |
Phytophthora megasperma | Sambucus nigra | Full protection at 1875 µg·mL−1 | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, A.; Sánchez-Hernández, E.; Teixeira, A.; Martín-Ramos, P.; Cunha, A.; Oliveira, R. Antifungal and Antioomycete Activities of a Curcuma longa L. Hydroethanolic Extract Rich in Bisabolene Sesquiterpenoids. Horticulturae 2024, 10, 124. https://doi.org/10.3390/horticulturae10020124
Cruz A, Sánchez-Hernández E, Teixeira A, Martín-Ramos P, Cunha A, Oliveira R. Antifungal and Antioomycete Activities of a Curcuma longa L. Hydroethanolic Extract Rich in Bisabolene Sesquiterpenoids. Horticulturae. 2024; 10(2):124. https://doi.org/10.3390/horticulturae10020124
Chicago/Turabian StyleCruz, Adriana, Eva Sánchez-Hernández, Ana Teixeira, Pablo Martín-Ramos, Ana Cunha, and Rui Oliveira. 2024. "Antifungal and Antioomycete Activities of a Curcuma longa L. Hydroethanolic Extract Rich in Bisabolene Sesquiterpenoids" Horticulturae 10, no. 2: 124. https://doi.org/10.3390/horticulturae10020124
APA StyleCruz, A., Sánchez-Hernández, E., Teixeira, A., Martín-Ramos, P., Cunha, A., & Oliveira, R. (2024). Antifungal and Antioomycete Activities of a Curcuma longa L. Hydroethanolic Extract Rich in Bisabolene Sesquiterpenoids. Horticulturae, 10(2), 124. https://doi.org/10.3390/horticulturae10020124