Effect of Aged Cherry Orchard Soil on the Potted Seedling Growth of Malus hupehensis (Pamp.) Rehd
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Soil Sampling
2.2. Pot Experiment
2.3. Measurement Indicators and Methods
2.3.1. Determination of the Seedling Biomass of M. hupehensis
2.3.2. Determination of the Growth of M. hupehensis Seedling Roots
2.3.3. Determination of the Root Vitality, Antioxidant Activity, and Malondialdehyde Content of M. hupehensis Seedlings
2.3.4. Determination of the Contents of Allelochemicals in the Soil
2.3.5. Determination of the Culturable Microorganisms in Soil
2.3.6. Determination of the Gene Copy Number of the Soil Fungi
2.3.7. DNA Extraction and High-Throughput Sequencing Analysis
2.4. Statistical Analysis
3. Results
3.1. Effects of Aged Cherry Orchard Soil on the Growth of M. hupehensis Seedlings
3.1.1. Effects of Aged Cherry Orchard Soil on the Biomass of M. hupehensis Seedlings
3.1.2. Effects of Aged Cherry Orchard Soil on the Root System of M. hupehensis Seedlings
3.1.3. The Effect of Different Treatments on the Activities of Root Antioxidant Enzymes, Root Vitality and MDA Content
3.2. Number of Culturable Microorganisms in the Different Soil Treatments
3.3. Effects of Different Treatments on the Soil Microbial Communities
3.3.1. Changes in the Gene Copy Number of Four Pathogens of Apple under Different Soil Treatments
3.3.2. Analysis of the Common and Endemic Communities of Soil Fungi after Different Treatments
3.3.3. Effects of Different Treatments on the Soil Fungal Community Composition
3.3.4. Principal Coordinates Analysis (PCoA) of the Soil Fungal Community
3.4. Determination of the Contents of Allelochemicals in Different Soils
3.5. Effects of Allelochemicals in the Aged Cherry Orchard Soil on M. hupehensis Seedlings
3.5.1. Effects of the Primary Allelopathic Compounds in Aged Cherry Orchard Soil on the Biomass of M. hupehensis Seedlings
3.5.2. Effects of the Allelochemicals in Aged Cherry Orchard Soil on the Activities of SOD, POD, and CAT and the Vitality of M. hupehensis Seedling Roots
4. Discussion
4.1. Effects of the Different Treatments on the Growth of M. hupehensis Seedlings
4.2. Effects of Different Treatments on the Soil Microbial Community Structure
4.3. Effects of Allelochemicals on the Seedlings
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, N.; Wolf, J.; Zhang, F.S. Towards Sustainable Intensification of Apple Production in China—Yield Gaps and Nutrient Use Effi Ciency in Apple Farming Systems. J. Integr. Agric. 2016, 15, 716–725. [Google Scholar] [CrossRef]
- Liu, X.N.; Jia, L.N.; Yuan, N.; Zuo, Y.T. Progress in the study of cherries. Cereals Oils 2020, 33, 17–19. (In Chinese) [Google Scholar]
- Tilston, E.L.; Deakin, G.; Bennett, J.; Passey, T.; Harrison, N.; Fernández, F.; Xu, X. Effect of fungal, oomycete and nematode interactions on apple root development in replant soil. CABI Agric. Biosci. 2020, 1, 14. [Google Scholar] [CrossRef]
- Balbín-Suárez, A.; Jacquiod, S.; Rohr, A.D.; Liu, B.; Flachowsky, H.; Winkelmann, T.; Smalla, K. Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis. FEMS Microbiol. Ecol. 2021, 97, fiab031. [Google Scholar] [CrossRef] [PubMed]
- Bezemer, T.M.; Lawson, C.S.; Hedlund, K.; Edwards, A.R.; Brook, A.J.; Igual, J.M.; Van der Putten, W.H. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands. J. Ecol. 2006, 94, 893–904. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Wang, F.; Li, M.; Zhang, J.; Gu, L.; Zhang, Z. Assaying the potential autotoxins and microbial community associated with Rehmannia glutinosa replant problems based on its ‘autotoxic circle’. Plant Soil 2016, 407, 307–322. [Google Scholar] [CrossRef]
- Cavael, U.; Lentzsch, P.; Schwärzel, H.; Eulenstein, F.; Tauschke, M.; Diehl, K. Assessment of Agro-Ecological Apple Replant Disease (ARD) Management Strategies: Organic Fertilisation and Inoculation with Mycorrhizal Fungi and Bacteria. Agronomy 2021, 11, 272. [Google Scholar] [CrossRef]
- Hofmann, A.; Wittenmayer, L.; Arnold, G.; Schieber, A.; Merbach, W. Root exudation of phloridzin by apple seedlings (Malus×domestica Borkh.) with symptoms of apple replant disease. J. Appl. Bot. Food Qual. 2009, 82, 193–198. [Google Scholar]
- Bent, E.; Loffredo, A.; Yang, J.I.; Mckenry, M.V.; Jörn, O.B.; Borneman, J. Investigations into peach seedling stunting caused by a replant soil. FEMS Microbiol. Ecol. 2009, 68, 192–200. [Google Scholar] [CrossRef]
- Luciana, D.J.J.; Maria, V.R.; Molinillo, J.M.G.; Zia, U.D.; Cristina, J.G.S.; Edson, R.F. Allelopathy of bracken fern (Pteridiumarachnoideum): New evidence from green fronds, litter, and soil. PLoS ONE 2016, 11, e0161670. [Google Scholar]
- Carlsen, S.C.K. Allelochemicals in rye (Secale cereale L.): Cultivar and tissue differences in the production of benzoxazinoids and phenolic acids. Nat. Prod. Commun. 2009, 4, 199–208. [Google Scholar]
- Cheng, F.; Cheng, Z. Research Progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 2015, 6, 1020–1036. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, M.; Xia, X.; Shi, K.; Yu, J. Alleviation of autotoxin-induced growth inhibition and respiration by sucrose in Cucumis sativus (L.). Allelopath. J. 2010, 25, 147–154. [Google Scholar]
- Zhou, X.; Wu, F. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f. sp. cucumerinum Owen. PLoS ONE 2012, 7, e48288. [Google Scholar] [CrossRef]
- Chen, R.; Jiang, W.T.; Liu, Y.S.; Wang, Y.F.; Fan, H.; Chen, X.S.; Shen, X.; Yin, C.M.; Mao, Z.Q. Amygdalin and Benzoic Acid on the Influences of the SoilEnvironment and Growth of Malus hupehensis Rehd. Seedlings. ACS Omega 2021, 6, 12522–12529. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, J.W.; Ye, J.L.; Li, G.H. Effects of phytotoxic extracts from peach root bark and benzoic acid on peach seedlings growth, photosynthesis, antioxidance and ultrastructure properties. Scientia Horticulturae. 2017, 215, 49–58. [Google Scholar]
- Chen, S.L.; Zhou, B.L.; Lin, S.S.; Li, X.; Ye, X. Accumulation ofcinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle. Afr. J. Biotechnol. 2011, 10, 2659–2665. [Google Scholar]
- Liu, P.; Liu, Z.H.; Wang, C.B.; Guo, F.; Wan, S.B. Effects of three long-chain fatty acids present in peanut (Arachis hypogaea L.) root exudates on its own growth and the soil enzymes activities. Allelopath. J. 2012, 29, 13–24. [Google Scholar]
- Xiao, C.L.; Zheng, J.H.; Zou, L.Y. Autotoxic effects of root exudates of soybean. Allelopath. J. 2006, 18, 121–127. [Google Scholar]
- Xu, S.Z.; Wang, Y.K.; Wang, K.; Chen, X.S.; Shen, X.; Yin, C.M.; Mao, Z.Q. Dynamic Change Trend of Different Concentrations Dazomet Fumigationon the Microorganisms Environment in the Soil of Old Apple Orchard. J. Soil Water Conserv. 2018, 32, 290–297+342. (In Chinese) [Google Scholar]
- Franke-Whittle, I.H.; Manici, L.M.; Insam, H.; Stres, B. Rhizosphere Bacteria and Fungi Associated with Plant Growth in Soils of Three Replanted Apple Orchards. Plant Soil 2015, 395, 317–333. [Google Scholar] [CrossRef]
- Liu, Z. The Isolation and Identification of Fungi Pathogen from Apple Replant Disease in Bohai Bay Region and the Screening of the Antagonistic Trichoderma Strains. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2013. [Google Scholar]
- Anjaiah, V.; Cornelis, P.; Koedam, N. Effect of genotype and root colonization in biological control of Fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can. J. Microbiol. 2003, 49, 85–91. [Google Scholar] [CrossRef]
- Xiang, L.; Zhao, L.; Wang, M.; Huang, J.X.; Chen, X.S.; Yin, C.M.; Mao, Z.Q. Physiological Responses of Apple Rootstock M.9 to Infection by Fusarium solani. Hortscience 2021, 56, 1104–1111. [Google Scholar] [CrossRef]
- Van Schoor, L.; Denman, S.; Cook, N.C. Characterisation of apple replant disease under South African conditions and potential biological management strategies. Sci. Hortic. 2009, 119, 153–162. [Google Scholar] [CrossRef]
- Liu, Y.S. Inhibition of Peach Orchard Soil on the Growth of Malus hupehensis Seedlings and Ameliorating Effects of Mineral Chameleon. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2017. (In Chinese). [Google Scholar]
- Wang, D.X. Research on the Effect of Apple and Pear Crop Rotation on the Plant. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2023. (In Chinese). [Google Scholar]
- Mao, Z.Q.; Wang, L.Q.; Shen, X.; Shu, H.R.; Zou, Y.M. Effect of organic materials on respiration intensity of annual Malus. hupehensis Rehd.root system. J. Plant Nutr. Fertil. 2004, 10, 171–175. (In Chinese) [Google Scholar]
- Li, J.J.; Xiang, L.; Pan, F.B.; Chen, X.S.; Shen, X.; Yin, C.M.; Mao, Z.Q. Effects of Malushupehensis Seedlings and Allium fistulosum Mixed Cropping on Replanted Soil Environment. Acta Hortic. Sin. 2016, 43, 1853–1862. (In Chinese) [Google Scholar]
- Zhao, S.J. Techniques of Plant Physiological Experiment; Agricultural Science and Technology Press: Beijing, China, 2000; pp. 98–99. (In Chinese) [Google Scholar]
- Yin, C.M. Distribution of Phenolic Acids in Apple Replanted Orchard Soil and Effects of Phenolic Acids on the Fungi. Ph.D. Thesis, Shandong Agricultural University, Tai’an, China, 2014. (In Chinese). [Google Scholar]
- Zhang, Q.; Zhu, L.; Wang, J.; Xie, H.; Wang, J.; Wang, F.; Sun, F. Effects offomesafen on soil enzyme activity, microbial population, and bacterial community composition. Environ. Monit. Assess. 2014, 186, 2801–2812. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.N.; Chen, R.; Zhang, R.; Jiang, W.T.; Chen, X.S.; Yin, C.M.; Mao, Z.Q. Isolation, identification, and antibacterial mechanisms of Bacillus amyloliquefaciens QSB-6 and its effect on plant roots. Front. Microbiol. 2021, 12, 2727. [Google Scholar] [CrossRef] [PubMed]
- Whelan, J.A.; Russell, N.B.; Whelan, M.A. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 2003, 278, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Qiang, S.W. Mitigation of replant disease by mycorrhization in horticultural plants: A review. Folia Hortic. 2018, 30, 269–282. [Google Scholar] [CrossRef]
- Shao, X.X.; Yang, W.Y.; Wu, M. Seasonal dynamics of soil labile organic carbon and enzyme activities in relation to vegetation types in hangzhou bay tidal flat wetland. PLoS ONE 2015, 10, e0142677. [Google Scholar] [CrossRef]
- Winkelmann, T.; Smalla, K.; Amelung, W.; Baab, G.; Grunewaldt-Stöcker, G.; Kanfra, X.; Schloter, M. Apple replant disease: Causes and mitigation strategies. Curr. Issues Mol. Biol. 2018, 30, 89–106. [Google Scholar] [PubMed]
- Mazzola, M. Elucidation of the microbial complex having a causal role in the development of apple replant disease in washington. Phytopathology 1998, 88, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.H.; Ma, Z.Q.; Zhang, Q.; Zhang, T.; Zhang, X. Preliminary study on the allelopathy of 48 kinds of plants. Acta Bot. Boreal. 2004, 24, 59–846. (In Chinese) [Google Scholar]
- García-Sánchez, M.; Garrido, I.; Casimiro, I.D.J.; Casero, P.J.; Espinosa, F.; García-Romera, I.; Aranda, E. Defence response of tomato seedlings to oxidative stress induced by phenolic compounds from dry olive mill residue. Chemosphere 2012, 89, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Jaleel, C.A.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef]
- Kobayashi, K. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol. Manag. 2004, 4, 1–7. [Google Scholar] [CrossRef]
- Li, H.H.; Gong, L.H.; Zhang, Z.Y.; Wu, Y.L.; Li, L. Degradation of Phenolic Allelochemicals in Bamboo Soil by Fenton’s Reagent. J. Trop. Subtrop. Bot. 2007, 15, 513–520. (In Chinese) [Google Scholar]
- Crotty, F.V.; Fychan, R.; Sanderson, R.; Rhymes, J.R.; Bourdin, F. Understanding the legacy effect of previous forage crop and tillage management on soil biology, after conversion to an arable crop rotation. Soil Biol. Biochem. 2016, 103, 241–252. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, L.; Chu, L.; Yang, Y.; Li, Z.; Azeem, S.; Zhang, Z.; Fang, C.; Lin, W. Interaction of Pseudostellaria heterophylla with Fusarium oxysporum f.sp. heterophylla mediated by its root exudates in a consecutive monoculture system. Sci. Rep. 2015, 5, 8197. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.S.; Feng, H.S.; Wan, S.B.; Zuo, X.Q. Changes of Main Microbial Strains and Enzymes Activities in Peanut Continuous Cropping Soil and Their Interactions. Acta Agron. Sin. 2001, 27, 617–621. (In Chinese) [Google Scholar]
- Sun, J.; Zhang, Q.; Zhou, J.; Wei, Q.P. Illumina amplicon sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site. PLoS ONE 2014, 9, e111744. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.F. Diversity Analysis of Soil Fungi from Bohai Bay Apple Replanted Orchard and the Screening of the Antagoistic Fungi. Master’s Dissertation, Shandong Agricultural University, Tai’an, China, 2011. (In Chinese). [Google Scholar]
- Liu, X.D.; Hu, C.X.; Zhu, Z.Y.; Riaz, M.; Liu, X.M.; Dong, Z.H.; Liu, Y.; Wu, S.W.; Tan, Z.H.; Tan, Q.L. Migration of chlorine in plant-soil-leaching system and its effects on the yield and fruit quality of sweet orange. Front. Plant Sci. 2021, 12, 744843. [Google Scholar] [CrossRef]
- Xu, L.X.; Yi, H.L.; Zhang, A.Y.; Guo, E.H. Rhizosphere soil microbial communities under foxtail millet continuous and rotational cropping systems and their feedback effects on foxtail millet downy mildew suppression. Plant Growth Regul. 2023, 99, 161–175. [Google Scholar] [CrossRef]
- Khalil, A.M.A.; Hassan, E.D.; Alsharif, S.M.; Eid, A.; Ewis, E.A.; Azab, E.; Gobouri, A.; Kelish, A.E.; Fouda, A. Isolation and characterization of fungal endophytes isolated from medicinal plant ephedra pachyclada as plant growth-promoting. Biomolecules 2021, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Jv, H.L.; Lu, M.; Wang, B.B.; Zhao, Y.; Ruan, Y.Z. Significant decline in banana Fusarium wilt disease is associated with soil microbiome reconstruction under chilli pepper-banana rotation. Eur. J. Soil Biol. 2020, 97, 103154. [Google Scholar] [CrossRef]
- Yu, J.Q.; Ye, Y.F.; Zhang, M.F.; Hu, W.H. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals: On photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 2003, 31, 129–139. [Google Scholar] [CrossRef]
- Pavlou, G.C.; Vakalounakis, D.J. Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by lettuce soil amendment. Crop Prot. 2005, 24, 135–140. [Google Scholar] [CrossRef]
- Gosch, C.; Halbwirth, H.; Stich, K. Phloridzin: Biosynthesis, distribution and physiological relevance in plants. Phytochemistry 2010, 71, 838–843. [Google Scholar] [CrossRef]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press, Inc.: Orlando, FL, USA, 1984; pp. 9–10. [Google Scholar]
- Weir, T.L.; Park, S.W.; Vivanco, J.M. Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant Biol. 2004, 7, 472–479. [Google Scholar] [CrossRef]
- Wang, Y.P. Degradation Mechanism of Continuous Cropping Poplar Plantations: Accumulation and Allelopathy of Phenolic Acids. Ph.D. Thesis, Shandong Agricultural University, Tai’an, China, 2010. (In Chinese). [Google Scholar]
Sampling Time Year-Month | Treatment | Plant Height (cm) | Ground Diameter (mm) | Fresh Mass (g) | Dry Mass (g) |
---|---|---|---|---|---|
2022-8 | ppl | 34.25 ± 1.96 c | 4.45 ± 0.21 c | 34.46 ± 0.96 c | 13.99 ± 0.26 c |
pyl | 38.83 ± 1.97 b | 5.06 ± 0.24 b | 43.70 ± 1.25 b | 18.72 ± 0.65 b | |
pyz | 46.62 ± 2.23 a | 6.38 ± 0.18 a | 62.34 ± 1.13 a | 24.66 ± 1.21 a | |
2022-9 | ppl | 58.61 ± 1.43 c | 9.203 ± 0.43 c | — — | — — |
pyl | 68.37 ± 1.36 b | 10.27 ± 0.23 b | — — | — — | |
pyz | 77.09 ± 0.67 a | 11.57 ± 0.42 a | — — | — — |
Treatments | Length (cm) | Surface Area (cm2) | Volume (cm3) | Tips |
---|---|---|---|---|
ppl | 467.58 ± 6.78 c | 187.28 ± 3.27 c | 7.80 ± 3.01 c | 2083 ± 38.21 c |
pyl | 543.89 ± 3.48 b | 235.15 ± 2.31 b | 9.24 ± 2.86 b | 2395 ± 16.54 b |
pyz | 996.77 ± 12.65 a | 393.71 ± 7.46 a | 12.72 ± 4.36 a | 3469 ± 26.59 a |
Treatments | SOD (Umin−1g−1, FW) | POD (Umin−1g−1, FW) | CAT (Umin−1g−1, FW) | MDA (μmolg−1, FW) | Root Vitality (μmolg−1, FW) |
---|---|---|---|---|---|
ppl | 116.9 ± 0.93 c | 18.3 ± 0.51 b | 17.2 ± 1.04 c | 1.32 ± 0.08 a | 354.7 ± 11.64 b |
pyl | 137.5 ± 0.99 b | 21.2 ± 0.42 c | 19.3 ± 0.49 b | 1.04 ± 0.13 b | 384.5 ± 22.75 b |
pyz | 153.2 ± 0.58 a | 30.6 ± 0.64 a | 28.7 ± 1.60 a | 0.52 ± 0.02 c | 665.4 ± 16.41 a |
Sampling Time | Treatments | Bacteria | Fungi | The Ratio of Bacteria and Fungi |
---|---|---|---|---|
Year–Month | (×105 CFU g−1 Soil) | (×103 CFU g−1 Soil) | ||
2022–8 | ppl | 30.00 ± 2.00 a | 24.00 ± 3.61 a | 125 |
pyl | 17.67 ± 3.06 b | 12.62 ± 0.58 b | 140 | |
pyz | 7.67 ± 1.53 c | 1.00 ± 0.00 c | 767 | |
2022–9 | ppl | 44.66 ± 1.52 a | 36.67 ± 2.08 a | 161 |
pyl | 40.35 ± 1.92 b | 25.67 ± 1.04 b | 157 | |
pyz | 30.33 ± 1.15 c | 8.33 ± 2.31 c | 364 |
Types of Allelochemicals (mg kg−1) | ppl | pyl | pyz |
---|---|---|---|
Gallic acid | 0.26 ± 0.05 c | 3.95 ± 0.84 a | 0.87 ± 0.02 b |
Phloretin | 3.23 ± 0.64 | - | - |
Phloroglucinol | 7.25 ± 0.81 a | 3.87 ± 0.74 b | 2.51 ± 0.26 c |
Ferulic acid | 2.82 ± 0.58 c | 7.11 ± 0.61 a | 5.11 ± 0.61 b |
Benzoic acid | 8.02 ± 0.97 b | 9.96 ± 0.43 a | 5.41 ± 0.82 c |
Phlorizin | 4.56 ± 0.45 | - | - |
Amygdalin | - | 2.56 ± 0.64 | 1.45 ± 0.09 |
Cinnamic acid | 2.18 ± 0.02 a | 0.54 ± 0.03 b | 0.51 ± 0.05 b |
Treatment | Plant Height (cm) | Fresh Weight (g) | Dry Weight (g) |
---|---|---|---|
CK2 | 14.83 ± 1.79 a | 3.93 ± 0.2 a | 1.72 ± 0.08 a |
MP | 10.00 ± 0.82 b | 3.14 ± 0.63 b | 1.38 ± 0.05 b |
BP | 11.33 ± 0.47 b | 3.16 ± 0.09 b | 1.42 ± 0.04 b |
AP | 10.67 ± 0.28 b | 3.23 ± 0.46 b | 0.77 ± 0.08 c |
KP | 7.17 ± 0.24 c | 1.99 ± 0.19 c | 0.45 ± 0.07 d |
HP | 6.83 ± 0.25 c | 1.41 ± 0.26 d | 0.40 ± 0.01 d |
Treatments | SOD (Umin−1g−1, FW) | POD (Umin−1g−1, FW) | CAT (Umin−1g−1, FW) | Root Vitality (μmolg−1, FW) |
---|---|---|---|---|
CK2 | 264.3 ± 17.40 a | 58.50 ± 2.29 a | 56.75 ± 0.22 a | 571.33 ± 24.98 a |
MP | 158.4 ± 11.21 b | 43.51 ± 1.54 b | 46.40 ± 0.82 b | 153.52 ± 12.16 c |
BP | 147.5 ± 12.05 b | 31.54 ± 1.25 c | 44.55 ± 0.27 b | 352.14 ± 26.68 b |
AP | 163.2 ± 13.96 b | 44.62 ± 1.03 b | 46.55 ± 0.72 b | 139.02 ± 8.10 c |
KP | 117.5 ± 12.37 c | 25.38 ± 2.32 d | 39.92 ± 0.47 c | 92.67 ± 6.47 d |
HP | 104.8 ± 8.55 c | 10.41 ± 1.75 e | 34.825 ± 0.33 d | 56.00 ± 4.12 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Li, X.; Jiang, W.; Liu, Y.; Yin, C.; Mao, Z. Effect of Aged Cherry Orchard Soil on the Potted Seedling Growth of Malus hupehensis (Pamp.) Rehd. Horticulturae 2024, 10, 223. https://doi.org/10.3390/horticulturae10030223
Qin L, Li X, Jiang W, Liu Y, Yin C, Mao Z. Effect of Aged Cherry Orchard Soil on the Potted Seedling Growth of Malus hupehensis (Pamp.) Rehd. Horticulturae. 2024; 10(3):223. https://doi.org/10.3390/horticulturae10030223
Chicago/Turabian StyleQin, Lei, Xiaoxuan Li, Weitao Jiang, Yusong Liu, Chengmiao Yin, and Zhiquan Mao. 2024. "Effect of Aged Cherry Orchard Soil on the Potted Seedling Growth of Malus hupehensis (Pamp.) Rehd" Horticulturae 10, no. 3: 223. https://doi.org/10.3390/horticulturae10030223
APA StyleQin, L., Li, X., Jiang, W., Liu, Y., Yin, C., & Mao, Z. (2024). Effect of Aged Cherry Orchard Soil on the Potted Seedling Growth of Malus hupehensis (Pamp.) Rehd. Horticulturae, 10(3), 223. https://doi.org/10.3390/horticulturae10030223