Study on Morphological Traits of Natural Populations of Vaccinium uliginosum at Different Altitudinal Gradients on Changbai Mountain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Standard Plot Setting
2.3. Statistical Analysis
3. Results
3.1. Basic Characteristics of VU Morphological Traits
3.2. Analysis of Variability in VU Populations
3.3. Differentiation of Morphological Traits in VU Populations
3.4. Cluster Analysis of VU Populations According to Morphological Traits
3.5. Correlation Analysis between Morphological Traits and Environmental Factors
4. Discussion
4.1. Variation Characteristics of VU Populations in Different Altitude Gradients in Changbai Mountain
4.2. The Relationship between Morphological Traits and Environmental Factors for VU in Changbai Mountain
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Ma, K. Research progress on plant functional traits. Sci. China Life Sci. 2015, 45, 325–339. [Google Scholar]
- Xu, R.; Cheng, S.; Zhou, J.; Tigabu, M.; Ma, X.; Li, M. Intraspecific variations in leaf functional traits of Cunninghamia lanceolata provenances. BMC Plant Biol. 2023, 23, 92. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Kumar, S.; Kumar, N. Plant Adaptation Strategies in Changing Environment; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kitagawa, R.; Koide, D.; Mori, A.S. Different trends in phylogenetic and functional structure of plant communities along an elevation gradient. Ecol. Res. 2018, 33, 1233–1243. [Google Scholar] [CrossRef]
- Aalders, L.E.; Hall, I.V. The inheritance and morphological development of male-sterility in the common lowbush blueberry, vaccinium angustifolium ait. Can. J. Genet. Cytol. 2011, 5, 380–383. [Google Scholar] [CrossRef]
- Khatri, K.; Negi, B.; Bargali, K.; Bargali, S.S. Phenotypic variation in morphology and associated functional traits in Ageratina adenophora along an altitudinal gradient in Kumaun Himalaya, India. Biologia 2023, 78, 1333–1347. [Google Scholar] [CrossRef]
- Jia, X.; Lv, H.; Wu, L. Response of leaf functional traits and anatomical structure of Crataegus junggar in Tianshan wild fruit forest to altitude. Plant Sci. J. 2023, 41, 1–23. [Google Scholar]
- Zhong, X.; Zhang, L.; Pan, X.; Ye, X.; Huang, X.; Ke, D.; Sun, R. Response and adaptation of leaf functional traits to different altitudes in evergreen broad-leaved forest of Castanopsis carlesii. Acta Agric. Univ. Jiangxiensis 2022, 44, 1438–1447. [Google Scholar]
- Huang, W.; Liu, C.; Liu, Y.; Huang, B.; Li, D.; Yuan, Z. Soil Ecological Stoichiometry and Its Influencing Factors at Different Elevations in Nanling Mountains. Ecol. Environ. 2023, 32, 80. [Google Scholar]
- Chakraborty, S.; Tiedemann, A.; Teng, P.S. Climate change: Potential impact on plant diseases. Environ. Pollut. 2000, 108, 317–326. [Google Scholar] [CrossRef]
- Ahmad, A.; Diwan, H.; Abrol, Y.P. Global climate change, stress and plant productivity. In Abiotic Stress in Plants: Physiological, Molecular and Genomic Foundation; Springer: Dordrecht, The Netherlands, 2010; pp. 503–521. [Google Scholar]
- Blagojević, M.; Marković, S.; Stošić, N.; Rašković, V.; Tanasić, L.; Tomić, V.; Drkenda, P. Biological characteristics of highbush blueberry (Vaccinium corymbosum L.) cultivars. Vocarstvo 2022, 56, 47–54. [Google Scholar]
- Zong, C.; Deng, M.; Zong, C.; Cao, H.; Li, W. Research progress of Vaccinium uliginosum. North. Hortic. 2011, 12, 173–176. [Google Scholar]
- Zhou, Y. A preliminary study on the evaluation system of rare and endangered wild medicinal plant resources in Changbai Mountain area. Acta Bot. Boreali-Occident. Sin. 2006, 26, 7. [Google Scholar]
- Wu, L. Research on the Selection of Excellent Germplasm Resources and Breeding Techniques of Huckleberry; Chinese Academy of Agricultural Sciences: Beijing, China, 2013. [Google Scholar]
- Li, X.; Hong, Y.; Jackson, A.; Guo, F. Dynamic regulation of small RNAs in anthocyanin accumulation during blueberry fruit maturation. Sci. Rep. 2021, 11, 15080. [Google Scholar] [CrossRef]
- Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J.R. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J. Agric. Food Chem. 2004, 52, 4713–4719. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- David, V. Dietary Polyphenols as Modulators of Brain Functions: Biological Actions and Molecular Mechanisms Underpinning Their Beneficial Effects. Oxidative Med. Cell. Longev. 2012, 2012, 914273. [Google Scholar]
- Kim, Y.-H.; Bang, C.-Y.; Won, E.-K.; Kim, J.-P.; Choung, S.-Y. Antioxidant activities of Vaccinium uliginosum L. extract and its active components. J. Med. Food 2009, 12, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y. Research progress of wild lingonberry in China. Heilongjiang Agric. Sci. 2014, 8, 128–131. [Google Scholar]
- Filippi, A.; Braidot, E.; Petrussa, E.; Fabro, M.; Vuerich, M.; Boscutti, F. Plant growth shapes the effects of elevation on the content and variability of flavonoids in subalpine bilberry stands. Plant Biol. 2021, 23, 241–249. [Google Scholar] [CrossRef]
- Ge, S.; Wang, M.; Chen, Y. Genetic structure of Masson pine population was studied by isoenzymes. Sci. Silvae Sin. 1988, 4, 17–27. [Google Scholar]
- Wang, Z.; Gao, X.; Han, J.; Sun, G.; Gao, H. Phenotypic diversity of Caragana korshinskii. Acta Agrestia Sin. 2006, 14, 201–205. [Google Scholar]
- Ming, J.; Gu, W. Phenotypic diversity of Syringa oblata. For. Res. 2006, 19, 199–204. [Google Scholar]
- Wang, J.; Gu, W.; Li, B.; Guo, W.; Xia, L. Selection of excellent provenances/lineages of alnus alnus: Analysis of growth adaptability and genetic stability. Sci. Silvae Sin. 2000, 36, 8. [Google Scholar]
- Cai, Y.; Wang, X. Study on fruit morphological variation of subtropical Cyclobalanopsis fagus in eastern China. Acta Ecol. Sin. 1999, 19, 581–586. [Google Scholar]
- Li, B.; Lu, B.; Gu, W. Phenotypic diversity of natural population of Pinus bungeana. Biodivers. Sci. 2002, 10, 181–188. [Google Scholar]
- Luo, J.; Gu, W. Study on natural population phenotypic diversity of Picea asperata. Sci. Silvae Sin. 2005, 41, 66–73. [Google Scholar]
- Zhou, L.; Lan, Y.; Cao, Q.; Li, S.; Lan, W. Study on leaf character phenotypic diversity of Castanea mollissima. Chin. Agric. Sci. Bull. 2005, 21, 136–139. [Google Scholar]
- Li, W.; Gu, W. Study on natural population phenotypic diversity of Quercus mongolicus. Sci. Silvae Sin. 2005, 41, 49–56. [Google Scholar]
- El-Kassaby, Y.; Sziklai, O. Genetic variation of allozyme and quantitative traits in a selected Douglas-fir [Pseudotsuga menziesii var. menziesii (Mirb.) Franco] population. For. Ecol. Manag. 1982, 4, 115–126. [Google Scholar] [CrossRef]
- Li, M. Study on Natural Population Phenotypic Diversity of Quercus Liaotungensis; Beijing Forestry University: Beijing, China, 2005. [Google Scholar]
- Pang, G.; Jiang, D. Population genetic diversity and data analysis. Sci. Silvae Sin. 1995, 31, 543–550. [Google Scholar]
- Stephan, W. Principles of Population Genetics. Fourth Edition. Q. Rev. Biol. 2007, 82, 416. [Google Scholar]
- Pandey, M.; Pathak, M.L.; Shrestha, B.B. Morphological and wood anatomical traits of Rhododendron lepidotum Wall ex G. Don along the elevation gradients in Nepal Himalayas. Arct. Antarct. Alp. Res. 2021, 53, 35–47. [Google Scholar] [CrossRef]
- Korobkova, T.; Sorokopudov, V.; Sorokopudova, O.; Lebedev, D. Morphological variability of Vaccinium uliginosum L. in coenopopulations in Asian Russia. BIO Web Conf. 2023, 76, 05007. [Google Scholar] [CrossRef]
- Becerra, A.D.; Quevedo-Rubiano, S.; Magnitskiy, S.; Lancheros, H.O. Morphological responses of Andean blueberry (Vaccinium meridionale Swartz) plants growing in three environments at different altitudes. Rev. Colomb. De Cienc. Hortícolas 2022, 16, e15034. [Google Scholar] [CrossRef]
- Wiemann, M.C.; Manchester, S.R.; Dilcher, D.L.; Hinojosa, L.F.; Wheeler, E.A. Estimation of temperature and precipitation from morphological characters of dicotyledonous leaves. Am. J. Bot. 1998, 85, 1796–1802. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Shen, Z.-X.; Zhang, X.-Z. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau. Agric. For. Meteorol. 2018, 249, 11–21. [Google Scholar] [CrossRef]
- Meier, I.C.; Leuschner, C. Leaf size and leaf area index in Fagus sylvatica forests: Competing effects of precipitation, temperature, and nitrogen availability. Ecosystems 2008, 11, 655–669. [Google Scholar] [CrossRef]
- Löf, M.; Welander, N. Carry-over effects on growth and transpiration in Fagus sylvatica seedlings after drought at various stages of development. Can. J. For. Res. 2000, 30, 468–475. [Google Scholar] [CrossRef]
- Otieno, D.O.; Schmidt, M.; Adiku, S.; Tenhunen, J. Physiological and morphological responses to water stress in two Acacia species from contrasting habitats. Tree Physiol. 2005, 25, 361–371. [Google Scholar] [CrossRef]
- Hinckley, T.; Teskey, R.; Duhme, F.; Richter, H. Temperate hardwood forests. Woody Plant Communities 1981, 5, 153–208. [Google Scholar]
- Martinez-Almoyna, C.; Piton, G.; Abdulhak, S.; Boulangeat, L.; Münkemüller, T. Climate, soil resources and microbial activity shape the distributions of mountain plants based on their functional traits. Ecography 2020, 43, 1550–1559. [Google Scholar] [CrossRef]
- St. Martin, P.; Mallik, A. Intraspecific trait variation as a mechanism of coexistence of congeneric blueberry (Vaccinium) species after forest harvesting. For. Ecol. Manag. 2023, 545, 121205. [Google Scholar] [CrossRef]
Sample Plot | Plot 1 | Plot 2 | Plot 3 | Plot 4 | Plot 5 | |
---|---|---|---|---|---|---|
Climatic Indicator | ||||||
Altitude (m) | 685 | 900 | 1100 | 1230 | 2100 | |
Annual precipitation (mm) | 679.18 | 728.95 | 782.37 | 810.53 | 1114.24 | |
Precipitation from June to September (mm) | 483.02 | 518.41 | 556.4 | 576.43 | 792.42 | |
Moisture index | 1.91 | 2.52 | 3.12 | 3.43 | 6.17 | |
Average temperature (°C) | 2.79 | 1.81 | 0.78 | 0.27 | −4.33 | |
≥5 °C accumulated temperature | 2459.77 | 2123.12 | 1832.55 | 1702.53 | 877.93 | |
Average temperature in January (°C) | −17.33 | −17.95 | −18.58 | −18.89 | −21.71 | |
Average temperature in July (°C) | 19.63 | 18.51 | 17.4 | 16.84 | 11.83 | |
Frost-free days | 121 | 112.25 | 104.14 | 100.31 | 71.58 | |
Snow cover days | 130.79 | 144.37 | 157.94 | 164.73 | 225.82 | |
Longitude | 128°22′6″ | 128°31′46″ | 128°32′30″ | 128°27′39″ | 128°9′6″ | |
Latitude | 42°32′38″ | 42°21′26″ | 42°21′6″ | 42°19′53″ | 42°1′46″ |
Population | LL | LW | LL/LW | TL | PH | BD | PH/BD | CBH |
---|---|---|---|---|---|---|---|---|
F-Value | ||||||||
Inter-population | 44.75 ** | 5.29 ** | 49.74 ** | 82.79 ** | 63.82 ** | 21.32 ** | 37.94 ** | 14.41 ** |
Intra-population | 16.85 ** | 8.01 ** | 16.47 ** | 29.16 ** | 56.54 ** | 39.51 ** | 53.62 ** | 46.77 ** |
Coefficients of Variation (CVs, %) | ||||||||
1 | 27.55 | 25.58 | 18.32 | 44.89 | 27.57 | 30.90 | 33.29 | 44.40 |
2 | 25.96 | 26.59 | 23.41 | 46.71 | 27.74 | 19.13 | 29.32 | 65.47 |
3 | 23.49 | 28.14 | 24.40 | 52.00 | 21.40 | 27.28 | 21.77 | 43.26 |
4 | 21.59 | 50.60 | 19.18 | 45.28 | 30.49 | 33.51 | 30.00 | 49.11 |
5 | 22.79 | 20.46 | 15.32 | 36.67 | 62.46 | 39.69 | 65.60 | 44.69 |
Total | 35.22 | 31.89 | 30.47 | 53.86 | 53.86 | 37.32 | 48.32 | 66.19 |
Relative extreme value (Ri’, %) | ||||||||
1 | 90.68 | 19.43 | 82.36 | 71.11 | 71.71 | 79.81 | 76.22 | 71.27 |
2 | 41.13 | 21.42 | 72.68 | 71.56 | 89.12 | 50.96 | 61.73 | 95.36 |
3 | 37.08 | 20.85 | 76.13 | 97.33 | 67.74 | 79.81 | 46.11 | 58.78 |
4 | 29.08 | 96.13 | 81.82 | 52.44 | 69.86 | 70.19 | 77.98 | 54.19 |
5 | 14.89 | 11.98 | 18.02 | 22.84 | 11.99 | 69.23 | 29.50 | 14.51 |
Total | 42.57 | 33.96 | 66.20 | 63.06 | 62.08 | 70.00 | 58.31 | 58.82 |
Traits | Variance Component | Percentage of Variance Portion (%) | Vst (%) | ||||
---|---|---|---|---|---|---|---|
Among Populations | Within Populations | Random Errors | Among Populations | Within Population | Random Errors | ||
LL | 0.38 | 0.12 | 0.23 | 51.74 | 16.68 | 31.58 | 75.61 |
LW | 0.01 | 0.02 | 0.10 | 5.83 | 17.84 | 76.32 | 24.64 |
LL/LW | 0.24 | 0.07 | 0.13 | 54.07 | 15.63 | 30.30 | 77.58 |
TL | 7.68 | 1.36 | 1.45 | 73.22 | 12.97 | 13.81 | 84.95 |
PH | 729.83 | 171.18 | 15.41 | 79.64 | 18.68 | 1.68 | 81.00 |
BD | 0.02 | 0.01 | 0.00 | 55.16 | 39.69 | 5.15 | 58.15 |
PH/BD | 1657.39 | 660.54 | 62.76 | 69.62 | 27.75 | 2.64 | 71.50 |
BIH | 102.47 | 112.16 | 12.25 | 45.16 | 49.44 | 5.40 | 47.74 |
Morphological Traits | LL | LW | LL/LW | TL | BIH | PH | BD | PH/BD | |
---|---|---|---|---|---|---|---|---|---|
Environmental Factors | |||||||||
Altitude | −0.954 ** | −0.586 | −0.942 * | −0.78 | −0.990 ** | −0.947 * | −0.964 ** | −0.932 * | |
Annual precipitation | −0.965 ** | 0.555 | −0.968 ** | −0.772 | −0.986 ** | −0.958 * | −0.971 ** | −0.956 * | |
Precipitation from June to September | −0.965 ** | −0.555 | −0.968 ** | −0.772 | −0.986 ** | −0.958 * | −0.971 ** | −0.956 * | |
Moisture index | −0.956 * | −0.57 | −0.950 * | −0.775 | −0.989 ** | −0.950 * | −0.966 ** | −0.939 * | |
Average temperature | 0.957 * | 0.571 | 0.951 * | 0.778 | 0.988 ** | 0.951 * | 0.967 ** | 0.940 * | |
Accumulated temperature (≥5 °C) | 0.957 * | 0.589 | 0.893 * | 0.766 | 0.980 ** | 0.914 * | 0.936 * | 0.880 * | |
Average temperature in January | 0.956 * | 0.57 | 0.950 * | 0.776 | 0.989 ** | 0.950 * | 0.966 ** | 0.939 * | |
Average temperature in July | 0.955 * | 0.57 | 0.950 * | 0.775 | 0.989 ** | 0.950 * | 0.966 ** | 0.938 * | |
Frost-free days | 0.939 * | 0.582 | 0.924 * | 0.774 | 0.987 ** | 0.935 * | 0.954 * | 0.912 * | |
Snow cover days | −0.956 * | −0.57 | −0.950 * | −0.775 | −0.989 ** | −0.950 * | −0.966 ** | −0.938 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.; Guo, Z.; Zheng, J. Study on Morphological Traits of Natural Populations of Vaccinium uliginosum at Different Altitudinal Gradients on Changbai Mountain. Horticulturae 2024, 10, 224. https://doi.org/10.3390/horticulturae10030224
Fan C, Guo Z, Zheng J. Study on Morphological Traits of Natural Populations of Vaccinium uliginosum at Different Altitudinal Gradients on Changbai Mountain. Horticulturae. 2024; 10(3):224. https://doi.org/10.3390/horticulturae10030224
Chicago/Turabian StyleFan, Chunnan, Zhongling Guo, and Jinping Zheng. 2024. "Study on Morphological Traits of Natural Populations of Vaccinium uliginosum at Different Altitudinal Gradients on Changbai Mountain" Horticulturae 10, no. 3: 224. https://doi.org/10.3390/horticulturae10030224
APA StyleFan, C., Guo, Z., & Zheng, J. (2024). Study on Morphological Traits of Natural Populations of Vaccinium uliginosum at Different Altitudinal Gradients on Changbai Mountain. Horticulturae, 10(3), 224. https://doi.org/10.3390/horticulturae10030224