Non-Destructive Near-Infrared Moisture Detection of Dried Goji (Lycium barbarum L.) Berry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Non-Destructive NIR Moisture Experiments on Dried Goji Berries
2.2. Processing of NIR Hyperspectral Data of the Moisture of Dried Goji Berries
3. Results and Discussion
3.1. Analysis of NIR Hyperspectral Data of the Moisture of Dried Goji Berries
3.2. Establishment of Prediction Model of the Moisture of Dried Goji Berries
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Forino, M.; Tartaglione, L.; Dell’Aversano, C.; Ciminiello, P. NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries). Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries. Food Chem. 2016, 194, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Po, K.K.; Leung, J.W.; Chan, J.N.; Fung, T.K.; Sánchez-Vidaña, D.I.; Sin, E.L.; So, K.; Lau, B.W.; Siu, A.M. Protective effect of Lycium Barbarum polysaccharides on dextromethorphan-induced mood impairment and neurogenesis suppression. Brain Res. Bull. 2017, 134, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Ceccarini, M.R.; Vannini, S.; Cataldi, S.; Moretti, M.; Villarini, M.; Fioretti, B.; Albi, E.; Beccari, T.; Codini, M. Effect of Lycium barbarum berries cultivated in Umbria (Italy) on human hepatocellular carcinoma cells. J. Biotechnol. 2016, 231S, S26–S27. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, J.; Yan, J.; Liu, S.; Guo, Y.; Chen, D.; Luo, Q. Lycium barbarum polysaccharides ameliorates renal injury and inflammatory reaction in alloxan-induced diabetic nephropathy rabbits. Life Sci. 2016, 157, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Amagase, H.; Farnsworth, N.R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Res. Int. 2011, 44, 1702–1717. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, W.; Qureshi, W.S.; Gao, C.; Zhang, C.; Li, W. Autonomous navigation for a wolfberry picking robot using visual cues and fuzzy control. Inf. Process. Agric. 2021, 8, 15–26. [Google Scholar] [CrossRef]
- Zhao, J.; Sugirbay, A.; Chen, Y.; Zhang, S.; Liu, F.; Bu, L.; Chen, Y.; Wang, Z.; Chen, J. FEM explicit dynamics simulation and NIR hyperspectral reflectance imaging for determination of impact bruises of Lycium barbarum L. Postharvest Biol. Technol. 2019, 155, 102–110. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J. Detecting maturity in fresh Lycium barbarum L. fruit using color information. Horticulturae 2021, 7, 108. [Google Scholar] [CrossRef]
- Xu, L.; Chen, J.; Wu, G.; Yuan, Q.; Ma, S.; Yu, C.; Duan, Z.; Xing, J.; Liu, X. Design and operating parameter optimization of comb brush vibratory harvesting device for wolfberry. Trans. CSAE 2018, 34, 75–82. [Google Scholar] [CrossRef]
- Wang, Y. Research on Key Technology of Wolfberry Vibration Harvest. Master’s Thesis, Northwest A&F University, Yangling, China, 2018. [Google Scholar]
- Zhao, J.; Ma, T.; Inagaki, T.; Chen, Y.; Hu, G.; Wang, Z.; Chen, Q.; Gao, Z.; Zhou, J.; Wang, M.; et al. Parameter optimization of vibrating and comb-brushing harvesting of Lycium barbarum L. based on FEM and RSM. Horticulturae 2021, 7, 286. [Google Scholar] [CrossRef]
- Li, Q.; Ye, L.; An, W. The suitable working of Wolfberry harvest machine. J. Agric. Mech. Res. 2009, 31, 126–128. [Google Scholar] [CrossRef]
- Wang, J.; Mei, S.; Xiao, H.; Zhao, Y.; Zhou, H. Research on mechanized harvesting methods of Lycium barbarum fruit. IFAC-PapersOnLine 2018, 51, 223–226. [Google Scholar] [CrossRef]
- Zhou, B.; He, J. Design of simulate hand wolfberry picking machine. Trans. CSAE 2010, 26 (Suppl. S1), 13–17. [Google Scholar]
- So, J.D. Vibration characteristics of boxthorn (Lycium chinense Mill) branches. Appl. Eng. Agric. 2001, 17, 755–760. [Google Scholar] [CrossRef]
- So, J.D. Vibratory harvesting machine for boxthorn (Lycium chinense Mill) berries. Trans. ASAE 2003, 46, 211–221. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, H.; Ding, W.; Mei, S. Machanism simulation analysis and prototype experiment of Lycium barbarum harvest by vibration mode. Trans. CSAE 2015, 31, 20–28. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, M.; Zhang, J.; Li, W. Design and experiment of vibrating wolfberry harvester. Trans. CSAM 2018, 49, 97–102. [Google Scholar] [CrossRef]
- He, M.; Kan, Z.; Li, C.; Wang, L.; Yang, L.; Wang, Z. Mechanism analysis and experiment on vibration harvesting of wolfberry. Trans. CSAE 2017, 33, 47–53. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Tan, Y.; Li, W. Optimal design and experiment on variable pacing combing brush picking device for Lycium barbarum. Trans. CSAM 2018, 49, 83–90. [Google Scholar] [CrossRef]
- Rodjanatham, T.; Rabgyal, T. Quality assurance of international fruit supply chains via techno-management. Agriculture 2020, 10, 107. [Google Scholar] [CrossRef]
- Ma, T.; Morita, G.; Inagaki, T.; Tsuchikawa, S. Moisture transport dynamics in wood during drying studied by long-wave near-infrared hyperspectral imaging. Cellulose 2022, 29, 133–145. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, S.; Liu, X.; Zhang, E.; Song, Z. Identification of wine grape varieties based on near-infrared hyperspectral imaging. Appl. Eng. Agric. 2019, 35, 959–967. [Google Scholar] [CrossRef]
- Ciccoritti, R.; Paliotta, M.; Amoriello, T.; Carbone, K. FT-NIR spectroscopy and multivariate classification strategies for the postharvest quality of green-fleshed kiwifruit varieties. Sci. Hortic. 2019, 257, 108622. [Google Scholar] [CrossRef]
- Fu, X.; Ying, Y.; Lu, H.; Xu, H.; Yu, H. FT-NIR diffuse reflectance spectroscopy for kiwifruit firmness detection. Sens. Instrum. Food Qual. Saf. 2007, 1, 29–35. [Google Scholar] [CrossRef]
- McGlone, V.A.; Clark, C.J.; Jordan, R.B. Comparing density and VNIR methods for predicting quality parameters of yellow-fleshed kiwifruit (Actinidia chinensis). Postharvest Biol. Technol. 2007, 46, 1–9. [Google Scholar] [CrossRef]
- Moghimi, A.; Aghkhani, M.H.; Sazgarnia, A.; Sarmad, M. Vis/NIR spectroscopy and chemometrics for the prediction of soluble solids content and acidity (pH) of kiwifruit. Biosyst. Eng. 2010, 106, 295–302. [Google Scholar] [CrossRef]
- Santagapita, P.R.; Tylewicz, U.; Panarese, V.; Rocculi, P.; Dalla Rosa, M. Nondestructive assessment of kiwifruit physico-chemical parameters to optimise the osmotic dehydration process: A study on FT-NIR spectroscopy. Biosyst. Eng. 2016, 142, 101–109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, R.; Ma, T.; Tsuchikawa, S.; Inagaki, T.; Chen, J.; Zhao, J.; Li, D.; Cui, G. Non-Destructive Near-Infrared Moisture Detection of Dried Goji (Lycium barbarum L.) Berry. Horticulturae 2024, 10, 302. https://doi.org/10.3390/horticulturae10030302
Kang R, Ma T, Tsuchikawa S, Inagaki T, Chen J, Zhao J, Li D, Cui G. Non-Destructive Near-Infrared Moisture Detection of Dried Goji (Lycium barbarum L.) Berry. Horticulturae. 2024; 10(3):302. https://doi.org/10.3390/horticulturae10030302
Chicago/Turabian StyleKang, Rui, Te Ma, Satoru Tsuchikawa, Tetsuya Inagaki, Jun Chen, Jian Zhao, Dongdong Li, and Gongpei Cui. 2024. "Non-Destructive Near-Infrared Moisture Detection of Dried Goji (Lycium barbarum L.) Berry" Horticulturae 10, no. 3: 302. https://doi.org/10.3390/horticulturae10030302
APA StyleKang, R., Ma, T., Tsuchikawa, S., Inagaki, T., Chen, J., Zhao, J., Li, D., & Cui, G. (2024). Non-Destructive Near-Infrared Moisture Detection of Dried Goji (Lycium barbarum L.) Berry. Horticulturae, 10(3), 302. https://doi.org/10.3390/horticulturae10030302