Controlled Atmosphere Storage and Sorbitol Dipping Minimize Chilling Injuries in ‘Palmer’ Mangoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experiment I: Without Gas Modification (Air)
2.3. Experiment II: CA—Modification of Atmosphere Gases
2.4. Evaluations
2.4.1. Chilling Injury Development
2.4.2. Fresh Weight Loss
2.4.3. Firmness
2.4.4. Color
2.4.5. Physicochemical Evaluation
2.5. Oxidative Metabolism
2.5.1. Lipid Peroxidation
2.5.2. Hydrogen Peroxide (H2O2)
2.5.3. Superoxide Dismutase (SOD) and Ascorbate Peroxidase (APX) Extraction
2.5.4. Superoxide Dismutase (SOD) Activity
2.5.5. Ascorbate Peroxidase (APX) Activity
2.5.6. Polyphenol Oxidase (PPO) Extraction and Activity Measurements
2.6. Statistical Analysis
2.6.1. Univariate
2.6.2. Multivariate
3. Results
3.1. Experiment I: Without Gas Modification (Air)
3.1.1. Chilling Injury and Physicochemical Variables
3.1.2. Cold Damage and Oxidative Metabolism
3.2. Experiment II: CA—Modification of Atmospheric Gases
3.2.1. Cold Damage and Physicochemical Variables
3.2.2. Cold Damage and Oxidative Metabolism
4. Discussion
4.1. Cold Damage and Physicochemical Variables
4.2. Cold Damage and Oxidative Metabolism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vega-Alvarez, M.; Salazar-Salas, N.Y.; López-Ângulo, G.; Pineda-Hidalgo, K.V.; López-López, M.E.; Vega-García, M.O.; Delgado-Vargas, F.; López-Valenzuela, J.A. Metabolomic changes in mango fruit peel associated with chilling injury tolerance induced by quarantine hot water treatment. Postharvest Biol. Technol. 2020, 169, 111299. [Google Scholar] [CrossRef]
- Singh, Z.; Singh, R.K.; Sane, V.A.; Nath, P. Mango-postharvest biology and biotechnology. Crit. Rev. Plant Sci. 2013, 32, 217–236. [Google Scholar] [CrossRef]
- Penchaiya, P.; Tijskens, L.M.M.; Uthairatanakij, A.; Srilaong, V.; Tansakul, A.; Kanlayanarat, S. Modelling quality and maturity of ‘Namdokmai Sithong’ mango and their variation during storage. Postharvest Biol. Technol. 2020, 159, 111000. [Google Scholar] [CrossRef]
- Zaharah, S.S.; Singh, Z. Postharvest nitric oxide fumigation alleviates chilling injury, delays fruit ripening and maintains quality in cold-stored ‘Kensington Pride’ mango. Postharvest Biol. Technol. 2011, 60, 202–210. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Q.; Hu, M.; Gao, Z.; An, F.; Li, M.; Jiang, Y. Low-temperature conditioning induces chilling tolerance in stored mango fruit. Food Chem. 2017, 219, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, G.R.; Cole, S.R.; Landrin, M.; Nuevo, P.A.; Lam, P.F.; Graham, G. Chilling injury and storage of mango (Mangifera indica L.) held under low temperatures. Acta Hort. 1991, 291, 461–471. [Google Scholar] [CrossRef]
- Lyons, J.M.; Raison, J.K.; Steponkus, P.L. The plant membrane in response to low temperature: An overview. In Low Temperature Stress in Crop Plants: The Role of the Membrane; Lyons, J.M., Graham, D., Raison, J.K., Eds.; Academic Press: New York, NY, USA, 1979; pp. 1–24. [Google Scholar]
- Kane, O.; Marcellin, P.; Mazliak, P. Incidence of ripening and chilling injury on the oxidative activities and fatty acid compositions of the mitochondria from mango fruit. Plant Physiol. 1978, 61, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Cruz, J.; Parkin, K.L.; Garcia, H.S. Refrigerated storage and chilling injury development of Manila mangoes (Mangifera indica L.). Acta Hort. 1997, 455, 718–725. [Google Scholar] [CrossRef]
- Agillon, A.B.; Lizada, M.C.C. Responses of ‘Carabao’ mango (Mangifera indica) fruit to chilling stress. Acta Hort. 2012, 877, 467–474. [Google Scholar] [CrossRef]
- Kumpoun, W.; Nishizawa, T.; Motomura, Y.; Puthmee, T.; Aikawa, T. Histological and biochemical traits of chilling-injured pulp tissues as affected by cold storage of mango fruit. HortScience 2017, 52, 1380–1384. [Google Scholar] [CrossRef]
- Shewfelt, R.L.; Rosario, B.A. The role of lipid peroxidation in storage disorders of fresh fruit and vegetables. HortScience 2000, 35, 575–579. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, S. Pre-storage cold acclimation maintained quality of cold-stored cucumber through differentially and orderly activating ROS scavengers. Postharvest Biol. Technol. 2017, 129, 1–8. [Google Scholar] [CrossRef]
- Khaliq, G.; Mohamed, M.T.M.; Ghazali, H.M.; Ding, P.; Ali, A. Influence of gum arabic coating enriched with calcium chloride on physiological, biochemical and quality responses of mango (Mangifera indica L.) fruit stored under low temperature stress. Postharvest Biol. Technol. 2016, 111, 362–369. [Google Scholar] [CrossRef]
- Sanches, A.G.; Pedrosa, V.M.D.; Checchio, M.V.; Fernandes, T.F.S.; Guevara, J.E.M.; Gratão, P.L.; Teixeira, G.H.A. Polyols alleviate chilling injury in ‘Palmer’ mangoes during cold storage. Food Control 2021, 129, 108248. [Google Scholar] [CrossRef]
- Lyons, J.M.; Raison, J.K. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol. 1970, 45, 386–389. [Google Scholar] [CrossRef]
- Raison, J.K.; Lyons, J.M. Chilling injury: A plea for uniform terminology. Plant Cell Environ. 1986, 9, 685–686. [Google Scholar] [CrossRef]
- Raison, J.K.; Orr, G.R. Proposals for a better understanding of the molecular basis of chilling injury. Chill. Inj. Hortic. Crops 1990, 145, 164. [Google Scholar]
- Sevillano, L.; Sanchez-Ballesta, M.T.; Romojaro, F.; Flores, F.B. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. J. Sci. Food Agric. 2009, 89, 555–573. [Google Scholar] [CrossRef]
- Rice, T.; Zanini, E.; Arendt, E.K.; Coffey, A.A. Review of polyols–biotechnological production, food applications, regulation, labeling and health effects. Crit. Rev. Food Sci. Nutr. 2020, 60, 2034–2051. [Google Scholar] [CrossRef]
- Fang, T.; Cai, Y.; Yang, Q.; Ogutu, C.O.; Liao, L.; Han, Y. Analysis of sorbitol content variation in wild and cultivated apples. J. Sci. Food Agric. 2020, 100, 139–144. [Google Scholar] [CrossRef]
- Kanayama, Y. Physiological roles of polyols in horticultural crops. J. Jpn. Soc. Hortic. Sci. 2009, 78, 158–168. [Google Scholar] [CrossRef]
- Ito, A.; Sugiura, T.; Sakamoto, D.; Moriguchi, T. Effects of dormancy progression and low-temperature response on changes in the sorbitol concentration in xylem sap of Japanese pear during winter season. Tree Physiol. 2013, 33, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Shirgire, S.D.; Talware, R.B.; Kadam, S.S.; Kumbharkhane, A.C. Dielectric relaxation of d-sorbital-water mixture using a time domain reflectometry technique. J. Mol. Liq. 2012, 169, 33–36. [Google Scholar] [CrossRef]
- Busttamante, C.; Monti, L.; Gabilondo, J.; Scossa, F.; Valentini, G.; Budde, C.; Lara, M.; Fernie, A.; Drincovish, M. Differential metabolic rearrangements after cold storage are correlated with chilling injury resistance of peach fruit. Front. Plant Sci. 2016, 7, 1478. [Google Scholar] [CrossRef] [PubMed]
- Thomashow, M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. 1999, 50, 571–599. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, L.Y.; Huang, M.L.; Yang, F.C.; Zhang, F.K.; Xu, R.C.; Yan, D.Y. Progresses in study on sorbitol effect on plants resistance. Soils 2018, 50, 446–454. [Google Scholar] [CrossRef]
- Sanches, A.G.; Silva, M.B.; Fernandes, T.F.S.; Pedrosa, V.M.D.; Wong, M.C.C.; Gratão PLTeixeira, G.H.A. Quarantine cold treatment hardness of ‘Palmer’ mangoes treated with polyols. J. Sci. Food Agric. 2022, 102, 6112–6122. [Google Scholar] [CrossRef] [PubMed]
- Miguel, A.C.A.; Durigan, J.F.; Morgado, C.M.A.; Oliveira, R.F. Lesão por frio em manga cv Palmer. Rev. Bras. Frutc. 2011, 33, 255–260. [Google Scholar] [CrossRef]
- Watkins, C.; Harman, J. Use of penetrometer to measure flesh firmness of fruit. Orchardist N. Z. 1981, 54, 14–16. [Google Scholar]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemistry, 20th ed.; Patricia Cunniff: Washington, DC, USA, 2016. [Google Scholar]
- Gratão, P.L.; Monteiro, C.C.; Carvalho, R.F.; Teozotto, T.; Piotto, F.A.; Peres, L.E.P.; Azevedo, R.A. Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. Plant Physiol. Biochem. 2012, 56, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, Y.; Cao, S. Effect of high oxygen atmosphere on quality, antioxidant enzymes, and DPPH-radical scanvenging activity of Chinese bayberry fruit. J. Agric. Food Chem. 2009, 57, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 722, 248–254. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, C.; Fridovich, I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate specific peroxidases in spinach chloroplast. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Sojo, M.M.; Nuñez-Delicado, E.; García-Carmona, F. Partial purification of a banana polyphenol oxidase using triton X-114 and PEG 8000 for removal of polyphenols. J. Agric. Food Chem. 1998, 46, 4924–4930. [Google Scholar] [CrossRef]
- Wissemann, K.W.; Lee, C.Y. Polyphenoloxidase activity during grape maturation and wine production. Am. J. Enol. Vitic. 1980, 31, 206–211. [Google Scholar] [CrossRef]
- Lima, F.T.D.; Martins, L.P.; Toscano, B.L.M.D.; Costa, E.S.; Souza, W.F.C.; Lucena, F.A.; Silva Filho, J.F.; Sousa, S. Cold damage affects the quality of noni fruit (Morinda citrifolia L.). Biocatal. Agric. Biotechnol. 2023, 47, 102566. [Google Scholar] [CrossRef]
- Narayana, C.K.; Rao, D.V.S.; Roy, S.K.; Siddiq, M. Mango Production, Postharvest Physiology and Storage. In Tropical and Subtropical Fruit: Postharvest Physiology, Processing and Packaging; Wiley: Hoboken, NJ, USA, 2012; pp. 259–276. [Google Scholar] [CrossRef]
- Sanches, A.G.; Silva, M.B.; Wong, M.C.C.; Oliveira, A.R.G.; Pedrosa, V.M.D.; Fernandes, T.F.S.; Gratão, P.L.; Teixeira, G.H.A. Sorbitol immersion controls chilling injury in CA stored ‘Palmer’ mangoes. Postharvest Biol. Technol. 2022, 185, 111800. [Google Scholar] [CrossRef]
- Salazar-Salas, N.Y.; Chairez-Veja, D.A.; Vega-Alvarez, M.; González-Nuñez, D.G.; Pineda-Hidalgo, K.V.; Chávez-Ontiveros, J.; Delgado-Vargas, F.; Lopez-Valenzuela, J.A. Proteomic changes in mango fruit peel associated with chilling injury tolerance induced by quarantine hot water treatment. Postharvest Biol. Technol. 2022, 186, 111838. [Google Scholar] [CrossRef]
- Wei, C.; Ma, L.; Cheng, Y.; Guan, Y.; Guan, J. Exogenous ethylene alleviates chilling injury of ‘Huangguan’ pear by enhancing the proline content and antioxidant activity. Sci. Hortic. 2019, 257, 108671. [Google Scholar] [CrossRef]
- Saeed, F.; Chaudhry, U.K.; Raza, A.; Charagh, S.; Bakhsh, A.; Bohra, A.; Ali, S.; Chitikineni, A.; Saeed, Y.; Visser, R.G.F.; et al. Developing future heat-resilient vegetable crops. Funct. Integr. Genom. 2023, 23, 47. [Google Scholar] [CrossRef] [PubMed]
- Babalar, M.; Pirzad, F.; Sarcheshmeh, M.A.A.; Talaei, A.; Lessani, H. Arginine treatment attenuates chilling injury of pomegranate fruit during cold storage by enhancing antioxidant system activity. Postharvest Biol. Technol. 2018, 137, 31–37. [Google Scholar] [CrossRef]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant. Sci. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Song, C.; Wang, K.; Xiao, X.; Liu, Q.; Yang, M.; Li, X.; Feng, Y.; Li, S.; Shi, L.; Chen, W.; et al. Membrane lipid metabolism influences chilling injury during cold storage of peach fruit. Food Res. Int. 2022, 157, 111249. [Google Scholar] [CrossRef]
Variables | Codes |
---|---|
Firmness | Firmness |
pH | pH |
Soluble solids content | SSC |
Titratable acidity | TA |
Ratio SSC/TA | SSC/TA |
Fresh weight loss | FWL |
Chilling injury | CI |
Luminosity peel | L*peel |
Luminosity pulp | L*pulp |
Hue angle peel | h°peel |
Hue angle pulp | h°pulp |
Chromaticity peel | C*peel |
Chromaticity pulp | C*pulp |
Variables | Codes |
---|---|
Lipid peroxidation peel | LPpeel |
Lipid peroxidation pulp | LPpulp |
Hydrogen peroxide peel | H2O2peel |
Hydrogen peroxide pulp | H2O2pulp |
Superoxide dismutase peel | SODpeel |
Superoxide dismutase pulp | SODpulp |
Ascorbate peroxidase peel | APXpeel |
Ascorbate peroxidase pulp | APXpulp |
Polyphenol oxidase peel | PPOpeel |
Polyphenol oxidase pulp | PPOpulp |
Main Effect | FWL (%) | CI (1–4) | SSC (%) | TA (g kg1) | SSC/TA | pH |
---|---|---|---|---|---|---|
Treatments (A) | ||||||
Control | 0.86 a | 1.30 a | 6.49 a | 0.280 a | 24.39 a | 3.83 a |
Sorbitol 0.1% | 0.86 a | 1.15 a | 6.39 a | 0.276 a | 25.91 a | 3.79 a |
Sorbitol 2.5% | 0.72 b | 1.10 a | 6.47 a | 0.254 a | 23.70 a | 3.88 a |
F test | 7.63 ** | 1.86 ns | 0.44 ns | 2.91 ns | 1.96 ns | 1.54 ns |
Days (B) | ||||||
0 | 0.00 e | 1.00 c | 6.38 ab | 0.255 bc | 25.07 b | 3.84 a |
7 | 0.46 d | 1.11 bc | 6.21 b | 0.267 abc | 23.74 b | 3.87 a |
14 | 0.82 c | 1.11 bc | 6.38 ab | 0.305 a | 21.70 b | 3.75 a |
21 | 1.23 b | 1.25 ab | 6.54 ab | 0.292 ab | 23.22 b | 3.80 a |
28 | 1.60 a | 1.50 a | 6.73 a | 0.231 c | 29.60 a | 3.93 a |
F test | 220.93 ** | 4.07 ** | 3.59 * | 7.74 ** | 8.33 ** | 2.00 ns |
Interaction | ||||||
F test | 0.75 ns | 1.50 ns | 0.50 ns | 3.12 ** | 2.86 * | 0.70 ns |
Main Effects | CI (1–4) | SSC (%) | TA (g kg−1) | SSC/TA | pH |
---|---|---|---|---|---|
Treatments (A) | |||||
Control | 1.80 a | 14.13 a | 0.252 a | 60.53 b | 4.00 a |
Sorbitol 0.1% | 1.70 a | 14.05 a | 0.209 b | 73.21 a | 4.04 a |
Sorbitol 2.5% | 1.65 a | 14.29 a | 0.234 ab | 66.64 ab | 4.06 a |
Test F | 0.30 ns | 0.27 ns | 4.52 * | 7.77 ** | 0.38 ns |
Days (B) | |||||
0 + 10 | 1.25 b | 15.19 a | 0.245 ab | 62.56 a | 3.94 ab |
7 + 5 | 1.33 b | 13.98 ab | 0.197 b | 70.46 a | 4.19 a |
14 + 6 | 1.75 b | 14.06 ab | 0.209 b | 67.30 a | 4.12 a |
21 + 5 | 1.41 b | 14.35 ab | 0.214 b | 67.05 a | 4.09 ab |
28 + 5 | 2.83 a | 13.19 b | 0.292 a | 45.17 b | 3.83 b |
Test F | 12.95 ** | 5.44 ** | 8.40 ** | 3.17 ns | 4.49 ** |
Interaction | |||||
Test F | 2.46 ** | 1.69 ns | 3.77 ** | 3.81 ** | 1.5 ns |
Main Effects | LP Peel | LP Pulp | H2O2 Peel | H2O2 Pulp | SOD Peel | SOD Pulp | APX Peel | APX Pulp | PPO Peel | PPO Pulp |
---|---|---|---|---|---|---|---|---|---|---|
Treatments (A) | ||||||||||
Control | 2.72 a | 2.28 a | 76.87 a | 57.59 a | 129.06 a | 204.12 a | 64.65 c | 123.60 b | 133.13 a | 180.13 a |
Sorbitol 0.1% | 2.76 a | 2.28 a | 75.04 a | 51.68 b | 120.66 ab | 218.50 a | 83.82 b | 127.87 ab | 107.08 b | 161.14 b |
Sorbitol 2.5% | 2.51 a | 2.05 b | 70.57 a | 48.52 b | 129.06 a | 227.54 a | 96.21 a | 134.76 a | 100.53 b | 119.17 c |
Test F | 2.27 ns | 6.27 ** | 2.66 ns | 9.41 ** | 4.63 * | 2.80 ns | 70.62 ** | 4.90 * | 51.85 ** | 56.95 ** |
Days (B) | ||||||||||
0 | 3.06 a | 2.34 a | 8.80 d | 91.94 b | 105.24 a | 101.46 d | 41.19 d | 227.41 a | 184.02 a | 81.63 c |
7 | 2.33 b | 2.21 a | 53.14 c | 100.93 a | 106.24 a | 203.85 c | 96.77 ab | 97.37 c | 90.32 cd | 151.36 b |
14 | 2.56 b | 1.87 b | 89.08 b | 14.94 d | 125.34 a | 296.07 b | 102.15 a | 84.06 cd | 107.83 b | 307.77 a |
21 | 2.78 ab | 2.27 a | 108.91 a | 37.63 c | 130.58 a | 362.51 a | 77.83 c | 154.71 b | 102.46 bc | 133.20 b |
28 | 2.59 b | 2.33 a | 110.86 a | 17.48 d | 105.24 a | 119.71 d | 89.85 b | 80.18 d | 83.27 d | 93.45 c |
Test F | 5.67 ** | 8.20 ** | 284.82 ** | 450.63 ** | 2.55 ns | 152.09 ** | 99.21 ** | 364.92 ** | 172.00 ** | 289.64 ** |
Interaction | ||||||||||
Test F | 2.04 ns | 1.62 ns | 0.99 ns | 1.40 ns | 0.94 ns | 0.37 ns | 14.67 ** | 1.32 ns | 5.59 ** | 24.47 ** |
Main Effects | LP Peel | LP Pulp | H2O2 Peel | H2O2 Pulp | SOD Peel | SOD Pulp | APX Peel | APX Pulp | PPO Peel | PPO Pulp |
---|---|---|---|---|---|---|---|---|---|---|
Treatments (A) | ||||||||||
Control | 4.93 a | 4.23 a | 104.03 a | 41.43 a | 89.19 b | 181.85 c | 80.55 c | 276.41 c | 212.56 a | 269.28 a |
Sorbitol 0.1% | 4.57 ab | 4.32 a | 99.59 ab | 37.36 ab | 92.29 b | 192.95 b | 90.17 b | 320.59 b | 183.17 b | 233.92 b |
Sorbitol 2.5% | 4.21 b | 4.01 a | 95.55 b | 35.71 b | 113.96 a | 202.52 a | 110.69 a | 353.81 a | 170.95 c | 197.12 c |
Test F | 4.88 * | 1.79 ns | 7.29 ** | 5.15 * | 45.45 ** | 15.43 ** | 159.49 ** | 254.76 ** | 52.74 ** | 37.95 ** |
Days (B) | ||||||||||
0 + 10 | 4.64 ab | 4.08 ab | 89.85 c | 63.87 a | 57.91 d | 257.26 a | 90.37 b | 374.25 a | 189.69 b | 150.12 c |
7 + 5 | 5.10 a | 3.61 b | 108.41 a | 25.25 c | 162.49 a | 119.01 c | 111.85 b | 311.69 c | 236.111 a | 284.72 a |
14 + 6 | 4.67 ab | 4.56 a | 90.78 c | 23.75 c | 77.87 c | 120.19 c | 87.39 c | 263.10 e | 203.12 b | 300.59 a |
21 + 5 | 4.27 ab | 4.51 a | 99.11 b | 40.92 b | 122.27 b | 200.14 b | 129.06 a | 345.08 b | 154.53 c | 208.38 b |
28 + 5 | 4.18 b | 4.16 ab | 110.47 a | 37.01 b | 71.91 c | 265.26 a | 63.68 d | 290.73 d | 161.53 c | 223.38 b |
Test F | 3.11 * | 6.14 ** | 22.41 ** | 92.83 ** | 265.85 ** | 436.84 ** | 260.14 ** | 194.87 ** | 76.03 ** | 64.76 ** |
Interaction | ||||||||||
Test F | 1.65 ns | 0.33 ns | 0.12 ns | 0.39 ns | 15.52 ** | 0.81 ns | 14.59 ** | 48.50 ** | 12.07 ** | 2.05 ns |
Main Effect | FWL (%) | CI (1–4) | SSC (%) | TA (g kg1) | SSC/TA | pH |
---|---|---|---|---|---|---|
Treatments (A) | ||||||
Control | 0.86 a | 1.70 a | 8.91 a | 0.435 ab | 20.65 a | 3.63 a |
CA | 0.77 a | 1.60 ab | 8.74 a | 0.427 ab | 20.88 ab | 3.70 a |
Sorbitol 0.1% + CA | 0.76 a | 1.40 b | 8.38 a | 0.476 a | 18.37 b | 3.72 a |
Sorbitol 2.5% + CA | 0.73 a | 1.35 b | 8.66 a | 0.418 b | 21.16 ab | 3.71 a |
Test F | 1.43 ns | 5.24 ** | 2.43 ns | 3.15 * | 3.06 * | 1.14 ns |
Days (B) | ||||||
0 | 0.00 e | 1.00 c | 6.90 d | 0.340 c | 21.70 ab | 3.81 a |
7 | 0.39 d | 1.00 c | 7.88 c | 0.521 a | 15.37 c | 3.57 b |
14 | 0.76 c | 1.00 c | 8.42 c | 0.452 b | 18.81 bc | 3.66 ab |
21 | 1.12 b | 1.68 b | 9.74 b | 0.439 b | 22.41 ab | 3.73 ab |
28 | 1.62 a | 2.87 a | 10.42 a | 0.441 b | 24.28 a | 3.68 ab |
Test F | 149.57 ** | 102.72 ** | 80.90 ** | 15.60 ** | 13.84 ** | 4.23 ** |
Interaction | ||||||
Test F | 0.82 ns | 2.64 ** | 2.85 ** | 1.78 ns | 0.85 ns | 0.43 ns |
Main Effects | CI (1–4) | SSC (%) | TA (g kg−1) | SSC/TA | pH |
---|---|---|---|---|---|
Treatments (A) | |||||
Control | 2.10 a | 11.86 a | 0.351 a | 34.07 a | 3.99 a |
CA | 1.90 ab | 11.75 a | 0.336 ab | 35.28 a | 4.06 a |
Sorbitol 0.1% + CA | 1.55 b | 11.50 a | 0.330 b | 34.87 a | 4.08 a |
Sorbitol 2.5% + CA | 1.50 b | 10.61 b | 0.350 a | 30.52 b | 4.13 a |
Test F | 5.41 ** | 6.63 ** | 4.96 ** | 7.65 ** | 1.29 ns |
Days (B) | |||||
0 + 7 | 1.12 c | 11.40 ab | 0.338 bc | 33.85 b | 4.02 a |
7 + 6 | 1.12 c | 12.21 a | 0.324 c | 37.81 a | 4.19 a |
14 + 4 | 1.56 c | 11.41 a b | 0.327 c | 35.04 ab | 4.02 a |
21 + 4 | 2.18 b | 10.83 b | 0.368 a | 29.44 c | 4.07 a |
28 + 4 | 2.81 a | 11.30 ab | 0.353 ab | 32.30 bc | 4.03 a |
Test F | 28.09 ** | 4.11 ** | 12.77 ** | 12.59 ** | 1.72 ns |
Interaction | |||||
Test F | 0.86 ns | 2.68 ** | 3.74 ** | 1.75 ns | 1.34 ns |
Main Effects | LP Peel | LP Pulp | H2O2 Peel | H2O2 Pulp | SOD Peel | SOD Pulp | APX Peel | APX Pulp | PPO Peel | PPO Pulp |
---|---|---|---|---|---|---|---|---|---|---|
Treatments (A) | ||||||||||
Control | 2.92 a | 2.27 a | 58.45 a | 68.71 a | 168.40 d | 363.31 c | 86.98 c | 193.83 c | 84.94 a | 149.18 a |
CA | 2.76 a | 1.97 a | 56.05 ab | 53.46 b | 182.48 c | 378.48 c | 99.39 b | 232.09 b | 73.16 b | 131.22 b |
Sorbitol 0.1% + CA | 2.76 a | 1.91 a | 52.08 b | 48.18 b | 200.17 b | 403.71 b | 102.88 b | 238.93 b | 67.59 c | 100.98 c |
Sorbitol 2.5% + CA | 2.72 a | 1.88 a | 50.21 b | 38.46 c | 207.86 a | 424.14 a | 112.19 a | 267.53 a | 61.38 d | 91.34 d |
Test F | 0.53 ns | 2.74 ns | 5.24 ** | 54.63 ** | 176.66 ** | 27.05 ** | 24.05 ** | 157.39 ** | 50.98 ** | 275.54 ** |
Days (B) | ||||||||||
0 | 2.10 c | 1.82 b | 69.99 a | 11.85 c | 178.66 b | 646.47 a | 160.55 a | 2131.24 b | 134.80 a | 127.04 b |
7 | 2.45 bc | 1.99 ab | 46.25 c | 54.71 b | 148.81 d | 420.82 b | 79.08 d | 268.81 a | 39.30 d | 119.52 c |
14 | 2.66 b | 2.43 a | 46.77 c | 59.99 b | 112.11 e | 320.52 c | 124.69 b | 261.82 a | 50.98 c | 142.11 a |
21 | 3.42 a | 1.76 b | 46.36 c | 80.53 a | 349.38 a | 333.08 c | 102.28 c | 216.51 c | 47.32 c | 94.19 e |
28 | 3.33 a | 2.05 ab | 61.56 b | 53.94 b | 159.67 c | 241.17 d | 35.20 e | 186.10 d | 86.43 b | 108.05 d |
Test F | 18.12 ** | 4.71 ** | 36.18 ** | 170.95 ** | 3837.48 ** | 722.86 ** | 394.41 ** | 156.76 ** | 637.60 ** | 102.51 ** |
Interaction | ||||||||||
Test F | 0.59 ns | 0.64 ns | 1.22 ns | 6.59 ** | 65.60 ** | 6.12 ** | 4.11 ** | 29.51 ** | 13.01 ** | 30.02 ** |
Main Effects | LP Peel | LP Pulp | H2O2 Peel | H2O2 Pulp | SOD Peel | SOD Pulp | APX Peel | APX Pulp | PPO Peel | PPO Pulp |
---|---|---|---|---|---|---|---|---|---|---|
Treatments (A) | ||||||||||
Control | 4.11 a | 3.41 a | 82.29 a | 53.85 a | 104.39 d | 125.64 d | 56.16 c | 162.15 d | 190.58 a | 119.27 a |
CA | 4.01 a | 3.32 a | 71.72 b | 50.94 a | 131.48 c | 131.77 c | 65.07 b | 174.05 c | 167.62 b | 104.32 b |
Sorbitol 0.1% + CA | 3.81 a | 3.30 a | 66.37 c | 42.66 b | 145.41 b | 141.46 b | 67.27 b | 181.72 b | 160.28 c | 99.93 b |
Sorbitol 2.5% + CA | 3.75 a | 2.95 a | 58.92 c | 36.86 b | 161.92 a | 155.30 a | 76.92 a | 190.04 a | 143.45 d | 90.31 c |
Test F | 1.04 ns | 1.84 ns | 32.23 ** | 18.74 ** | 241.88 ** | 86.97 ** | 45.45 ** | 44.85 ** | 149.68 ** | 50.56 ** |
Days (B) | ||||||||||
0 + 7 | 3.43 b | 3.15 ab | 71.87 ab | 47.60 b | 69.92 e | 202.64 a | 67.60 c | 185.59 b | 140.00 d | 57.69 d |
7 + 6 | 3.58 b | 3.80 a | 71.01 ab | 27.92 c | 95.68 c | 103.92 d | 86.84 a | 166.61 c | 180.65 c | 33.91 e |
14 + 4 | 4.42 a | 2.90 b | 77.66 a | 59.88 a | 241.43 a | 147.17 b | 75.51 b | 147.69 d | 82.92 e | 111.31 c |
21 + 4 | 3.42 b | 2.90 b | 62.66 c | 64.25 a | 185.57 b | 103.12 d | 51.55 d | 178.61 c | 232.32 a | 128.54 b |
28 + 4 | 4.74 a | 3.48 ab | 65.93 b c | 27.90 c | 86.39 d | 135.87 c | 50.33 d | 206.15 a | 191.52 b | 185.91 a |
Test F | 11.35 ** | 5.37 ** | 8.91 ** | 67.64 ** | 1796.24 ** | 690.96 ** | 121.81 ** | 120.85 ** | 1005.68 ** | 1003.14 ** |
Interaction | ||||||||||
Test F | 0.14 ns | 0.2 ns | 1.04 ns | 2.45 * | 63.20 ** | 9.55 ** | 3.38 ** | 3.95 ** | 26.77 ** | 3.45 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, M.B.; Pedrosa, V.M.D.; Izidoro, M.; Balbuena, T.S.; Sanches, A.G.; de Almeida Teixeira, G.H. Controlled Atmosphere Storage and Sorbitol Dipping Minimize Chilling Injuries in ‘Palmer’ Mangoes. Horticulturae 2024, 10, 354. https://doi.org/10.3390/horticulturae10040354
da Silva MB, Pedrosa VMD, Izidoro M, Balbuena TS, Sanches AG, de Almeida Teixeira GH. Controlled Atmosphere Storage and Sorbitol Dipping Minimize Chilling Injuries in ‘Palmer’ Mangoes. Horticulturae. 2024; 10(4):354. https://doi.org/10.3390/horticulturae10040354
Chicago/Turabian Styleda Silva, Maryelle Barros, Vanessa Maria Dantas Pedrosa, Maiqui Izidoro, Tiago Santana Balbuena, Alex Guimarães Sanches, and Gustavo Henrique de Almeida Teixeira. 2024. "Controlled Atmosphere Storage and Sorbitol Dipping Minimize Chilling Injuries in ‘Palmer’ Mangoes" Horticulturae 10, no. 4: 354. https://doi.org/10.3390/horticulturae10040354
APA Styleda Silva, M. B., Pedrosa, V. M. D., Izidoro, M., Balbuena, T. S., Sanches, A. G., & de Almeida Teixeira, G. H. (2024). Controlled Atmosphere Storage and Sorbitol Dipping Minimize Chilling Injuries in ‘Palmer’ Mangoes. Horticulturae, 10(4), 354. https://doi.org/10.3390/horticulturae10040354