Assessing the Influence of Viral Infection on ‘Tribidrag’ Grapevines: Insights from Two Vegetation Seasons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Experiment Setup
2.2. Virus Transmission Confirmation and RNA Extraction Procedure
2.3. Gene Expression Analysis
Primer Name | V. vinifera Genomic Region | Sequence (5′-3′) | Concentration in qPCR Mix | Reference |
---|---|---|---|---|
VV_actin_F | Actin | F: CTTGCATCCCTCAGCACCTT | 0.4 μM | Reid et al. [29] |
VV_actin_R | R: TCCTGTGGACAATGGATGGA | |||
VV_tubulin_F | Tubulin | F: CAGCCAGATCTTCACGAGCTT | 0.4 μM | |
VV_tubulin_R | R: GTTCTCGCGCATTGACCATA | |||
LAR2_F | Leucoanthocyanidin reductase 2 | F: TGATATCAGCTGTGGGTGGA | 0.48 μM | Gutha et al. [30] |
LAR2_R | R: CCCAAATTCTGATGGAAGGA | |||
F3H2_F | Flavanone 3-dioxygenase | F: CTGTGGTGAACTCCGACTGC | 0.48 μM | |
F3H2_R | R: CAAATGTTATGGGCTCCTCC | |||
NPR1_F | Structural domain containing NPR1 protein | F: GTGGCGGTTTTGGGGTATTTGT | 0.33 μM | Orrantia-Araujo et al. [31] |
NPR1_R | R: GCACCTCCACCATGAAATCCAC | |||
SPS_F | Sucrose-phosphate synthase | F: CAGGGTCGACCTCTTCACTC | 0.4 μM | Ren et al. [32] |
SPS_R | R: ATATGGCCAAACAGGCTGAC | |||
SS3_F | Sucrose synthase 3 | F: GCCCTGCATGGTTCAATTGA | 0.4 μM | |
SS3_R | R: GTCAAGCCTTGCCATGGAAA |
2.4. Sample Collection
2.5. Elemental Composition of Leaves
2.6. Physiological and Morphological Analysis in Plants
2.7. Symptom Evaluation
2.8. Statistical Analysis
3. Results
3.1. Virus Transmission Confirmation
3.2. Results of Physiological and Morphological Analysis in Plants
3.3. Gene Expression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuchs, M. Grapevine viruses: A multitude of diverse species with simple but overall poorly adopted management solutions in the vineyard. J. Plant Pathol. 2020, 102, 643–653. [Google Scholar] [CrossRef]
- Martelli, G.P. An Overview on Grapevine Viruses, Viroids and the Diseases They Cause. In Grapevine Viruses: Molecular Biology, Diagnostics and Management; Meng, B., Martelli, G.P., Golino, D.A., Fuchs, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 31–46. ISBN 9783319577067. [Google Scholar]
- Tarquini, G.; Ermacora, P.; Martini, M.; Firrao, G. The conundrum of the connection of grapevine Pinot gris virus with the grapevine leaf mottling and deformation syndrome. Plant Pathol. 2023, 72, 209–217. [Google Scholar] [CrossRef]
- Maliogka, V.I.; Martelli, G.P.; Fuchs, M.; Katis, N.I. Control of viruses infecting grapevine. In Advances in Virus Research; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 91, pp. 175–227. [Google Scholar]
- Čarija, M.; Radić, T.; Černi, S.; Mucalo, A.; Zdunić, G.; Vončina, D.; Jagunić, M.; Hančević, K. Prevalence of Virus Infections and GLRaV-3 Genetic Diversity in Selected Clones of Croatian Indigenous Grapevine Cultivar Plavac Mali. Pathogens 2022, 11, 176. [Google Scholar] [CrossRef] [PubMed]
- Martelli, G.P. Grapevine virology highlights 2006–2009. In Proceedings of the Extended abstracts of the 16th Meeting of ICVG, Dijon Le Progrès Agricole et Viticole, Hors Série—Spécial Congrés ICVG, Dijon, France, 31 August–4 September 2009; pp. 15–24. [Google Scholar]
- Maree, H.J.; Almeida, R.P.P.; Bester, R.; Chooi, K.M.; Cohen, D.; Dolja, V.V.; Fuchs, M.F.; Golino, D.A.; Jooste, A.E.C.; Martelli, G.P.; et al. Grapevine leafroll-associated virus 3. Front. Microbiol. 2013, 4, 82. [Google Scholar] [CrossRef] [PubMed]
- Hančević, K.; Saldarelli, P.; Čarija, M.; Černi, S.; Zdunić, G.; Mucalo, A.; Radić, T. Predominance and Diversity of GLRaV-3 in Native Vines of Mediterranean Croatia. Plants 2021, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Poljuha, D.; Sladonja, B.; Bubola, M. Incidence of viruses infecting grapevine varieties in Istria (Croatia). J. Food Agric. Environ. 2010, 8, 166–169. [Google Scholar]
- Bertamini, M.; Muthuchelian, K.; Nedunchezhian, N. Effect of grapevine leafroll on the photosynthesis of field grown grapevine plants (Vitis vinifera L. cv. Lagrein). J. Phytopathol. 2004, 152, 145–152. [Google Scholar] [CrossRef]
- Mannini, F.; Mollo, A.; Credi, R. Field performance and wine quality modification in a clone of Vitis vinifera cv. dolcetto after GLRaV-3 elimination. Am. J. Enol. Vitic. 2012, 63, 144–147. [Google Scholar] [CrossRef]
- Endeshaw, S.T.; Sabbatini, P.; Romanazzi, G.; Schilder, A.C.; Neri, D. Effects of grapevine leafroll associated virus 3 infection on growth, leaf gas exchange, yield and basic fruit chemistry of Vitis vinifera L. cv. Cabernet Franc. Sci. Hortic. 2014, 170, 228–236. [Google Scholar] [CrossRef]
- Alabi, O.J.; Casassa, L.F.; Gutha, L.R.; Larsen, R.C.; Henick-Kling, T.; Harbertson, J.F.; Naidu, R.A. Impacts of grapevine leafroll disease on fruit yield and grape and wine chemistry in a wine grape (Vitis vinifera L.) cultivar. PLoS ONE 2016, 11, e0149666. [Google Scholar] [CrossRef]
- Moutinho-Pereira, J.; Correia, C.M.; Gonçalves, B.; Bacelar, E.A.; Coutinho, J.F.; Ferreira, H.F.; Lousada, J.L.; Cortez, M.I. Impacts of leafroll-associated viruses (GLRaV-1 and -3) on the physiology of the Portuguese grapevine cultivar ‘Touriga Nacional’ growing under field conditions. Ann. Appl. Biol. 2012, 160, 237–249. [Google Scholar] [CrossRef]
- Hančević, K.; Čarija, M.; Radić Brkanac, S.; Gaši, E.; Likar, M.; Zdunić, G.; Regvar, M.; Radić, T. Grapevine Leafroll-Associated Virus 3 in Single and Mixed Infections Triggers Changes in the Oxidative Balance of Four Grapevine Varieties. Int. J. Mol. Sci. 2023, 24, 8. [Google Scholar] [CrossRef] [PubMed]
- Vončina, D.; Badurina, D.; Preiner, D.; Vjetkovic, B.; Maletic, E.; Kontic, J.K. Incidence of virus infections in grapevines from Croatian collection plantations. Phytopathol. Mediterr. 2011, 50, 316–326. [Google Scholar] [CrossRef]
- Song, Y.; Hanner, R.H.; Meng, B. Probing into the effects of grapevine leafroll-associated viruses on the physiology, fruit quality and gene expression of grapes. Viruses 2021, 13, 593. [Google Scholar] [CrossRef]
- Vončina, D.; Al Rwahnih, M.; Rowhani, A.; Gouran, M.; Almeida, R.P.P. Viral diversity in autochthonous croatian grapevine cultivars. Plant Dis. 2017, 101, 1230–1235. [Google Scholar] [CrossRef]
- Andabaka, Ž.; Stupić, D.; Karoglan, M.; Marković, Z.; Preiner, D.; Maletić, E.; Kontić, J.K. Povijesni tijek uzgoja najvažnijih autohtonih dalmatinskih sorata vinove loze (Vitis vinifera L.). Glas. Zaštite Bilja 2016, 39, 14–20. [Google Scholar]
- Maletić, E.; Karoglan Kontić, J.; Pejić, I.; Preiner, D.; Zdunić, G.; Bubola, M.; Stupić, D.; Andabaka, Ž.; Marković, Z.; Šimon, S. (Eds.) Zelena Knjiga: Hrvatske Izvorne Sorte Vinove Loze; Drzavni Zavod za Zastitu Prirode: Zagreb, Croatia, 2015; pp. 296–297. ISBN 978-953-7169-98-5. [Google Scholar]
- Žulj Mihaljević, M.; Maletić, E.; Preiner, D.; Zdunić, G.; Bubola, M.; Zyprian, E.; Pejić, I. Genetic diversity, population structure, and parentage analysis of Croatian grapevine germplasm. Genes 2020, 11, 737. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19500302257 (accessed on 12 October 2023).
- Lahogue, F.; Boulard, G. Schneider Comparison de differentes techniques de greffage vis-a-vis de leur efficacite de transmission virale sur vigne. Vitis 1995, 34, 177–183. [Google Scholar]
- Clark, M.F.; Adams, A.N. Characteristics of the microplate method of enzyme linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 1977, 34, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Gambino, G.; Gribaudo, I. Simultaneous detection of nine grapevine viruses by multiplex reverse transcription-polymerase chain reaction with coamplification of a plant RNA as internal control. Phytopathology 2006, 96, 1223–1229. [Google Scholar] [CrossRef]
- Saldarelli, P.; Giampetruzzi, A.; Morelli, M.; Malossini, U.; Pirolo, C.; Bianchedi, P.; Gualandri, V. Genetic variability of Grapevine Pinot gris virus and its association with Grapevine leaf mottling and deformation. Phytopathology 2015, 105, 555–563. [Google Scholar] [CrossRef]
- Gambino, G.; Perrone, I.; Gribaudo, I. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem. Anal. 2008, 19, 520–525. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Reid, K.E.; Olsson, N.; Schlosser, J.; Peng, F.; Lund, S.T. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 2006, 6, 27. [Google Scholar] [CrossRef]
- Gutha, L.R.; Casassa, L.F.; Harbertson, J.F.; Naidu, R.A. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC Plant Biol. 2010, 10, 187. [Google Scholar] [CrossRef]
- Orrantia-Araujo, M.A.; Martínez-Téllez, M.Á.; Rivera-Domínguez, M.; Hernández-Oñate, M.Á.; Vargas-Arispuro, I. Changes in the Endogenous Content and Gene Expression of Salicylic Acid Correlate with Grapevine Bud Dormancy Release. J. Plant Growth Regul. 2021, 40, 254–262. [Google Scholar] [CrossRef]
- Ren, R.; Yue, X.; Li, J.; Xie, S.; Guo, S.; Zhang, Z. Coexpression of Sucrose Synthase and the SWEET Transporter, Which Are Associated With Sugar Hydrolysis and Transport, Respectively, Increases the Hexose Content in Vitis vinifera L. Grape Berries. Front. Plant Sci. 2020, 11, 321. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E.; Page, A.L. Methods of soil analysis. Part 1982, 2, 403–430. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Gucci, R.; Lombardini, L.; Tattini, M. Analysis of leaf water relations in leaves of two olive (Olea europaea) cultivars differing in tolerance to salinity. Tree Physiol. 1997, 17, 13–21. [Google Scholar] [CrossRef]
- Tarhanen, S.; Holopainen, T.; Oksanen, J. Ultrastructural changes and electrolyte leakage from ozone fumigated epiphytic lichens. Ann. Bot. 1997, 80, 611–621. [Google Scholar] [CrossRef]
- Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.12. 2019. Available online: https://CRAN.R-project.org/package=pheatmap (accessed on 4 April 2024).
- Dinno, A. dunn. test: Dunn’s Test of Multiple Comparisons Using Rank Sums. R Package version 1.3.5. 2017. Available online: https://CRAN.R-project.org/package=dunn.test (accessed on 4 April 2024).
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Paudel, D.B.; Sanfaçon, H. Exploring the diversity of mechanisms associated with plant tolerance to virus infection. Front. Plant Sci. 2018, 9, 410882. [Google Scholar] [CrossRef]
- Keller, M. Environmental constraints and stress physiology. In The Science of Grapevines: Anatomy and Physiology, 2nd ed.; Elsevier/Academic Press: London, UK, 2015; pp. 267–341. [Google Scholar]
- Andersson, I.; Backlund, A. Structure and function of Rubisco. Plant Physiol. Biochem. 2008, 46, 275–291. [Google Scholar] [CrossRef]
- Sampol, B.; Bota, J.; Riera, D.; Medrano, H.; Flexas, J. Analysis of the virus-induced inhibition of photosynthesis in malmsey grapevines. New Phytol. 2003, 160, 403–412. [Google Scholar] [CrossRef]
- Ozdemir, G.; Akpinar, C.; Sabir, A.; Bilir, H.; Tangolar, S.; Ortas, I. Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (Vitis spp.). Eur. J. Hortic. Sci. 2010, 75, 103–110. [Google Scholar]
- Perrone, I.; Chitarra, W.; Boccacci, P.; Gambino, G. Grapevine–virus–environment interactions: An intriguing puzzle to solve. New Phytol. 2017, 213, 983–987. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, M.; Li, X.; Jiu, S.; Wang, C.; Fang, J. Genome-Wide Analysis of the Sucrose Synthase Gene Family in Grape (Vitis vinifera): Structure, Evolution, and Expression Profiles. Genes 2017, 8, 111. [Google Scholar] [CrossRef]
- Constable, F.E.; Connellan, J.; Nicholas, P.; Rodoni, B.C. The reliability of woody indexing for detection of grapevine virus-associated diseases in three different climatic conditions in Australia. Aust. J. Grape Wine Res. 2013, 19, 74–80. [Google Scholar] [CrossRef]
- Wolpert, J.A.; Vilas, E.P. Effect of mild leafroll disease on growth, yield, and fruit maturity indices of Riesling and Zinfandel. Am. J. Enol. Vitic. 1992, 43, 367–369. [Google Scholar] [CrossRef]
Inoculum | Virus Composition |
---|---|
II | GLRaV-3 * |
X | GLRaV-3, GVA, GRSPaV, GPGV |
Y | GLRaV-3, GLRaV-1, GVA, GRSPaV, GPGV |
Q | GLRaV-3, GLRaV-2, GVA, GFkV, GRSPaV, GPGV |
Z | GLRaV-3, GVA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čarija, M.; Likar, M.; Černi, S.; Radić, T.; Gaši, E.; Hančević, K. Assessing the Influence of Viral Infection on ‘Tribidrag’ Grapevines: Insights from Two Vegetation Seasons. Horticulturae 2024, 10, 495. https://doi.org/10.3390/horticulturae10050495
Čarija M, Likar M, Černi S, Radić T, Gaši E, Hančević K. Assessing the Influence of Viral Infection on ‘Tribidrag’ Grapevines: Insights from Two Vegetation Seasons. Horticulturae. 2024; 10(5):495. https://doi.org/10.3390/horticulturae10050495
Chicago/Turabian StyleČarija, Mate, Matevž Likar, Silvija Černi, Tomislav Radić, Emanuel Gaši, and Katarina Hančević. 2024. "Assessing the Influence of Viral Infection on ‘Tribidrag’ Grapevines: Insights from Two Vegetation Seasons" Horticulturae 10, no. 5: 495. https://doi.org/10.3390/horticulturae10050495
APA StyleČarija, M., Likar, M., Černi, S., Radić, T., Gaši, E., & Hančević, K. (2024). Assessing the Influence of Viral Infection on ‘Tribidrag’ Grapevines: Insights from Two Vegetation Seasons. Horticulturae, 10(5), 495. https://doi.org/10.3390/horticulturae10050495