Spontaneous and Chemically Induced Genome Doubling and Polyploidization in Vegetable Crops
Abstract
:1. Introduction
2. Spontaneous Genome Doubling
2.1. Spontaneous Haploid Genome Doubling in Vegetable Crops
2.2. SHGD Mechanisms
2.3. SHGD Timing during Development
3. Chemically Induced Genome Doubling Protocols
3.1. Antimitotic Agent Choice
The Crop | Ploidy before Treatment | The Best Doubling Efficiency | Application Method | Antimitotic Agent | Treatment Time | Growth Conditions after Treatment | Practical Results | References |
---|---|---|---|---|---|---|---|---|
Amaranthaceae | ||||||||
Sugar beet (Beta vulgaris) | n | – | Seedlings with 3–7 leaves | 5 g/L colchicine | 5 min 2 times | MS, 10 g/L sucrose, 6.5 g/L Gelrite, 0.002 g/L kinetin | – | [16] |
n | 91.3% | Microclones | 0.0005 g/L colchicine | 48 h | MS, GA, 6-BAP, kinetin—0.0002 g/L each | Selection of new lines with sterile cytoplasm (confirmed by PCR and RFLP analysis). Four lines were selected for breeding purposes (the plant qualities are not described) | [74] | |
n | 29.1% | Shoots higher than 1 cm with roots removed | 0.05, 0.1, 0.15 or 0.5 g/L colchicine | 12, 24, 36 or 48 h | MS, 0.001 g/L 6-BAP, solid or liquid media | – | [83] | |
20.7% | 0.017, 0.0034 or 0.005 g/L trifluralin | |||||||
n | 4.7% (0.03 g/L) | Ovules. Antimitotic agent with 1.5% DMSO | 0–0.09 g/L APM | 5 h | Liquid culture medium | – | [79] | |
2.8% (0.00035 g/L) | 0–0.1 g/L oryzalin | |||||||
2.0% (0.003 g/L) | 0–0.1 g/L pronamid | |||||||
2.0% (0.003 g/L) | 0–0.1 g/L trifluralin | |||||||
n | 60% (4 g/L, 2.5 h) | Ovules after 7 days in culture | 4–60 g/L colchicine | 0.08—5 h | Induction medium | – | [102] | |
n | 64% (0.046 g/L APM, 5 h) | Ovules after 10 days culture | 0.006, 0.046, 0.092 g/L APM + 15 g/L DMSO in liquid induction medium | 2, 5, 18 h | Culture medium | – | [103] | |
n | 19% | Roots of regenerant plants | 3 g/L colchicine | 24 h | Plants were planted in soil | Three lines that exceeded diploid control for yield and sugar concentration were produced (for instance, BTS 40 DH line—377.7 g and 19.4%, control diploid—204.2 g and 18.4% root weight and sugar content, respectively) | [104] | |
n | 8.4% 2n, 3.4% 4n, 1.1% 8n, 33% mixoploids | Meristem of plants at the 6–8-leaf stage | 1 g/L colchicine with 20 g/L DMSO | 72 h | – | – | [105] | |
Amaryllidaceae | ||||||||
Garlic (A. sativum) | 2n | – | Basal plates in liquid B5 with 20 g/L DMSO and colchicine | 2.5–7.5 g/L colchicine | 36–72 h | B5, 0.0008 g/L 2iP, 0.0001 g/L NAA | 4n plants leaves had 3 times larger area. Allicin content increased by 30% | [106] |
Onion (Allium cepa) | n | – | Basal explant in MSO (MS based) medium with colchicine | 0.4 g/L colchicine | 48 h | ½ BDS, 30 g/L glucose and 7.0 g/L agar, pH 6.0 | – | [9] |
n | 36.7% | Embryos in medium with APM | 0.015 g/L APM | 48 h | ½ BDS, 30 g/L glucose, 7.0 g/L agar, pH 6.0 | – | [93] | |
n | 36% | Intact or cut longitudinally into halves basal explants in BDS medium with antimitotic agents | 0.003; 0.006; 0.009 g/L APM | 72 h | ½ BDS or M4, 30 g/L glucose and 0 or 7.0 g/L agar, pH 6.0 | Fertility/fecundity recovered in some genotypes, but not others. Lines with uniform bulb shapes were produced | [90] | |
40–46% 2n, 18–30% mixoploids (0.2–0.4 g/L colchicine in liquid medium, 48 h | 0.01–0.4 g/L colchicine | 24, 48, 72 h | ||||||
n | 32.8% (0.4 g/L) | Whole basal explants | 0.3–0.4 g/L colchicine | – | MSO, 30 g/L sucrose | Fertility/fecundity recovery | [86] | |
15.8% (0.03 g/L) | 0.017–0.051 g/L oryzalin | |||||||
25% (0.03 g/L, 0.045 g) | 0.015–0.045 g/L APM | |||||||
n | 100% (0.25 g/L, 48 h) | in vitro plants | 0.25 or 0.5 g/L colchicine | 24 and 48 h | ½ MS, 40 g/L sucrose, 7.5 g/L agar, pH 5.8 | – | [92] | |
57.7% (0.015 g/L 48 h) | 0.015–0.06 g/L APM | |||||||
n | 46% (0.01 g/L, 72 h) | Root tips, shoot apex | 0.01; 0.1 g/L colchicine | 24 and 72 h | M3 medium | – | [91] | |
n | up to 65.7% (1 g/L) | in vitro plants | 0.25–5 g/L colchicine | 24 h | MS | – | [34] | |
up to 57.1% (0.0175 g/L) | 0.0035–0.07 g/L oryzalin | |||||||
n | 44% | Two-month-old haploid plants on BDS basic medium with colchicine | 0.015 g/L colchicine | 72 h | The plants were grown in peat blocks | – | [107] | |
n | 47.1% 2n, 29,4% 29,4% another ploidy (0.017 g/L 72 h) | Gynogenic embryos were plated on the media with antimitotic agents in the dark | 0.0017 g/L; 0.017 g/L trifluralin in acetone | 24 and 72 h | Medium R1: ½ BDS, 30 g/L glucose and 7.0 g/L agar, pH 6.0; medium R2: BDS, 40 g/L sucrose, 7.0 g/L agar, pH 6.0 | – | [81] | |
47.1% 2n, 8.8% other ploidy (24 h) | 0.012 g/L oryzalin in acetone | |||||||
34.8% 2n, 17.4% other ploidy (72 h) | 0.015 g/L APM in methanol | |||||||
35.3% 2n, 5.9% other ploidy (0.05 g/L 72 h) | 0.001 g/L; 0.05 g/L colchicine with 20 g/L DMSO | |||||||
n | Up to 38% 2n (0.015 g/L, liquid media, 24 h) | Embryos in liquid or solid media with APM | 0.008 g/L; 0.015 g/L APM | 24 and 72 h | ½ BDS, 15 g/L glucose | – | [108] | |
Onion (A. fistulosum × A. cepa) | 2n | 51.4% 4n (10 g/L) | Callus in liquid BDS on a shaker at 60 rpm | 5–20 g/L colchicine | 36–72 h | solid BDS medium with 8 g/L agar | Five 4n, likely amphidiploid plants were obtained and adapted to field conditions for future breeding | [109] |
Onion (A. cepa × A. vavilovii, A. cepa × A. nutans, A. cepa × A. schoenoprasum) | 3n * | – | Meristems in vitro | 0.01 g/L colchicine | – | – | An increased vegetative mass (no quantitative data) and resistance to downy mildew was observed in interspecific hybrids | [110] |
Persian shallot (A. hirtifolium) | 2n | died after treatment | Basal plates in liquid MS with 10 g/L DMSO and antimitotic agent on a shaker at 100 rpm | 3–7 g/L colchicine | 24–48 h | MS, 30 g/L sucrose, 8 g/L agar, 0.001 g/L 6-BAP, 0.0005 g/L NAA | Increased total phenolic compound and allicin content by 27 and 15%, respectively [111] | [111] |
died after treatment | 0.01–0.04 g/L oryzalin | 4–8 h | ||||||
35% 4n (5 g/L, 36 h); 31.82% mixoploids (3 g/L, 36 h) | Basal plates on solid MS with 8 g/L agar with antimitotic agents | 3–7 g/L colchicine | 24–48 h | |||||
45.45% 4n (0.01 g/L, 8 h); 16.9% mixoploids (0.04 g/L) | 0.01–0.04 g/L oryzalin | 4–8 h | ||||||
Apiaceae | ||||||||
Ajowan (Trachyspermum ammi) | 2n | 11.53% 4n (0.5 g/L, 24 h) | Seeds | 0.24–0.5 g/L colchicine | 6–48 h | liquid MS | Thymol in essential oil increased by 39% in 4n plants. The increase was observed in plant organ sizes with the largest difference in plant height (over 2 times) | [112] |
American wild carrot (Daucus pusillus) | n | – | Cut umbrellas before flowering in the green bud phase | 1 g/L colchicine with 20 g/L DMSO | 20 h | MSm, 0.0002 g/L 2,4-D, 6–8 g/L agar | – | [110] |
Caraway (Carum carvi) | n | – | Root system of in vitro plants | 0.4 g/L colchicine with 10 drops/L DMSO | 24 h | Containers with soil, plants were covered to maintain high humidity | – | [113] |
Carrot (Daucus carota L.) | n | – | Microspores | 0.5 g/L colchicine | 24 h | B5, 0.0001 g/L 2,4-D, 0.0001 g/L NAA, 100 g/L sucrose | – | [114] |
Carrot (D. carota L.) | n | – | Microspores | 0.5 g/L colchicine | 48 h | NLN, 0.0001 g/L 2,4-D, 0.0001 g/L NAA, 130 g/L sucrose | – | [115] |
Fennel (Foeniculum vulgare), Dill (Anethum graveolens) | n | – | Root system and crowns | 3.4 g/L colchicine | 1.5 h | Containers with soil, plants were covered to maintain high humidity | – | [116] |
Parsley (Petroselinum crispum L.) | 2n | about 30% (0.5, 24 h) | Seeds ex vitro on a rotary shaker at 120 rpm | 0.25, 0.5, 1, 2 g/L colchicine | 8–48 h | Seeds were planted in pots with soil mixture | Plant height is increased by 42% and leaf length is increased by 64% in 4n plants | [117] |
100% (1 g/L, 24 h) | Plant nodes in vitro on a rotary shaker at 120 rpm | MS with 0.001 g/L 2,4-D | ||||||
Brassicaceae | ||||||||
Broccoli (Brassica oleracea var. italica) | n | 50% (2 g/L, 6 h), 66.7% (1 g/L, 12 h) | In vitro seedling roots were trimmed to 1–2 cm length and immersed in colchicine | 0.5, 1, 2, 4 g/L colchicine with 20 g/L DMSO | 6–12 h | Containers with soil, plants were covered to maintain high humidity | Genome doubling recovered fertility (fertile DH and partially fertile mixoploids), high colchicine toxicity for broccoli was shown (from 50 (1 g/L, 6 h) to 100% (4 g/L, 9–12 h) | [41] |
White cabbage (B. oleracea var. capitata L.) | 50% (2 g/L, 9 h) | 3–12 h | ||||||
B. oleracea × leaf mustard B. juncea | 2n *** | Best results for 1.5, 2 g/L | Rooted ex vitro cuttings axillary meristems were soaked in colchicine solution and covered with foil | 0.5, 1, 1.5, 2, 2.5 g/L colchicine | Two treatments/day for 3 days | – | Genome doubling recovered fertility (7–84% pollen fertility), an increased main stem thickness and leaf size, more compact inflorescences, different leaf texture and margins compared to ABC hybrids and parents (no quantitative data) | [118] |
Chinese cabbage (B. rapa) × white cabbage (B. oleracea), rapeseed (B. napus)/leaf mustard (B. juncea) × Chinese cabbage (B. rapa) | 2n ** | – | Plantlets in vitro | 1 g/L colchicine | 4 h | Plants were planted in coco-peat | The white cabbage with orange/yellow inner leaves (no quantitative data) and Chinese cabbage with an increased anthocyanin content (increased from 0 to 4.7 mg/g) | [119] |
Cucurbitaceae | ||||||||
Cucumber (Cucumis sativus) | n | – | Cuttings with 2 axillary buds in E20H8 medium with colchicine | 0.2 g/L colchicine | 48 h | – | Genome doubling recovered fertility. A 40–80% mortality rate from colchicine treatment. | [120] |
Cucumber (C. sativus) | n | 24% | Haploid plants were on CBM basic medium with colchicine | 0.2 g/L colchicine | 96 h | The roots were rinsed in water. Then, the plants were grown in peat blocks | – | [107] |
Melon (Cucumis melo) | n | – | The main apical stem | colchicine | 2 h | – | – | [121] |
Pumpkin (Cucurbita pepo) | n | – | Plantlets on a shaker at 120 rpm | 5 g/L colchicine | 12 h | – | – | [122] |
Apical shoot | 10 g/L colchicine | 3 1 h treatments per day | ||||||
Watermelon (Citrullus lanatus) | 2n | Over 60% (colchicine, ethalfluralin, oryzalin at the highest concentration, 9 days) | Shoot buds of in vitro plants in MS with antimitotics on a shaker | 0.2, 0.4, 0.6, 0,8 g/L colchicine. Ethalfluralin, oryzalin, cobex, amex (25, 50, 75, 100 µM/L) | 3, 6, 9 days | MS, 30 g/L sucrose, 7 g/L agar with 0.00225 g/L 6-BAP | – | [123] |
2n | – | Seedlings were immersed in colchicine aqueous solution | 2 g/L colchicine | 6 days | – | 4n rootstocks are more tolerant to salt stress (minor withering at 300 mM NaCl, no quantitative data) due to lower Na+ /K+ ratio, higher photosynthetic capacity, antioxidant enzyme activity, and osmoregulatory gene expression | [124] | |
Solanaceae | ||||||||
African nightshade (Solanum nigrum ssp. villosum) | 2n **** | about 10% (0.1 g/L) | Ex vitro seedlings at cotyledonary stage were sprayed with colchicine solution and covered with polyethylene sheets | 0.1, 0.5, 2.5 g/L colchicine in 1 mL DMSO and 0.1 mL Tween-20 | 7 d, sprayed once a day | – | – | [125] |
Cape gooseberry (Physalis peruviana) | n **** | over 60% (2 g/L, 2 h) | Excised axillary buds were immersed in colchicine solution in the dark | 2, 4, 6 g/L colchicine with 20 g/L DMSO | 2 h, 4 h, 6 h | MS, 0.1 mg/ L IBA | Recovery of fertility and seed production | [60] |
Chili (C. annuum); Ancho chili × habanero chili (C. annuum × C. chinense) | n | – | Seedlings in vitro/ex vitro. Each seedling was immersed to the base of the stem in a bottle with colchicine solution | 5 g/L colchicine | 8 h | Pots with sterile substrate | Maintainers of cytoplasmic male sterility resistant to Phytophthora capsici Leo. and to the geminiviruses PepGMV and PHYVV were obtained | [126] |
Chili (C. annuum) | 2n | – | Seedlings at the 4-leaf stage | 3 g/L colchicine | 9 or 12 h for 2 days or 8 h for 3 days | – | 4n plants exhibit gigas characters when compared to the 8n (leaf area 1.8 times larger; fruit diameter 2.7 times larger; flower diameter 1.6 times larger), except for the anthers, which are large, thick, sometimes deformed and coalesce with the corolla in the 8n plants. 8n plants were less vigorous. | [127] |
Eggplant (Solanum melongena) | n | – | Plants in vitro | 5–10 g/L colchicine | 2 h (5 g/L); 1 h (10 g/L) | – | – | [17] |
25% more compared to SHGD | Plant axillary buds ex vitro | 5 g/L colchicine in lanolin paste | 48 h | |||||
n | 50–70% | Remove the apical and axillary buds from plantlets. Apply colchicine to secondary axillary buds in the dark | 5 g/L colchicine in lanolin paste | 48 h | Greenhouse conditions; remove shoots produced by untreated buds | – | [128] | |
n | 35% | 2–3 leaf plantlets on ½ MS with colchicine | 0.6 g/L colchicine | 72 h | The plants were grown in peat blocks | – | [107] | |
n | 100% | Colchicine solution was applied to axillary buds with a piece of cotton in the dark | 5 g/L | 2 h | – | – | [129] | |
10 g/L colchicine | 1 h | |||||||
n | – | Plantlets in vitro | 5 g/L | 2 h | Hormone-free medium R | – | [130] | |
n | – | Plantlets roots in vitro/ex vitro | 0.1 g/L colchicine | 4 h | The plants were acclimated and transferred to the greenhouse | – | [131] | |
Paprika (C. annuum) | n | 95% on average | In vitro plantlets at 2–3-leaf stage in plain V3 medium with colchicine | 10 g/L colchicine | 1 h | Plastic pots containing 1:1 mixture of non-sterilized peat and sandy soil mix | – | [107,132] |
Pepper (C. annuum) | n | 50–95% | In vitro plantlets in V3 medium with colchicine | 0.05–0.4 g/L colchicine | 96–144 h | – | – | [133] |
Pepper (C. annuum) | n | up to 100% | Axillary buds of ex vitro plants were covered with cotton soaked in colchicine and wrapped with foil | 5 g/L colchicine | 12 h | Colchicine applications were continued until chromosome doubling was achieved | – | [134] |
Pepper (C. annuum) | n | – | Axillary buds of ex vitro plants were covered with a piece of cotton soaked in colchicine in the dark | 0.5 g/L colchicine | 2 h | – | – | [135] |
Pepper (C. annuum) | n | 57.6% and 47.3% 33% SHGD | Anthers | 3 g/L colchicine | 30 days | MS with supplements | Addition of colchicine to culture medium resulted with positive effects on viability of embryo, regeneration, and growth into full developed plantlets; haploid plants are smaller, plant viability, in vitro regeneration, development, and growth is lower compared to diploid donor plants | [55] |
Pepper (C. annuum) | n | 25–27% 2n, 29–55% mixoploids | The apical shoot fragment with 2–3 leaves in vitro | 0.2, 0.4 g/L g/L colchicine | 6–9 days | MSm, 30 g/L sucrose, 8 g/L agar, pH 5.8 | Four weeks after the second colchicine treatment the growth disorder was observed, which proved to be directly proportional to the time of explant incubation on the colchicine-containing MS medium; after six days of colchicine treatment, 38% of the plants regenerated, and after nine days, their number decreased to 33% | [136] |
Spice and bell pepper (C. annuum) | n | 75% | 4–6 leaf stage in vitro plantlets | 3 g/L colchicine with 1.5 g/L DMSO | 3 h | The roots were rinsed in water. Then, the plants were grown in peat blocks | – | [137] |
F2 hybrids C. annuum L. (cv. Zdorovie) × C. chinense Jacq; BC2 of C. annuum L. (cv. Zdorovie) × C. chinense Jacq × cv. Zdorovie × cv. Zdorovie | n/2n | - | Apical meristem ex vitro plants | 5 g/L colchicine with Tween-20 (1 drop/100 mL) | - | Plants were covered with polyethylene film to reduce evaporation | Fast generation of homozygous lines combining C. annuum L. and C. chinense Jacq traits. 17.5% were fertile and set seeds; fruit mass was 3 times larger than in C. chinense | [138] |
Bell pepper, capia, charleston, and green types (C. annuum) | n | - | Ex vitro plants | 5 g/L colchicine | 2 h | Self-pollination was performed in at least 3–4 flowers. Three or four fruits were harvested from each self-pollinated plant, and their seeds were removed. Then, the seeds were labeled and packed. | Three homozygote pure lines with agronomically valuable traits, including Me1, Me3, N and Me7 nematode resistance genes, were obtained. Also, one homozygote pure line containing Me1 was found | [139] |
Tomatillo (Physalis ixocarpa) | n | 50% 2n, 50% 4n | Excised apical axillary buds from in vitro regenerants were inoculated on MS medium with colchicine | 0.5, 1 g/L colchicine | 2–6 days | MSD medium | – | [59] |
3.2. Antimitotic Agent Application Method
3.3. Antimitotic Agent Supplementary Compounds
3.4. Antimitotic Agent Exposure Time
4. Chemically Induced Haploid Genome Doubling in Vegetable Crops
5. Artificial Polyploidization for Breeding Purposes
5.1. Chemically Induced Polyploidization in Vegetable Crops
5.2. Chemically Induced Polyploidization in Interspecific Hybrids
6. Ploidy Determination Methods
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhooghe, E.; Van Laere, K.; Eeckhaut, T.; Leus, L.; Van Huylenbroeck, J. Mitotic Chromosome Doubling of Plant Tissues in Vitro. Plant Cell Tissue Organ Cult. 2011, 104, 359–373. [Google Scholar] [CrossRef]
- Madani, H.; Escrich, A.; Hosseini, B.; Sanchez-Muñoz, R.; Khojasteh, A.; Palazon, J. Effect of Polyploidy Induction on Natural Metabolite Production in Medicinal Plants. Biomolecules 2021, 11, 899. [Google Scholar] [CrossRef] [PubMed]
- Trojak-Goluch, A.; Kawka-Lipińska, M.; Wielgusz, K.; Praczyk, M. Polyploidy in Industrial Crops: Applications and Perspectives in Plant Breeding. Agronomy 2021, 11, 2574. [Google Scholar] [CrossRef]
- Ahmadi, B.; Ebrahimzadeh, H. In Vitro Androgenesis: Spontaneous vs. Artificial Genome Doubling and Characterization of Regenerants. Plant Cell Rep. 2020, 39, 299–316. [Google Scholar] [CrossRef]
- Hooghvorst, I.; Ribas, P.; Nogués, S. Chromosome Doubling of Androgenic Haploid Plantlets of Rice (Oryza sativa) Using Antimitotic Compounds. Plant Breed. 2020, 139, 754–761. [Google Scholar] [CrossRef]
- Kasha, K.J. Chromosome Doubling and Recovery of Doubled Haploid Plants. In Haploids in Crop Improvement II; Don Palmer, C.E., Keller, W.A., Kasha, K.J., Eds.; Biotechnology in Agriculture and Forestry; Springer: Berlin/Heidelberg, Germany, 2005; pp. 123–152. ISBN 978-3-540-26889-5. [Google Scholar]
- Manzoor, A.; Ahmad, T.; Bashir, M.A.; Hafiz, I.A.; Silvestri, C. Studies on Colchicine Induced Chromosome Doubling for Enhancement of Quality Traits in Ornamental Plants. Plants 2019, 8, 194. [Google Scholar] [CrossRef] [PubMed]
- Touchell, D.H.; Palmer, I.E.; Ranney, T.G. In Vitro Ploidy Manipulation for Crop Improvement. Front. Plant Sci. 2020, 11, 517580. [Google Scholar] [CrossRef] [PubMed]
- Alan, A.R. Doubled Haploid Onion (Allium cepa L.) Production Via In Vitro Gynogenesis. In Doubled Haploid Technology: Volume 1: General Topics, Alliaceae, Cereals; Segui-Simarro, J.M., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2021; Volume 1, pp. 151–169. ISBN 978-1-07-161315-3. [Google Scholar]
- Escobar-Guzmán, R.; Ochoa-Alejo, N. Anther Culture of the Gametophytic Self-Incompatible Species Physalis ixocarpa Brot. In Doubled Haploid Technology: Volume 2: Hot Topics, Apiaceae, Brassicaceae, Solanaceae; Segui-Simarro, J.M., Ed.; Springer: New York, NY, USA, 2021; pp. 319–326. ISBN 978-1-07-161335-1. [Google Scholar]
- Asif, M. Progress and Opportunities of Doubled Haploid Production; SpringerBriefs in Plant Science; Springer International Publishing: Heidelberg, Germany, 2013; Volume 6, ISBN 978-3-319-00731-1. [Google Scholar]
- Seguí-Simarro, J.M.; Jacquier, N.M.A.; Widiez, T. Overview of In Vitro and In Vivo Doubled Haploid Technologies. In Doubled Haploid Technology: Volume 1: General Topics, Alliaceae, Cereals; Segui-Simarro, J.M., Ed.; Springer: New York, NY, USA, 2021; pp. 3–22. ISBN 978-1-07-161315-3. [Google Scholar]
- Pivovarov, V.F.; Pyshnaya, O.N.; Gurkina, L.K. Vegetables are products and raw material for functional nutrition. Vopr. Pitan. 2017, 86, 121–127. [Google Scholar] [CrossRef]
- Behera, T.; Devi, J.; Tiwari, J.; Singh, B. Vegetable Breeding: Status and Strategies. Veg. Sci. 2023, 50, 131–145. [Google Scholar] [CrossRef]
- Thakur, P.; Kumari, N.; Kumar, A.; Sharma, P.; Chadha, S. Recent Advances in Development and Utilization of Double Haploids (DHs) in Economically Important Vegetable Crops. Plant Cell Tissue Organ Cult. 2023, 156, 15. [Google Scholar] [CrossRef]
- Gurel, S.; Pazuki, A.; Aflaki, F.; Gurel, E. Production of Doubled Haploid Sugar Beet (Beta vulgaris L.) Plants Through Gynogenesis. In Doubled Haploid Technology: Volume 3: Emerging Tools, Cucurbits, Trees, Other Species; Segui-Simarro, J.M., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2021; pp. 313–323. ISBN 978-1-07-161331-3. [Google Scholar]
- Mir, R.; Calabuig-Serna, A.; Seguí-Simarro, J.M. Doubled Haploids in Eggplant. Biology 2021, 10, 685. [Google Scholar] [CrossRef] [PubMed]
- Jaskani, M.J.; Kwon, S.W.; Kim, D.H. Comparative Study on Vegetative, Reproductive and Qualitative Traits of Seven Diploid and Tetraploid Watermelon Lines. Euphytica 2005, 145, 259–268. [Google Scholar] [CrossRef]
- Rogo, U.; Fambrini, M.; Pugliesi, C. Embryo Rescue in Plant Breeding. Plants 2023, 12, 3106. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Koo, D.-H.; Evers, B.; Wu, S.; Walkowiak, S.; Hucl, P.; Pozniak, C.; Fritz, A.; Poland, J. Wheat Doubled Haploids Have a Marked Prevalence of Chromosomal Aberrations. Plant Genome 2023, 16, e20309. [Google Scholar] [CrossRef] [PubMed]
- Piskorz, E.W.; Xu, L.; Ma, Y.; Jiang, H. Doubled-Haploid Induction Generates Extensive Differential DNA Methylation in Arabidopsis. J. Exp. Bot. 2023, 74, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Fleet, P.; Nevo, E.; Zhang, X.; Sun, G. Transcriptome Analysis Reveals Plant Response to Colchicine Treatment during on Chromosome Doubling. Sci. Rep. 2017, 7, 8503. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, S.; van Zijderveld, M.H.; Heidekamp, F.; van der Mark, F. Microspore Culture of Hordeum Vulgare L.: The Influence of Density and Osmolality. Plant Cell Rep. 1993, 12, 661–665. [Google Scholar] [CrossRef]
- Cho, M.S.; Zapata, F.J. Plant Regeneration from Isolated Microspore of Indica Rice. Plant Cell Physiol. 1990, 31, 881–885. [Google Scholar] [CrossRef]
- Castillo, A.M.; Allue, S.; Costar, A.; Alvaro, F.; Valles, M.P. Doubled Haploid Production from Spanish and Central European Spelt by Anther Culture. J. Agric. Sci. Technol. 2019, 21, 1313–1324. [Google Scholar]
- Barnabás, B.; Obert, B.; Kovács, G. Colchicine, an Efficient Genome-Doubling Agent for Maize (Zea mays L.) Microspores Cultured in Anthero. Plant Cell Rep. 1999, 18, 858–862. [Google Scholar] [CrossRef]
- Seguí-Simarro, J.M.; Nuez, F. Pathways to Doubled Haploidy: Chromosome Doubling during Androgenesis. Cytogenet. Genome Res. 2008, 120, 358–369. [Google Scholar] [CrossRef]
- Zayachkovskaya, T.; Domblides, E.; Zayachkovsky, V.; Kan, L.; Domblides, A.; Soldatenko, A. Production of Gynogenic Plants of Red Beet (Beta vulgaris L.) in Unpollinated Ovule Culture In Vitro. Plants 2021, 10, 2703. [Google Scholar] [CrossRef]
- Kiszczak, W.; Kowalska, U.; Burian, M.; Podwyszyńska, M.; Górecka, K. Influence of Polyamines on Red Beet (Beta vulgaris L. Ssp. Vulgaris) Gynogenesis. Agronomy 2023, 13, 537. [Google Scholar] [CrossRef]
- Górecka, K.; Krzyżanowska, D.; Kowalska, U.; Kiszczak, W.; Podwyszyńska, M. Development of Embryoids by Microspore and Anther Cultures of Red Beet (Beta vulgaris L. subsp. vulgaris). J. Cent. Eur. Agric. 2017, 18, 185–195. [Google Scholar] [CrossRef]
- Bossoutrot, D.; Hosemans, D. Gynogenesis in Beta vulgaris L.: From in Vitro Culture of Unpollinated Ovules to the Production of Doubled Haploid Plants in Soil. Plant Cell Rep. 1985, 4, 300–303. [Google Scholar] [CrossRef]
- Lux, H.; Herrmann, L.; Wetzel, C. Production of Haploid Sugar Beet (Beta vulgaris L.) by Culturing Unpollinated Ovules. Plant Breed. 1990, 104, 177–183. [Google Scholar] [CrossRef]
- Alan, A.R.; Mutschler, M.A.; Brants, A.; Cobb, E.; Earle, E.D. Production of Gynogenic Plants from Hybrids of Allium cepa L. and A. roylei Stearn. Plant Sci. 2003, 165, 1201–1211. [Google Scholar] [CrossRef]
- Geoffriau, E.; Kahane, R.; Bellamy, C.; Rancillac, M. Ploidy Stability and in Vitro Chromosome Doubling in Gynogenic Clones of Onion (Allium cepa L.). Plant Sci. 1997, 122, 201–208. [Google Scholar] [CrossRef]
- Jakše, M.; Hirschegger, P.; Bohanec, B.; Havey, M.J. Evaluation of Gynogenic Responsiveness and Pollen Viability of Selfed Doubled Haploid Onion Lines and Chromosome Doubling via Somatic Regeneration. J. Am. Soc. Hortic. Sci. 2010, 135, 67–73. [Google Scholar] [CrossRef]
- Hu, K.L.; Matsubara, S.; Murakami, K. Haploid Plant Production by Anther Culture in Carrot (Daucus carota L.). J. Jpn. Soc. Hort. Sci. 1993, 62, 561–565. [Google Scholar] [CrossRef]
- Li, J.-R.; Zhuang, F.-Y.; Ou, C.-G.; Hu, H.; Zhao, Z.-W.; Mao, J.-H. Microspore Embryogenesis and Production of Haploid and Doubled Haploid Plants in Carrot (Daucus carota L.). Plant Cell Tissue Organ Cult. 2013, 112, 275–287. [Google Scholar] [CrossRef]
- Kiszczak, W.; Krzyżanowska, D.; Strycharczuk, K.; Kowalska, U.; Wolko, B.; Górecka, K. Determination of Ploidy and Homozygosity of Carrot Plants Obtained from Anther Cultures. Acta Physiol. Plant 2011, 33, 401–407. [Google Scholar] [CrossRef]
- Kiełkowska, A.; Adamus, A. In Vitro Culture of Unfertilized Ovules in Carrot (Daucus carota L.). Plant Cell Tissue Organ Cult. 2010, 102, 309–319. [Google Scholar] [CrossRef]
- Ferrie, A.M.R.; Bethune, T.D.; Mykytyshyn, M. Microspore Embryogenesis in Apiaceae. Plant Cell Tissue Organ Cult. 2011, 104, 399–406. [Google Scholar] [CrossRef]
- Yuan, S.; Su, Y.; Liu, Y. Chromosome Doubling of Microspore-Derived Plants from Cabbage (Brassica oleracea var. capitata L.) and Broccoli (Brassica oleracea var. italica L.). Front. Plant Sci. 2015, 6, 1118. [Google Scholar] [CrossRef]
- Gu, H.H.; Zhou, W.J.; Hagberg, P. High Frequency Spontaneous Production of Doubled Haploid Plants in Microspore Cultures of Brassica rapa ssp. chinensis. Euphytica 2003, 134, 239–245. [Google Scholar] [CrossRef]
- Niu, L.; Shi, F.; Feng, H.; Zhang, Y. Efficient Doubled Haploid Production in Microspore Culture of Zengcheng Flowering Chinese Cabbage (Brassica campestris L. ssp. chinensis [L.] Makino var. utilis Tsen et Lee). Sci. Hortic. 2019, 245, 57–64. [Google Scholar] [CrossRef]
- Shumilina, D.V.; Shmykova, N.A.; Bondareva, L.L.; Suprunova, T.P. Effect of Genotype and Medium Culture Content on Microspore-Derived Embryo Formation in Chinese Cabbage (Brassica rapa ssp. chinensis) Cv. Lastochka. Biol. Bull. Russ. Acad. Sci. 2015, 42, 302–309. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, A.; Liu, Y.; Wang, Y.; Feng, H. Improved Production of Doubled Haploids in Brassica rapa through Microspore Culture. Plant Breed. 2012, 131, 164–169. [Google Scholar] [CrossRef]
- Prem, D.; Solís, M.-T.; Bárány, I.; Rodríguez-Sanz, H.; Risueño, M.C.; Testillano, P.S. A New Microspore Embryogenesis System under Low Temperature Which Mimics Zygotic Embryogenesis Initials, Expresses Auxin and Efficiently Regenerates Doubled-Haploid Plants in Brassica napus. BMC Plant Biol. 2012, 12, 127. [Google Scholar] [CrossRef]
- Domblides, E.; Ermolaev, A.S.; Belov, S.N. Obtaining doubled haploids of Cucurbita pepo L. Vegetable crops of Russia. Veg. Crops Russ. 2021, 4, 11–26. [Google Scholar] [CrossRef]
- Košmrlj, K.; Murovec, J.; Bohanec, B. Haploid Induction in Hull-Less Seed Pumpkin through Parthenogenesis Induced by X-Ray-Irradiated Pollen. J. Am. Soc. Hortic. Sci. 2013, 138, 310–316. [Google Scholar] [CrossRef]
- Nowaczyk, P.; Olszewska, D.; Kisiała, A. Individual Reaction of Capsicum F2 Hybrid Genotypes in Anther Cultures. Euphytica 2009, 168, 225–233. [Google Scholar] [CrossRef]
- Supena, E.D.J.; Suharsono, S.; Jacobsen, E.; Custers, J.B.M. Successful Development of a Shed-Microspore Culture Protocol for Doubled Haploid Production in Indonesian Hot Pepper (Capsicum annuum L.). Plant Cell Rep. 2006, 25, 1–10. [Google Scholar] [CrossRef]
- Dumas De Vaulx, R.; Chambonnet, D.; Pochard, E. Culture in Vitro d’anthères de Piment (Capsicum annuum L.): Amélioration Des Taux d’obtention de Plantes Chez Différents Génotypes Par Des Traitements à + 35 °C. Agronomie 1981, 1, 859–864. [Google Scholar] [CrossRef]
- Irikova, T.; Grozeva, S.; Rodeva, V. Anther Culture in Pepper (Capsicum annuum L.) in Vitro. Acta Physiol. Plant 2011, 33, 1559–1570. [Google Scholar] [CrossRef]
- Keleş, D.; Pınar, H.; Ata, A.; Taşkın, H.; Yıldız, S.; Büyükalaca, S. Effect of Pepper Types on Obtaining Spontaneous Doubled Haploid Plants via Anther Culture. HortScience 2015, 50, 1671–1676. [Google Scholar] [CrossRef]
- Gyulai, G.; Gémesné, J.A.; Sági, Z.S.; Venczel, G.; Pintér, P.; Kristóf, Z.; Törjék, O.; Heszky, L.; Bottka, S.; Kiss, J.; et al. Doubled Haploid Development and PCR-Analysis of F1 Hybrid Derived DH-R2 Paprika (Capsicum annuum L.) Lines. J. Plant Physiol. 2000, 156, 168–174. [Google Scholar] [CrossRef]
- Comlekcioglu, N. Effect of Colchicine Addition to Culture Medium on Induction of Androgenesis in Pepper (Capsicum annuum L.). Pak. J. Bot. 2021, 53, 1001–1005. [Google Scholar] [CrossRef]
- Dolcet-Sanjuan, R.; Claveria, E.; Huerta, A. Androgenesis in Capsicum annuum L.—Effects of Carbohydrate and Carbon Dioxide Enrichment. J. Am. Soc. Hortic. Sci. 1997, 122, 468–475. [Google Scholar] [CrossRef]
- Kim, M.; Park, E.-J.; An, D.; Lee, Y. High-Quality Embryo Production and Plant Regeneration Using a Two-Step Culture System in Isolated Microspore Cultures of Hot Pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult. 2013, 112, 191–201. [Google Scholar] [CrossRef]
- Nowaczyk, P.; Kisiała, A.; Olszewska, D. Induced Androgenesis of Capsicum frutescens L. Acta Physiol. Plant 2006, 28, 35–39. [Google Scholar] [CrossRef]
- Escobar-Guzmán, R.E.; Hernández-Godínez, F.; Martínez de la Vega, O.; Ochoa-Alejo, N. In Vitro Embryo Formation and Plant Regeneration from Anther Culture of Different Cultivars of Mexican Husk Tomato (Physalis ixocarpa Brot.). Plant Cell Tissue Organ Cult. 2009, 96, 181–189. [Google Scholar] [CrossRef]
- García-Arias, F.; Sanchez, E.; Núñez, V. Fertility Recovery of Anther-Derived Haploid Plants in Cape Gooseberry (Physalis peruviana L.). Agron. Colomb. 2018, 36, 201–209. [Google Scholar] [CrossRef]
- Zagorska, N.A.; Shtereva, L.A.; Kruleva, M.M.; Sotirova, V.G.; Baralieva, D.L.; Dimitrov, B.D. Induced Androgenesis in Tomato (Lycopersicon esculentum Mill.). III. Characterization of the Regenerants. Plant Cell Rep. 2004, 22, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Shariatpanahi, M.E.; Niazian, M.; Ahmadi, B. Methods for Chromosome Doubling. In Doubled Haploid Technology: Volume 1: General Topics, Alliaceae, Cereals; Segui-Simarro, J.M., Ed.; Springer: New York, NY, USA, 2021; pp. 127–148. ISBN 978-1-07-161315-3. [Google Scholar]
- Domblides, E.A.; Shmykova, N.A.; Shumilina, D.V.; Zayachkovskaya, T.V.; Vjurtts, T.S.; Kozar, E.V.; Kan, L.Y.; Romanov, V.S.; Domblides, A.S.; Pivovarov, V.F.; et al. Biotechnological Approaches for Breeding Programs in Vegetable Crops. In VIII International Scientific Agriculture Symposium, “Agrosym 2017”, Jahorina, Bosnia and Herzgovina, October 2017. Book of Proceedings; Faculty of Agriculture, University of East Sarajevo: Jahorina, Bosnia and Herzegovina, 2017; pp. 452–460. [Google Scholar]
- Joubès, J.; Chevalier, C. Endoreduplication in Higher Plants. In The Plant Cell Cycle; Inzé, D., Ed.; Springer: Dordrecht, The Netherlands, 2000; pp. 191–201. ISBN 978-94-010-0936-2. [Google Scholar]
- Daghma, D.E.S.; Hensel, G.; Rutten, T.; Melzer, M.; Kumlehn, J. Cellular Dynamics during Early Barley Pollen Embryogenesis Revealed by Time-Lapse Imaging. Front. Plant Sci. 2014, 5, 118468. [Google Scholar] [CrossRef]
- Boerman, N.A.; Frei, U.K.; Lübberstedt, T. Impact of Spontaneous Haploid Genome Doubling in Maize Breeding. Plants 2020, 9, 369. [Google Scholar] [CrossRef]
- Vagera, J. Pepper (Capsicum spp.): In Vitro Induction of Haploids. In Haploids in Crop Improvement I; Bajaj, Y.P.S., Ed.; Biotechnology in Agriculture and Forestry; Springer: Berlin/Heidelberg, Germany, 1990; Volume 12, pp. 374–392. ISBN 978-3-642-64856-4. [Google Scholar]
- Magyar, Z.; De Veylder, L.; Atanassova, A.; Bakó, L.; Inzé, D.; Bögre, L. The Role of the Arabidopsis E2FB Transcription Factor in Regulating Auxin-Dependent Cell Division. Plant Cell 2005, 17, 2527–2541. [Google Scholar] [CrossRef] [PubMed]
- Lukaszewska, E.; Virden, R.; Sliwinska, E. Hormonal Control of Endoreduplication in Sugar Beet (Beta vulgaris L.) Seedlings Growing in Vitro. Plant Biol. 2012, 14, 216–222. [Google Scholar] [CrossRef]
- Mishiba, K.; Okamoto, T.; Mii, M. Increasing Ploidy Level in Cell Suspension Cultures of Doritaenopsis by Exogenous Application of 2,4-Dichlorophenoxyacetic Acid. Physiol. Plant. 2001, 112, 142–148. [Google Scholar] [CrossRef]
- Kubaláková, M.; Doležel, J.; Lebeda, A. Ploidy Instability of Embryogenic Cucumber (Cucumis sativus L.) Callus Culture. Biol. Plant. 1996, 38, 475. [Google Scholar] [CrossRef]
- Bartels, P.G.; Hilton, J.L. Comparison of Trifluralin, Oryzalin, Pronamide, Propham, and Colchicine Treatments on Microtubules. Pestic. Biochem. Physiol. 1973, 3, 462–472. [Google Scholar] [CrossRef]
- Leung, Y.Y.; Yao Hui, L.L.; Kraus, V.B. Colchicine—Update on Mechanisms of Action and Therapeutic Uses. Semin. Arthritis Rheum. 2015, 45, 341–350. [Google Scholar] [CrossRef]
- Vasilchenko, E.N.; Zhuzhzhalova, T.P.; Vashchenko, T.G.; Kolesnikova, E.O. The Technology of Creating Restitution Sugar Beet Lines. Vestn. Voronezh State Agrar. Univ. 2018, 1, 56–64. [Google Scholar] [CrossRef]
- PubChem N-(1,2,3,10-Tetramethoxy-9-Oxo-5,6,7,9-Tetrahydrobenzo[a]Heptalen-7-Yl)Acetamide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2833 (accessed on 15 March 2024).
- Sagorin, C.; Ertel, N.H.; Wallace, S.L. Photoisomerization of Colchicine. Loss of Significant Antimitotic Activity in Human Lymphocytes. Arthritis Rheum. 1972, 15, 213–217. [Google Scholar] [CrossRef]
- PubChem Trifluralin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5569 (accessed on 15 March 2024).
- Zhao, J.; Simmonds, D.H. Application of Trifluralin to Embryogenic Microspore Cultures to Generate Doubled Haploid Plants in Brassica napus. Physiol. Plant. 1995, 95, 304–309. [Google Scholar] [CrossRef]
- Hansen, A.L.; Gertz, A.; Joersbo, M.; Andersen, S.B. Antimicrotubule Herbicides for in Vitro Chromosome Doubling in Beta vulgaris L. Ovule Culture. Euphytica 1998, 101, 231–237. [Google Scholar] [CrossRef]
- Mochalova, O.V.; Gusev, D.A. Induction of Polyploidy for Frutescent Cherry and Bessey Cherry by in Vitro Culture. Achiev. Sci. Technol. AICis 2016, 30, 36–39. [Google Scholar]
- Grzebelus, E.; Adamus, A. Effect of Anti-Mitotic Agents on Development and Genome Doubling of Gynogenic Onion (Allium cepa L.) Embryos. Plant Sci. 2004, 167, 569–574. [Google Scholar] [CrossRef]
- Hansen, N.J.P.; Andersen, S.B. In Vitro Chromosome Doubling Potential of Colchicine, Oryzalin, Trifluralin, and APM in Brassica napus Microspore Culture. Euphytica 1996, 88, 159–164. [Google Scholar] [CrossRef]
- Gürel, S.; Gürel, E.; Kaya, Z. Doubled Haploid Plant Production from Unpollinated Ovules of Sugar Beet (Beta vulgaris L.). Plant Cell Rep. 2000, 19, 1155–1159. [Google Scholar] [CrossRef]
- Wan, Y.; Duncan, D.R.; Rayburn, A.L.; Petolino, J.F.; Widholm, J.M. The Use of Antimicrotubule Herbicides for the Production of Doubled Haploid Plants from Anther-Derived Maize Callus. Theor. Appl. Genet. 1991, 81, 205–211. [Google Scholar] [CrossRef]
- Thao, N.T.P.; Ureshino, K.; Miyajima, I.; Ozaki, Y.; Okubo, H. Induction of Tetraploids in Ornamental Alocasia through Colchicine and Oryzalin Treatments. Plant Cell Tissue Organ. Cult. 2003, 72, 19–25. [Google Scholar] [CrossRef]
- Alan, A.R.; Lim, W.; Mutschler, M.A.; Earle, E.D. Complementary Strategies for Ploidy Manipulations in Gynogenic Onion (Allium cepa L.). Plant Sci. 2007, 173, 25–31. [Google Scholar] [CrossRef]
- Hansen, N.J.P.; Andersen, S.B. Efficient Production of Doubled Haploid Wheat Plants by in Vitro Treatment of Microspores with Trifluralin or APM. Plant Breed. 1998, 117, 401–405. [Google Scholar] [CrossRef]
- Melchinger, A.E.; Molenaar, W.S.; Mirdita, V.; Schipprack, W. Colchicine Alternatives for Chromosome Doubling in Maize Haploids for Doubled-Haploid Production. Crop Sci. 2016, 56, 559–569. [Google Scholar] [CrossRef]
- Ren, X. Doubling Effect of Anti-Microtubule Herbicides on the Maize Haploid. Emir. J. Food Agric. 2018, 30, 903–908. [Google Scholar] [CrossRef]
- Alan, A.R.; Brants, A.; Cobb, E.; Goldschmied, P.A.; Mutschler, M.A.; Earle, E.D. Fecund Gynogenic Lines from Onion (Allium cepa L.) Breeding Materials. Plant Sci. 2004, 167, 1055–1066. [Google Scholar] [CrossRef]
- Campion, B.; Perri, E.; Azzimonti, M.T.; Vicini, E.; Schiavi, M. Spontaneous and Induced Chromosome Doubling in Gynogenic Lines of Onion (Allium cepa L.). Plant Breed. 1995, 114, 243–246. [Google Scholar] [CrossRef]
- Foschi, M.L.; Martínez, L.E.; Ponce, M.T.; Galmarini, C.R.; Bohanec, B. Effect of Colchicine and Amiprophos-Methyl on the Production of in Vitro Doubled Haploid Onion Plants and Correlation Assessment between Ploidy Level and Stomatal Size. Rev. Fac. Cienc. Agrar., Univ. Nac. Cuyo 2013, 45, 130–140. [Google Scholar]
- Jakše, M.; Havey, M.J.; Bohanec, B. Chromosome Doubling Procedures of Onion (Allium cepa L.) Gynogenic Embryos. Plant Cell Rep. 2003, 21, 905–910. [Google Scholar] [CrossRef]
- Klutschewski, S. Methodical Improvements in Microspore Culture of Brassica napus L. Ph.D. Thesis, Universität Göttingen, Göttingen, Germany, 2013. [Google Scholar]
- Fábián, A.; Földesiné Füredi, P.K.; Ambrus, H.; Jäger, K.; Szabó, L.; Barnabás, B. Effect of N-Butanol and Cold Pretreatment on the Cytoskeleton and the Ultrastructure of Maize Microspores When Cultured in Vitro. Plant Cell Tissue Organ Cult. 2015, 123, 257–271. [Google Scholar] [CrossRef]
- Hirase, A.; Hamada, T.; Itoh, T.J.; Shimmen, T.; Sonobe, S. N -Butanol Induces Depolymerization of Microtubules in Vivo and in Vitro. Plant Cell Physiol. 2006, 47, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Soriano, M.; Cistué, L.; Castillo, A.M. Enhanced Induction of Microspore Embryogenesis after N-Butanol Treatment in Wheat (Triticum aestivum L.) Anther Culture. Plant Cell Rep. 2008, 27, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.M.; Nielsen, N.H.; Jensen, A.; Vallés, M.P. Effects of N-Butanol on Barley Microspore Embryogenesis. Plant Cell Tissue Organ Cult. 2014, 117, 411–418. [Google Scholar] [CrossRef]
- Füredi, P.F.; Ambrus, H.; Barnabás, B. Development of Cultured Microspores of Maize in the Presence of N-Butanol and 2-Aminoethanol. Acta Agron. Hung. 2012, 60, 183–189. [Google Scholar] [CrossRef]
- Füredi, P.K.F.; Ambrus, H.; Barnabás, B. The Effect of N-Butanol and 2-Aminoethanol on the in Vitro Androgenesis of Maize. Acta Biol. Szeged. 2011, 55, 77–78. [Google Scholar]
- Pelliccione, S. Microspore Embryogenesis Induction in Hot Pepper Genotypes. Universidad de Granada. 2013. Available online: http://purl.org/dc/dcmitype/Text (accessed on 16 March 2024).
- Hansen, A.L.; Gertz, A.; Joersbo, M.; Andersen, S.B. Short-Duration Colchicine Treatment for in Vitro Chromosome Doubling during Ovule Culture of Beta vulgaris L. Plant Breed. 1995, 114, 515–519. [Google Scholar] [CrossRef]
- Hansen, A.L.; Gertz, A.; Joersbo, M.; Andersen, S.B. Chromosome Doubling in Vitro with Amiprophos-Methyl in Beta Ulgaris Ovule Culture. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2000, 50, 89–95. [Google Scholar] [CrossRef]
- Svirshchevskaya, A.M.; Dolezel, J. Production and Performance of Gynogenetic Sugarbeet Lines. J. Sugar Beet Res. 2000, 37, 117–133. [Google Scholar] [CrossRef]
- D’Halluin, K.; Keimer, B. Production of Haploid Sugarbeets (Beta vulgaris L.) by Ovule Culture. In Genetic Manipulation in Plant Breeding. Proceedings International Symposium Organized by Eucarpia, September 8–13, 1985, Berlin (West), Germany; Walter de Gruyter: Berlin, Germany, 1986; pp. 307–309. [Google Scholar]
- Dixit, V.; Chaudhary, B.R. Colchicine-Induced Tetraploidy in Garlic (Allium sativum L.) and Its Effect on Allicin Concentration. J. Hortic. Sci. Biotechnol. 2014, 89, 585–591. [Google Scholar] [CrossRef]
- Gémes Juhasz, A.; Venczel, G.; Sagi, Z.; Gajdos, L.; Kristof, Z.; Vagi, P.; Zatyko, L. Production of Doubled Haploid Breeding Lines in Case of Paprika, Spice Paprika, Eggplant, Cucumber, Zucchini and Onion. Acta Hortic. 2006, 1282, 845–854. [Google Scholar] [CrossRef]
- Fayos, O.; Vallés, M.P.; Garcés-Claver, A.; Mallor, C.; Castillo, A.M. Doubled Haploid Production from Spanish Onion (Allium cepa L.) Germplasm: Embryogenesis Induction, Plant Regeneration and Chromosome Doubling. Front. Plant Sci. 2015, 6, 384. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Kang, W.; Peffley, E.B. Chromosome Doubling of Allium Fistulosum × A. Cepa Interspecific F1 Hybrids through Colchicine Treatment of Regenerating Callus. Euphytica 1997, 93, 257–262. [Google Scholar] [CrossRef]
- Timin, N.I.; Pyshnaya, O.N.; Agafonov, A.F.; Mamedov, M.I. Interspecific Hybridization of Vegetable Crops (Allium L., Daucus L., Capsicum L.); VNIISSOK publishing: Moscow, Russia, 2013; ISBN 978-5-901695-59-3. [Google Scholar]
- Farhadi, N.; Panahandeh, J.; Motallebi-Azar, A.; Mokhtarzadeh, S. Production of Autotetraploid Plants by in Vitro Chromosome Engineering in Allium hirtifolium. Hortic. Plant J. 2023, 9, 986–998. [Google Scholar] [CrossRef]
- Sadat Noori, S.A.; Norouzi, M.; Karimzadeh, G.; Shirkool, K.; Niazian, M. Effect of Colchicine-Induced Polyploidy on Morphological Characteristics and Essential Oil Composition of Ajowan (Trachyspermum ammi L.). Plant Cell Tissue Organ Cult. 2017, 130, 543–551. [Google Scholar] [CrossRef]
- Smýkalová, I.; Horáček, J. Caraway (Carum carvi L.): Anther Culture and Production of DH Plants Caraway. In Doubled Haploid Technology: Volume 2: Hot Topics, Apiaceae, Brassicaceae, Solanaceae; Segui-Simarro, J.M., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2021; Volume 2, pp. 91–102. ISBN 978-1-07-161335-1. [Google Scholar]
- Górecka, K.; Kowalska, U.; Krzyżanowska, D.; Kiszczak, W. Obtaining Carrot (Daucus carota L.) Plants in Isolated Microspore Cultures. J. Appl. Genet. 2010, 51, 141–147. [Google Scholar] [CrossRef]
- Voronina, A.V.; Vishnyakova, A.V.; Monakhos, S.G.; Monakhos, G.F.; Ushanov, A.A.; Mironov, A.A. Effect of Cultivation Factors on Embryogenesis in Isolated Microspore Culture of Carrot (Daucus carota L.). J. Water Land. Dev. 2022, 55, 125–128. [Google Scholar] [CrossRef]
- Ferrie, A.M.R. Doubled Haploidy for Fennel (Foeniculum vulgare Mill.) and Dill (Anethum graveolens L.). In Doubled Haploid Technology: Volume 2: Hot Topics, Apiaceae, Brassicaceae, Solanaceae; Segui-Simarro, J.M., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2021; Volume 2, pp. 103–111. ISBN 978-1-07-161335-1. [Google Scholar]
- Nasirvand, S.; Zakaria, R.A.; Zare, N.; Esmaeilpoor, B. Polyploidy Induction in Parsley (Petroselinum crispum L.) by Colchicine Treatment. Cytologia 2018, 83, 393–396. [Google Scholar] [CrossRef]
- Mwathi, M.W.; Gupta, M.; Quezada-Martinez, D.; Pradhan, A.; Batley, J.; Mason, A.S. Fertile Allohexaploid Brassica Hybrids Obtained from Crosses between B. Oleracea and B. Juncea via Ovule Rescue and Colchicine Treatment of Cuttings. Plant Cell Tissue Organ Cult. 2020, 140, 301–313. [Google Scholar] [CrossRef]
- Pen, S.; Nath, U.K.; Song, S.; Goswami, G.; Lee, J.-H.; Jung, H.-J.; Kim, H.-T.; Park, J.-I.; Nou, I.-S. Developmental Stage and Shape of Embryo Determine the Efficacy of Embryo Rescue in Introgressing Orange/Yellow Color and Anthocyanin Genes of Brassica Species. Plants 2018, 7, 99. [Google Scholar] [CrossRef]
- Claveria, E.; Garcia-Mas, J.; Dolcet-Sanjuan, R. Optimization of Cucumber Doubled Haploid Line Production Using In Vitro Rescue of In Vivo Induced Parthenogenic Embryos. J. Am. Soc. Hortic. Sci. 2005, 130, 555–560. [Google Scholar] [CrossRef]
- d’Hooghvorst, I.; Torrico, O.; Nogués, S. Doubled Haploid Parthenogenetic Production of Melon ‘Piel de Sapo’. In Doubled Haploid Technology: Volume 3: Emerging Tools, Cucurbits, Trees, Other Species; Segui-Simarro, J.M., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2021; Volume 3, pp. 87–95. ISBN 978-1-07-161331-3. [Google Scholar]
- Kurtar, E.S.; Seymen, M. Anther Culture in Cucurbita Species. In Doubled Haploid Technology: Volume 3: Emerging Tools, Cucurbits, Trees, Other Species; Segui-Simarro, J.M., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2021; Volume 3, pp. 111–121. ISBN 978-1-07-161331-3. [Google Scholar]
- Nasr, M.; Habib, H.; Ibrahim, I.; Kapiel, T. In Vitro Induction of Autotetraploid Watermelons Using Colchicine and Four Dinitroaniline Compounds. In Proceedings of the International Conference Genetic Engineering and Its Applications, Sharm Elsheik, Egypt, 8 April 2004; pp. 1–20. [Google Scholar]
- Zhu, H.; Zhao, S.; Lu, X.; He, N.; Gao, L.; Dou, J.; Bie, Z.; Liu, W. Genome Duplication Improves the Resistance of Watermelon Root to Salt Stress. Plant Physiol. Biochem. 2018, 133, 11–21. [Google Scholar] [CrossRef]
- Ojiewo, C.O.; Agong, S.G.; Murakami, K.; Masuda, M. Chromosome Duplication and Ploidy Level Determination in African Nightshade Solanum Villosum Miller. J. Hortic. Sci. Biotechnol. 2006, 81, 183–188. [Google Scholar] [CrossRef]
- González-Chavira, M.M.; Guerrero-Aguilar, B.Z.; Pons-Hernández, J.L.; Escobedo-Landín, M.d.l.Á.; García-Reyna, J.F.; Mora-Avilés, M.A. Induction of Androgenic Embryos and Regeneration of Haploid Plants in Experimental Genotypes of Poblano Chili through Anthers Culture. Rev. Mex. Cienc. Agríc. 2023, 14, 277–287. [Google Scholar] [CrossRef]
- Panda, R.C.; Kumar, O.A.; Rao, K.G.R. Cytomorphology of Induced Octoploid Chili Pepper (Capsicum annuum L.). Theor. Appl. Genet. 1984, 68, 567–570. [Google Scholar] [CrossRef]
- Rotino, G.L. Anther Culture in Eggplant (Solanum melongena L.). In In Vitro Embryogenesis in Higher Plants; Germana, M.A., Lambardi, M., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2016; pp. 453–466. ISBN 978-1-4939-3061-6. [Google Scholar]
- Vural, G.E.; Ari, E.; Zengin, S.; Ellialtioglu, S.S. Development of Androgenesis Studies on Eggplant (Solanum melongena L.) in Turkey from Past to Present. In Sustainable Crop Production; IntechOpen: London, UK, 2019; ISBN 978-1-78985-318-6. [Google Scholar]
- Başay, S.; Seniz, V.; Ellialtioglu, S. Obtaining Dihaploid Lines by Using Anther Culture in the Different Eggplant Cultivars. J. Food Agric. Environ. 2011, 9, 188–190. [Google Scholar]
- Bhattacharya, A.; Sonone, Y.; Char, B. Improvement in Tissue Culture-Assisted Induction of Double Haploidy in Brinjal (Solanum melongena L.). JAH 2019, 21, 178–181. [Google Scholar] [CrossRef]
- Lantos, C.; Juhász, A.G.; Somogyi, G.; Ötvös, K.; Vági, P.; Mihály, R.; Kristóf, Z.; Somogyi, N.; Pauk, J. Improvement of Isolated Microspore Culture of Pepper (Capsicum annuum L.) via Co-Culture with Ovary Tissues of Pepper or Wheat. Plant Cell Tissue Organ Cult. 2009, 97, 285–293. [Google Scholar] [CrossRef]
- Gémesné Juhász, A.; Petus, M.; Venczel, G.; Zatykó, L.; Gyulai, G.; Cséplö, M. Genetic Variability of Anther Donor versus Spontaneous Doubled Haploid Descendents and Colchicine Induced Doubled Haploid Sweet Pepper (Capsicum annuum l.) Lines. Acta Hortic. 2001, 560, 149–152. [Google Scholar] [CrossRef]
- İlhan, M.; Kurtar, E.S. Doublehaploidization Efficiency of Selected Pepper Genotypes Via in Vitro Anther Culture. Selcuk. J. Agr. Food Sci. 2022, 36, 253–259. [Google Scholar] [CrossRef]
- Ari, E.; Yildirim, T.; Mutlu, N.; Büyükalaca, S.; Gökmen, Ü.; Akman, E. Comparison of Different Androgenesis Protocols for Doubled Haploid Plant Production in Ornamental Pepper (Capsicum annuum L.). Turk. J. Biol. 2016, 40, 944–954. [Google Scholar] [CrossRef]
- Olszewska, D.; Jędrzejczyk, I.; Nowaczyk, P.; Sendel, S.; Gaczkowska, B. In Vitro Colchicine Treatment of Anther-Derived Pepper Haploids. Bulg. J. Agric. Sci. 2015, 21, 806–810. [Google Scholar]
- Mitykó, J.; Fári, M. Problems and Results of Doubled Haploid Plant Production in Pepper (Capsicum annuum L.) via Anther- and Microspore Culture. Acta Hortic. 1997, 447, 281–288. [Google Scholar] [CrossRef]
- Shmykova, N.; Pyshnaya, O.; Shumilina, D.; Dzhos, E. Morphological Characteristics of Doubled Haploid Plants of Pepper Produced Using Microspore/Anther in Vitro Culture of the Interspecies Hybrids of Capsicum annum L. and C. chinense Jacq. Russ. Agric. Sci. 2015, 40, 417–421. [Google Scholar] [CrossRef]
- Öcal, Y.; Taşkın, H.; Pınar, H.; Keleş, D.; Onsinejad, R.; Büyükalaca, S. Development of Nematode Resistant Pure Pepper Lines via Anther Culture Method. Acta Hortic. 2019, 1257, 29–36. [Google Scholar] [CrossRef]
- Soriano, M.; Cistué, L.; Vallés, M.P.; Castillo, A.M. Effects of Colchicine on Anther and Microspore Culture of Bread Wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult. 2007, 91, 225–234. [Google Scholar] [CrossRef]
- Weber, S.; ÜNker, F.; Friedt, W. Improved Doubled Haploid Production Protocol for Brassica napus Using Microspore Colchicine Treatment in Vitro and Ploidy Determination by Flow Cytometry. Plant Breed. 2005, 124, 511–513. [Google Scholar] [CrossRef]
- Bürün, B.; Emiroğlu, Ü. A Comparative Study on Colchicine Application Methods in Obtaining Doubled Haploids of Tobacco (Nicotiana tabacum L.). Turk. J. Biol. 2008, 32, 105–111. [Google Scholar]
- Mohammadi, P.P.; Moieni, A.; Ebrahimi, A.; Javidfar, F. Doubled Haploid Plants Following Colchicine Treatment of Microspore-Derived Embryos of Oilseed Rape (Brassica napus L.). Plant Cell Tissue Organ Cult. 2012, 108, 251–256. [Google Scholar] [CrossRef]
- Wędzony, M. Protocol for Doubled Haploid Production in Hexaploid Triticale (× Triticosecale Wittm.) by Crosses with Maize. In Doubled Haploid Production in Crop Plants: A Manual; Maluszynski, M., Kasha, K.J., Forster, B.P., Szarejko, I., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 135–140. ISBN 978-94-017-1293-4. [Google Scholar]
- Bhatia, R.; Dey, S.S.; Sood, S.; Sharma, K.; Parkash, C.; Kumar, R. Efficient Microspore Embryogenesis in Cauliflower (Brassica oleracea var. Botrytis L.) for Development of Plants with Different Ploidy Level and Their Use in Breeding Programme. Sci. Hortic. 2017, 216, 83–92. [Google Scholar] [CrossRef]
- Klíma, M.; Vyvadilová, M.; Kučera, V. Chromosome Doubling Effects of Selected Antimitotic Agents in Brassica napus Microspore Culture. Czech J. Genet. Plant Breed. 2008, 44, 30–36. [Google Scholar] [CrossRef]
- Vanous, K.; Vanous, A.; Frei, U.K.; Lübberstedt, T. Generation of Maize (Zea mays) Doubled Haploids via Traditional Methods. Curr. Protoc. Plant Biol. 2017, 2, 147–157. [Google Scholar] [CrossRef]
- Murthy, J.V.; Kim, H.H.; Hanesworth, V.R.; Hugdahl, J.D.; Morejohn, L.C. Competitive Inhibition of High-Affinity Oryzalin Binding to Plant Tubulin by the Phosphoric Amide Herbicide Amiprophos-Methyl. Plant Physiol. 1994, 105, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Hamill, S.D.; Smith, M.K.; Dodd, W.A. In Vitro Induction of Banana Autotetraploids by Colchicine Treatment of Micropropagated Diploids. Aust. J. Bot. 1992, 40, 887–896. [Google Scholar] [CrossRef]
- Eeckhaut, T.G.R.; Werbrouck, S.P.O.; Leus, L.W.H.; Van Bockstaele, E.J.; Debergh, P.C. Chemically Induced Polyploidization in Spathiphyllum Wallisii Regel through Somatic Embryogenesis. Plant Cell Tissue Organ. Cult. 2004, 78, 241–246. [Google Scholar] [CrossRef]
- Nakasone, H.Y.; Kamemoto, H. Artificial Induction of Polyploidy in Orchids by the Use of Colchicine; Hawaii Agricultural Experiment Station, University of Hawaii: Honolulu, HI, USA, 1961. [Google Scholar]
- Broughton, S.; Castello, M.; Liu, L.; Killen, J.; Hepworth, A.; O’Leary, R. The Effect of Caffeine and Trifluralin on Chromosome Doubling in Wheat Anther Culture. Plants 2020, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Jakše, M.; Bohanec, B. Studies of Alternative Approaches for Genome Doubling in Onion; Office for Official Publications of the European Community: Bled, Slovenia, 2000; pp. 101–104. [Google Scholar]
- Kurtar, E.S. The Effects of Anti-Mitotic Agents on Dihaploidization and Fertility in Winter Squash (Cucurbita maxima Duch.) and Pumpkin (Cucurbita moschata Duch.) Androgenic Haploids. Acta Sci. Pol. Hortorum Cultus 2018, 17, 3–14. [Google Scholar] [CrossRef]
- Hwang, J.K.; Paek, K.Y.; Cho, D.H. Breeding of Resistant Pepper Lines (Capsicum annuum l.) to Bacterial Spot (Xanthomonas campestris Pv. vesicatoria) through Anther Culture. Acta Hortic. 1998, 461, 301–310. [Google Scholar] [CrossRef]
- Todorova, V.; Grozeva, S.; Rodeva, V.; Masheva, S. Breeding Evaluation of Pepper Lines Obtained by in Vitro Anther Culture. Genetika 2013, 45, 601–610. [Google Scholar] [CrossRef]
- Shrestha, S.L.; Luitel, B.P.; Kang, W.H. Agro-Morphological Characterization of Anther Derived Plants in Sweet Pepper (Capsicum annuum L. Cv. Boogie). Hortic. Environ. Biotechnol. 2011, 52, 196–203. [Google Scholar] [CrossRef]
- Trajkova, F.; Gudeva, L.K. Evaluation and Agronomic Potential of Androgenic Pepper Genotypes Derived from Piran (Capsicum annuum L. Cv. Piran). J. Exp. Agric. Int. 2017, 16, 1–12. [Google Scholar] [CrossRef]
- Luitel, B.; Adhikari, P.; Shrestha, S.; Kang, W. Morphological Characterization of Anther Derived Plants in Minipaprika (Capsicum annuum L.). Korean J. Breed. Sci. 2012, 44, 450–461. [Google Scholar] [CrossRef]
- Akagi, T.; Jung, K.; Masuda, K.; Shimizu, K.K. Polyploidy before and after Domestication of Crop Species. Curr. Opin. Plant Biol. 2022, 69, 102255. [Google Scholar] [CrossRef]
- Wijesinghe, S.A.E.C.; Evans, L.J.; Kirkland, L.; Rader, R. A Global Review of Watermelon Pollination Biology and Ecology: The Increasing Importance of Seedless Cultivars. Sci. Hortic. 2020, 271, 109493. [Google Scholar] [CrossRef]
- Tammu, R.M.; Nuringtyas, T.R.; Daryono, B.S. Colchicine Effects on the Ploidy Level and Morphological Characters of Katokkon Pepper (Capsicum annuum L.) from North Toraja, Indonesia. J. Genet. Eng. Biotechnol. 2021, 19, 31. [Google Scholar] [CrossRef] [PubMed]
- Mallet, J. Hybrid Speciation. Nature 2007, 446, 279–283. [Google Scholar] [CrossRef]
- Song, P.; Kang, W.; Peffley, E.B. Chromosome Doubling of Allium Fistulosum × A. Cepa Interspecific F1 Hybrids through Colchicine Treatment of Regenerating Callus. HortScience 1993, 28, 269C-269. [Google Scholar] [CrossRef]
- Fomicheva, M.; Domblides, E. Mastering DNA Content Estimation by Flow Cytometry as an Efficient Tool for Plant Breeding and Biodiversity Research. Methods Protoc. 2023, 6, 18. [Google Scholar] [CrossRef]
- Domblides, E.; Ermolaev, A.; Belov, S.; Kan, L.; Skaptsov, M.; Domblides, A. Efficient Methods for Evaluation on Ploidy Level of Cucurbita pepo L. Regenerant Plants Obtained in Unpollinated Ovule Culture In Vitro. Horticulturae 2022, 8, 1083. [Google Scholar] [CrossRef]
- Shumilina, D.; Kozar, E.; Chichvarina, O.; Korottseva, K.; Domblides, E. Brassica rapa L. ssp. Chinensis Isolated Microspore Culture Protocol. In Doubled Haploid Technology: Volume 2: Hot Topics, Apiaceae, Brassicaceae, Solanaceae; Segui-Simarro, J.M., Ed.; Springer: New York, NY, USA, 2021; pp. 145–162. ISBN 978-1-07-161335-1. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fomicheva, M.; Kulakov, Y.; Alyokhina, K.; Domblides, E. Spontaneous and Chemically Induced Genome Doubling and Polyploidization in Vegetable Crops. Horticulturae 2024, 10, 551. https://doi.org/10.3390/horticulturae10060551
Fomicheva M, Kulakov Y, Alyokhina K, Domblides E. Spontaneous and Chemically Induced Genome Doubling and Polyploidization in Vegetable Crops. Horticulturae. 2024; 10(6):551. https://doi.org/10.3390/horticulturae10060551
Chicago/Turabian StyleFomicheva, Maria, Yuri Kulakov, Ksenia Alyokhina, and Elena Domblides. 2024. "Spontaneous and Chemically Induced Genome Doubling and Polyploidization in Vegetable Crops" Horticulturae 10, no. 6: 551. https://doi.org/10.3390/horticulturae10060551
APA StyleFomicheva, M., Kulakov, Y., Alyokhina, K., & Domblides, E. (2024). Spontaneous and Chemically Induced Genome Doubling and Polyploidization in Vegetable Crops. Horticulturae, 10(6), 551. https://doi.org/10.3390/horticulturae10060551