Pan-Genome Analysis of TRM Gene Family and Their Expression Pattern under Abiotic and Biotic Stresses in Cucumber
Abstract
:1. Introduction
2. Materials and Method
2.1. Identification of TRM Genes in Cucumber
2.2. Protein Length, Motif Composition, and Gene Structure Analysis Amino Acid Variations
2.3. Gene Duplication and Synteny Analysis
2.4. Transcriptome Profiling of CsTRMs in Fruit
2.5. Transcriptome Profiling of CsTRMs in Response to Abiotic and Biotic Stresses
2.6. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR) Analysis
3. Result
3.1. Identification of CsTRM Genes Based on the Cucumber Pan-Genome
3.2. Analysis of Protein Length and Amino Acid Variations in the CsTRM Proteins
3.3. Synteny Analysis of CsTRM Genes
3.4. Expression Profiles of CsTRM Genes in the Fruit
3.5. Expression Patterns of CsTRM Genes under Abiotic and Biotic Stresses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drevensek, S.; Goussot, M.; Duroc, Y.; Christodoulidou, A.; Steyaert, S.; Schaefer, E.; Duvernois, E.; Grandjean, O.; Vantard, M.; Bouchez, D.; et al. The Arabidopsis TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. Plant Cell 2012, 24, 178–191. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kim, G.T.; Kim, I.J.; Park, J.; Kwak, S.S.; Choi, G.; Chung, W.I. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 2006, 133, 4305–4314. [Google Scholar] [CrossRef]
- Guo, Q.Q.; Ng, P.Q.; Shi, S.S.; Fan, D.; Li, J.; Zhao, J.; Wang, H.; David, R.; Mittal, P.; Do, T.; et al. Arabidopsis TRM5 encodes a nuclear-localised bifunctional tRNA guanine and inosine-N1- methyltransferase that is important for growth. PLoS ONE 2019, 14, e0225064. [Google Scholar] [CrossRef]
- Tang, J.; Jia, P.; Xin, P.; Chu, J.; Shi, D.Q.; Yang, W.C. The Arabidopsis TRM61/TRM6 complex is a bona fide tRNA N1-methyladenosine methyltransferase. J. Exp. Bot. 2020, 71, 3024–3036. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, C.; Azimzadeh, J.; Pastuglia, M.; Bellini, C.; Grandjean, O.; Bouchez, D. The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 2002, 14, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Azimzadeh, J.; Nacry, P.; Christodoulidou, A.; Drevensek, S.; Camilleri, C.; Amiour, N.; Parcy, F.; Pastuglia, M.; Bouchez, D. Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 2008, 20, 2146–2159. [Google Scholar] [CrossRef]
- Spinner, L.; Gadeyne, A.; Belcram, K.; Goussot, M.; Moison, M.; Duroc, Y.; Eeckhout, D.; De Winne, N.; Schaefer, E.; Van De Slijke, E.; et al. A protein phosphatase 2A complex spatially controls plant cell division. Nat. Commun. 2013, 4, 1863. [Google Scholar] [CrossRef]
- Schaefer, E.; Belcram, K.; Uyttewaal, M.; Duroc, Y.; Goussot, M.; Legland, D.; Laruelle, E.; Tauzia-Moreau, M.D.; Pastuglia, M.; Bouchez, D. The preprophase band of microtubules controls the robustness of division orientation in plants. Science 2017, 356, 186–189. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Chen, B.Q.; Dang, X.; Zhu, L.L.; Rao, J.Q.; Ren, H.B.; Lin, C.T.; Qin, Y.; Lin, D.S. Arabidopsis IPGA1 is a microtubule-associated protein essential for cell expansion during petal morphogenesis. J. Exp. Bot. 2019, 70, 5231–5243. [Google Scholar] [CrossRef] [PubMed]
- Van der Knaap, E.; Chakrabarti, M.; Chu, Y.H.; Clevenger, J.P.; Illa-Berenguer, E.; Huang, Z.J.; Keyhaninejad, N.; Mu, Q.; Sun, L.; Wang, Y.P.; et al. What lies beyond the eye: The molecular mechanisms regulating tomato fruit weight and shape. Front. Plant Sci. 2014, 5, 227. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, B.Y.; Keyhaninejad, N.; Rodríguez, G.R.; Kim, H.J.; Chakrabarti, M.; Illa-Berenguer, E.; Taitano, N.K.; Gonzalo, M.J.; Díaz, A.; et al. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat. Commun. 2018, 9, 4734. [Google Scholar] [CrossRef] [PubMed]
- Lazzaro, M.D.; Wu, S.; Snouffer, A.; Wang, Y.P.; Van der Knaap, E. Plant organ shapes are regulated by protein interactions and associations with microtubules. Front. Plant Sci. 2018, 9, 1766. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Q.; Keyhaninejad, N.; Taitano, N.; Sapkota, M.; Snouffer, A.; van der Knaap, E. A combinatorial TRM-OFP module bilaterally fine-tunes tomato fruit shape. New Phytol. 2023, 238, 2393–2409. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.K.; Li, S.; Liu, Q.; Wu, K.; Zhang, J.Q.; Wang, S.S.; Wang, Y.; Chen, X.B.; Zhang, Y.; Gao, C.X.; et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 2015, 47, 949–954. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xiong, G.S.; Hu, J.; Jiang, L.; Yu, H.; Xu, J.; Fang, Y.X.; Zeng, L.J.; Xu, E.; Xu, J.; et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 2015, 47, 944–948. [Google Scholar] [CrossRef]
- Zhou, Y.; Miao, J.; Gu, H.Y.; Peng, X.R.; Leburu, M.; Yuan, F.H.; Gu, H.W.; Gao, Y.; Tao, Y.J.; Zhu, J.Y.; et al. Natural Variations in SLG7 Regulate Grain Shape in Rice. Genetics 2015, 201, 1591–1599. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liu, X.F.; Sun, C.Z.; Song, X.F.; Li, X.L.; Cui, H.N.; Guo, J.Y.; Liu, L.; Ying, A.; Zhang, Z.Q.; et al. CsTRM5 regulates fruit shape via mediating cell division direction and cell expansion in cucumber. Hortic. Res. 2023, 10, uhad007. [Google Scholar] [CrossRef] [PubMed]
- Wade, R.H. On and around microtubules: An overview. Mol. Biotechnol. 2009, 43, 177–191. [Google Scholar] [CrossRef]
- Landrein, B.; Hamant, O. How mechanical stress controls microtubule behavior and morphogenesis in plants: History; experiments and revisited theories. Plant J. 2013, 75, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Nick, P. Microtubules, signalling and abiotic stress. Plant J. 2013, 75, 309–323. [Google Scholar] [CrossRef]
- Sampathkumar, A.; Yan, A.; Krupinski, P.; Meyerowitz, E.M. Physical forces regulate plant development and morphogenesis. Curr. Biol. 2014, 24, R475–R483. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells. Protein Cell 2016, 7, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chen, Q.; Sun, Y.; Li, Y. Histone H2B monoubiquitination regulates salt stress-induced microtubule depolymerization in Arabidopsis. Plant Cell Environ. 2017, 40, 1512–1530. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.Z.; Jin, J.W.; Zhang, J.R.; Wang, D.; Bai, X.C.; Xie, W.F.; Hu, T.M.; Zhao, X.; Mao, T.L.; Qin, T. MDP25 mediates the fine-tuning of microtubule organization in response to salt stress. J. Integr. Plant Biol. 2022, 64, 1181–1195. [Google Scholar] [CrossRef]
- McNally, F.J.; Roll-Mecak, A. Microtubule-severing enzymes: From cellular functions to molecular mechanism. J. Cell Biol. 2018, 217, 4057–4069. [Google Scholar] [CrossRef]
- Bao, Z.R.; Xu, Z.J.; Zang, J.Z.; Bürstenbinder, K.; Wang, P.W. The morphological diversity of plant organs: Manipulating the organization of microtubules may do the trick. Front. Cell Dev. Biol. 2021, 9, 691. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.R.; Guo, Y.; Deng, Y.L.; Zang, J.Z.; Zhang, J.H.; Deng, Y.T.; Ouyang, B.; Qu, X.L.; Bürstenbinder, K.; Wang, P.W. Microtubule-associated protein SlMAP70 interacts with IQ67-domain protein SlIQD21a to regulate fruit shape in tomato. Plant Cell 2023, 35, 4266–4283. [Google Scholar] [CrossRef] [PubMed]
- Gantet, P.; Masson, F.; Domergue, O.; Marquis-Mention, M.; Bauw, G.; Inze, D.; Rossignol, M.; de la Serve, B.T. Cloning of a cDNA encoding a developmentally regulated 22 kDa polypeptide from tobacco leaf plasma membrane. Biochem. Mol. Biol. Int. 1996, 40, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki-Takeuchi, N.; Miyano, M.; Maeshima, M. A plasma membrane-associated protein of Arabidopsis thaliana AtPCaP1 binds copper ions and changes its higher order structure. J. Biochem. 2008, 144, 487–497. [Google Scholar] [CrossRef]
- Tanaka-Takada, N.; Kobayashi, A.; Takahashi, H.; Kamiya, T.; Kinoshita, T.; Maeshima, M. Plasma Membrane-Associated Ca2+-Binding Protein PCaP1 is Involved in Root Hydrotropism of Arabidopsis thaliana. Plant Cell Physiol. 2019, 60, 1331–1341. [Google Scholar] [CrossRef]
- Giovannoni, M.; Marti, L.; Ferrari, S.; Tanaka-Takada, N.; Maeshima, M.; Ott, T.; De Lorenzo, G.; Mattei, B. The plasma membrane-associated Ca2+ -binding protein, PCaP1, is required for oligogalacturonide and flagellin-induced priming and immunity. Plant Cell Environ. 2021, 44, 3078–3093. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Theerawitaya, C.; Kageyama, H.; Cha-Um, S.; Takabe, T. Expression of developmentally regulated plasma membrane polypeptide (DREPP2) in rice root tip and interaction with Ca(2+)/CaM complex and microtubule. Protoplasma 2015, 252, 1519–1527. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Klein, M.L.; Hernández-Reyes, C.; Batzenschlager, M.; Ditengou, F.A.; Lace, B.; Keller, J.; Delaux, P.M.; Ott, T. The Medicago truncatula DREPP Protein Triggers Microtubule Fragmentation in Membrane Nanodomains during Symbiotic Infections. Plant Cell 2020, 32, 1689–1702. [Google Scholar] [CrossRef]
- Dou, L.; He, K.; Higaki, T.; Wang, X.; Mao, T. Ethylene Signaling Modulates Cortical Microtubule Reassembly in Response to Salt Stress. Plant Physiol. 2018, 176, 2071–2081. [Google Scholar] [CrossRef]
- Yang, J.; An, B.; Luo, H.; He, C.; Wang, Q. AtKATANIN1 Modulates Microtubule Depolymerization and Reorganization in Response to Salt Stress in Arabidopsis. Int. J. Mol. Sci. 2019, 21, 138. [Google Scholar] [CrossRef]
- Kumar, S.; Jeevaraj, T.; Yunus, M.H.; Chakraborty, S.; Chakraborty, N. The plant cytoskeleton takes center stage in abiotic stress responses and resilience. Plant Cell Environ. 2023, 46, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, E.A.; Bajer, A.S. Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. Cell Motil. Cytoskelet. 1994, 27, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Parrotta, L.; Faleri, C.; Cresti, M.; Cai, G. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. Planta 2016, 243, 43–63. [Google Scholar] [CrossRef]
- Parveen, S.; Rahman, A. Actin isovariant ACT7 modulates root thermomor-phogenesis by altering intracellular auxin homeostasis. Int. J. Mol. Sci. 2021, 22, 7749. [Google Scholar] [CrossRef]
- Pressman, E.; Harel, D.; Zamski, E.; Shaked, R.; Althan, L.; Rosenfeld, K.; Firon, N. The effect of high temperatures on the expression and activity of sucrose-cleaving enzymes during tomato (Lycopersicon esculentum) anther development. J. Hortic. Sci. Biotechnol. 2006, 81, 341–348. [Google Scholar] [CrossRef]
- Zheng, Y.; Anderson, S.; Zhang, Y.; Garavito, R.M. The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications. J. Biol. Chem. 2011, 286, 36108–36118. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, M.; Jayakodi, M.; Stein, N.; Mascher, M. Plant pangenomes for crop improvement; biodiversity and evolution. Nat. Rev. Genet. 2024, 10, 1038. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Han, J.; Wang, T.; Chen, C.; Liu, J.; Xu, Z.; Zhang, Q.; Wang, L.; Ren, Z. Pan-Genome-Wide Identification and Transcriptome-Wide Analysis of DREB Genes That Respond to Biotic and Abiotic Stresses in Cucumber. Agriculture 2022, 12, 1879. [Google Scholar] [CrossRef]
- Zhao, Q.; Feng, Q.; Lu, H.; Li, Y.; Wang, A.; Tian, Q.; Zhan, Q.; Lu, Y.; Zhang, L.; Huang, T.; et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 2018, 50, 278–284. [Google Scholar] [CrossRef]
- Liu, Y.; Du, H.; Li, P.; Shen, Y.; Peng, H.; Liu, S.; Zhou, G.; Zhang, H.; Liu, Z.; Shi, M.; et al. Pan-Genome of Wild and Cultivated Soybeans. Cell 2020, 182, 162–176. [Google Scholar] [CrossRef]
- Hufford, M.B.; Seetharam, A.S.; Woodhouse, M.R.; Chougule, K.M.; Ou, S.; Liu, J.; Ricci, W.A.; Guo, T.; Olson, A.; Qiu, Y.; et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 2021, 373, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Lu, H.; Du, H.; Wang, H.; Chen, W.; Chen, Z.; He, Q.; Ou, S.; Zhang, H.; Li, X.; et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 2021, 184, 3542–3558. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Zhang, H.; Liu, Z.; Wang, Y.; Xing, L.; He, Q.; Du, H. Plant pan-genomics: Recent advances, new challenges, and roads ahead. J. Genet. Genom. 2022, 49, 833–846. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, G.; Ma, J.; Jiang, W.; Jin, L.; Zhang, Z.; Guo, Y.; Zhang, J.; Sui, Y.; Zheng, L.; et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 2014, 32, 1045–1052. [Google Scholar] [CrossRef]
- Golicz, A.A.; Bayer, P.E.; Barker, G.C.; Edger, P.P.; Kim, H.; Martinez, P.A.; Chan, C.K.; Severn-Ellis, A.; McCombie, W.R.; Parkin, I.A.; et al. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun. 2016, 7, 13390. [Google Scholar] [CrossRef]
- Gao, L.; Gonda, I.; Sun, H.; Ma, Q.; Bao, K.; Tieman, D.M.; Burzynski-Chang, E.A.; Fish, T.L.; Stromberg, K.A.; Sacks, G.L.; et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 2019, 51, 1044–1051. [Google Scholar] [CrossRef]
- Alonge, M.; Wang, X.; Benoit, M.; Soyk, S.; Pereira, L.; Zhang, L.; Suresh, H.; Ramakrishnan, S.; Maumus, F.; Ciren, D.; et al. Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato. Cell 2020, 182, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Guan, Z.; Hu, J.; Guo, C.; Yang, Z.; Wang, S.; Liu, D.; Wang, B.; Lu, S.; Zhou, R.; et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 2020, 6, 34–45. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Chai, S.; Yang, Z.; Zhang, Q.; Xin, H.; Xu, Y.; Lin, S.; Chen, X.; Yao, Z.; et al. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nat. Commun. 2022, 13, 682. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Che, G.; Gu, R.; Zhao, J.; Liu, X.; Song, X.; Zi, H.; Cheng, Z.; Shen, J.; Wang, Z.; Liu, R.; et al. Gene regulatory network controlling carpel number variation in cucumber. Development 2020, 147, dev184788. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Yan, S.; Yang, W.; Li, Y.; Xia, M.; Chen, Z.; Wang, Q.; Yan, L.; Song, X.; Liu, R.; et al. Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber (Cucumis sativus L.). Sci. Rep. 2015, 5, 8031. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, L.; Che, G.; Pan, Y.; Li, Y.; Hou, Y.; Zhao, W.; Zhong, Y.; Ding, L.; Yan, S.; et al. A Functional Allele of CsFUL1 Regulates Fruit Length through Repressing CsSUP and Inhibiting Auxin Transport in Cucumber. Plant Cell 2019, 31, 1289–1307. [Google Scholar] [CrossRef]
- Zhu, Y.; Yin, J.; Liang, Y.; Liu, J.; Jia, J. Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants. Ecotoxicol. Environ. Saf. 2019, 174, 245–254. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Tang, R.; Wang, L.; Chen, C.; Ren, Z. Genome-Wide identification and expression analysis of Hsf and Hsp gene families in cucumber (Cucumis sativus L.). Plant Growth Regul. 2021, 95, 223–239. [Google Scholar] [CrossRef]
- Xu, Q.; Xu, X.; Shi, Y.; Qi, X.; Chen, X. Elucidation of the molecular responses of a cucumber segment substitution line carrying Pm5.1 and its recurrent parent triggered by powdery mildew by comparative transcriptome profiling. BMC Genom. 2017, 18, 21. [Google Scholar] [CrossRef]
- Kong, W.; Chen, N.; Liu, T.; Zhu, J.; Wang, J.; He, X.; Jin, Y. Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection. PLoS ONE 2015, 10, e0142221. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.N.; Savory, E.A.; Vaillancourt, B.; Childs, K.L.; Hamilton, J.P.; Day, B.; Buell, C.R. Expression Profiling of Cucumis sativus in Response to Infection by Pseudoperonospora cubensis. PLoS ONE 2012, 7, e34954. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, H.; Gao, Z.; Wang, L.; Ren, Z. Localization of quantitative trait loci for cucumber fruit shape by a population of chromosome segment substitution lines. Sci. Rep. 2020, 10, 11030. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.J.; Zhang, Q.X.; Wang, L.N.; Ren, Z.H. Identification and Analysis on TRM Family in Cucumber. J. Shandong Agric. Univ. 2021, 52, 358–363. [Google Scholar]
- Yin, S.; Zhao, L.; Liu, J.; Sun, Y.; Li, B.; Wang, L.; Ren, Z.; Chen, C. Pan-genome Analysis of WOX Gene Family and Function Exploration of CsWOX9 in Cucumber. Int. J. Mol. Sci. 2023, 24, 17568. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.L.; Peng, Y.-B.; Cui, J.X.; Gu, H.T.; Xu, L.Y.; Li, Y.Q.; Xu, Z.H.; Bai, S.N. Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta 2004, 220, 230–240. [Google Scholar] [CrossRef]
- Ma, H.; Liu, M. The microtubule cytoskeleton acts as a sensor for stress response signaling in plants. Mol. Biol. Rep. 2019, 46, 5603–5608. [Google Scholar] [CrossRef]
Gene Name | 9930 | XTMC | Cu2 | Cuc80 | PI | Cuc64 | W4 | W8 | Hx14 | Hx117 | Cuc37 | Gy14 | 9110gt |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CsTRM01 | 1G003000 | 1G002960 | 1G003190 | 1G003020 | 1G02950 | 1G003020 | 1G003020 | 1G003050 | 1G008150 | 1G003070 | 1G003050 | 1G002970 | 1G003150 |
CsTRM02 | 1G006080 | 1G006040 | 1G006230 | 1G006090 | 1G06220 | 1G006110 | 1G006160 | 1G006130 | 1G012280 | 1G009330 | 1G006130 | 1G005930 | 1G006390 |
CsTRM03 | 1G024390 | 1G023100 | 1G019380 | 1G034690 | 1G022250 | 1G022640 | 1G033380 | 1G035450 | 1G025870 | 1G016710 | 1G021460 | ||
CsTRM04 | 1G036240 | 1G038300 | 1G031670 | 1G23930 | 1G045200 | 1G039460 1G050980 | 1G048780 | 1G052690 | 1G036240 | 1G023410 | 1G034790 | ||
CsTRM05 | 2G013800 | 2G013420 | 2G014430 | 2G016150 | 2G11310 | 2G012220 | 2G015170 | 2G022290 | 2G022190 | 2G018160 | 2G012230 | 2G011350 | 2G015370 |
CsTRM06 | 2G002210 | 2G001130 | 2G002170 | 2G01120 | 2G001150 | 2G001150 | 2G002120 | 2G002150 | 2G001120 | 2G001120 | 2G002200 | ||
CsTRM07 | 2G006910 | 2G004780 | 2G004780 | 2G005680 | 2G04550 | 2G004690 | 2G004760 | 2G005690 | 2G006680 | 2G005730 | 2G004660 | 2G004680 | 2G005790 |
CsTRM08 | 3G000320 | 3G000290 | 3G000270 | 3G00310 | 3G000310 | 3G000300 | 3G000290 | 3G000310 | 3G000300 | 3G000310 | 3G000260 | 3G000300 | |
CsTRM09 | 3G008900 | 3G014120 | 3G011330 | 3G009320 | 3G08770 | 3G009130 | 3G011320 | 3G009390 | 3G013030 | 3G018440 | 3G009280 | 3G008870 | 3G011230 |
CsTRM10 | 3G009320 | 3G014570 | 3G09200 | 3G009570 | 3G011790 | 3G009840 | 3G013470 | 3G018890 | 3G009740 | 3G009280 | 3G011660 | ||
CsTRM11 | 3G016640 | 3G023990 | 3G019120 | 3G016980 | 3G16440 | 3G027380 | 3G019160 | 3G017460 | 3G023810 | 3G029290 | 3G017050 | 3G016550 | 3G018960 |
CsTRM12 | 3G020250 | 3G028160 | 3G024300 | 3G021230 | 3G20290 | 3G031530 | 3G023320 | 3G021650 | 3G030910 | 3G038450 | 3G021080 | 3G020040 | 3G025120 |
CsTRM13 | 3G028590 | 3G044970 | 3G034490 | 3G039640 | 3G27110 | 3G050790 | 3G034230 | 3G032590 | 3G049730 | 3G053340 | 3G043310 | 3G025270 | 3G034790 |
CsTRM14 | 3G033690 | 3G052230 | 3G039760 | 3G045880 | 3G31210 | 3G055180 | 3G039400 | 3G038880 | 3G057040 | 3G059810 | 3G049600 | 3G029050 | 3G041170 |
CsTRM15 | 3G035160 | 3G053700 | 3G041160 | 3G047320 | 3G32570 | 3G056620 | 3G040870 | 3G040290 | 3G058490 | 3G061290 | 3G050990 | 3G030380 | 3G042680 |
CsTRM16 | 3G036950 | 3G056500 | 3G043950 | 3G049050 | 3G34290 | 3G032070 | 3G044470 | ||||||
CsTRM17 | 3G045060 | 3G067760 | 3G055880 | 3G057270 | 3G42630 | 3G066680 | 3G051990 | 3G050610 | 3G070610 | 3G071560 | 3G061110 | 3G040150 | 3G052920 |
CsTRM18 | 4G024630 | 4G030170 | 4G024030 | 4G078840 | 4G14290 | 4G027840 | 4G018900 | 4G021930 | 4G026900 | 4G030090 | 4G084710 | 4G013800 | 4G026010 |
CsTRM19 | 4G031780 | 4G042910 | 4G034540 | 4G090510 | 4G21450 | 4G044030 | 4G027440 | 4G033570 | 4G040430 | 4G039790 | 4G095540 | 4G020000 | 4G035410 |
CsTRM20 | 5G002760 | 5G003630 | 5G003640 | 5G002610 | 5G05360 | 5G003650 | 5G002590 | 5G005490 | 5G006540 | 5G003570 | 5G002660 | 5G003770 | |
CsTRM21 | 5G003260 | 5G004130 | 5G004140 | 5G003110 | 5G05880 | 5G003020 | 5G003100 | 5G004990 | 5G007040 | 5G004090 | 5G003170 | 5G003160 | 5G004310 |
CsTRM22 | 5G005590 | 5G007580 | 5G007530 | 5G005560 | 5G08200 | 5G000650 | 5G006510 | 5G001620 | 5G009400 | 5G009680 | 5G005630 | 5G005580 | |
CsTRM23 | 5G026190 | 5G042130 | 5G041190 | 5G050680 | 5G17200 | 5G021470 | 5G028290 | 5G024190 | 5G042910 | 5G054980 | 5G043620 | 5G016900 | 5G034200 |
CsTRM24 | 5G038540 | 5G060730 | 5G054610 | 5G063070 | 5G29400 | 5G043920 | 5G040890 | 5G049340 | 5G063180 | 5G067580 | 5G056820 | 5G028860 | 5G046740 |
CsTRM25 | 6G016870 | 6G024320 | 6G018060 | 6G025320 | 6G14470 | 6G015450 | 6G015250 | 6G019390 | 6G025200 | 6G018200 | 6G015300 | 6G014340 | 6G017280 |
CsTRM26 | 6G022550 | 6G035270 | 6G023850 | 6G053560 | 6G17180 | 6G022100 | 6G019950 | 6G023190 | 6G032860 | 6G030040 | 6G019540 | 6G016650 | 6G023980 |
CsTRM27 | 6G040450 | 6G052040 | 6G035430 | 6G079450 | 6G25260 | 6G035100 | 6G032700 | 6G033070 | 6G052400 | 6G045570 | 6G036810 | 6G024690 | 6G035970 |
CsTRM28 | 7G025430 | 7G031600 | 7G024250 | 7G035470 | 7G13640 | 7G025890 | 7G021920 | 7G034950 | 7G031600 | 7G031470 | 7G037050 | 7G012470 | 7G023340 |
CsTRM29 | UnG00530 |
Protein Number | 9930 | XTMC | Cu2 | Cuc80 | PI | Cuc64 | W4 | W8 | Hx14 | Hx117 | Cuc37 | Gy14 | 9110gt |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CsTRM01 | 1048 | 1048 | 1048 | 1048 | 1048 | 1048 | 1043 | 1048 | 1048 | 1048 | 1048 | 1063 | 1048 |
CsTRM02 | 1040 | 1067 | 1067 | 1067 | 1067 | 1067 | 1067 | 1067 | 1067 | 1067 | 1067 | 1067 | 1067 |
CsTRM03 | 780 | 788 | 788 | 788 | 781 | 781 | 781 | 781 | 781 | 788 | 781 | ||
CsTRM04 | 402 | 402 | 402 | 402 | 402 | 402/402 | 402 | 402 | 402 | 402 | 402 | ||
CsTRM05 | 776 | 803 | 803 | 803 | 803 | 803 | 803 | 803 | 803 | 803 | 803 | 803 | 803 |
CsTRM06 | 722 | 722 | 722 | 722 | 722 | 722 | 722 | 750 | 722 | 722 | 722 | ||
CsTRM07 | 893 | 478 | 893 | 891 | 891 | 893 | 893 | 899 | 893 | 891 | 891 | 922 | 891 |
CsTRM08 | 893 | 879 | 879 | 893 | 879 | 879 | 879 | 893 | 879 | 879 | 904 | 879 | |
CsTRM09 | 930 | 933 | 933 | 933 | 932 | 933 | 933 | 933 | 933 | 933 | 933 | 932 | 933 |
CsTRM10 | 346 | 346 | 344 | 344 | 344 | 344 | 346 | 344 | 346 | 305 | 346 | ||
CsTRM11 | 616 | 616 | 616 | 616 | 616 | 616 | 616 | 616 | 616 | 616 | 616 | 616 | 616 |
CsTRM12 | 953 | 953 | 954 | 954 | 953 | 953 | 953 | 953 | 953 | 952 | 953 | 954 | 953 |
CsTRM13 | 963 | 963 | 963 | 963 | 963 | 963 | 963 | 963 | 963 | 963 | 963 | 927 | 963 |
CsTRM14 | 353 | 353 | 353 | 353 | 353 | 353 | 353 | 353 | 353 | 353 | 353 | 353 | 353 |
CsTRM15 | 888 | 888 | 888 | 888 | 888 | 888 | 888 | 888 | 888 | 888 | 888 | 888 | 888 |
CsTRM16 | 472 | 472 | 550 | 550 | 472 | 472 | 550 | ||||||
CsTRM17 | 1091 | 1038 | 1091 | 1091 | 1091 | 1091 | 210 | 353 | 440 | 600 | 1091 | 1058 | 357 |
CsTRM18 | 961 | 961 | 961 | 961 | 961 | 922 | 961 | 961 | 961 | 961 | 961 | 961 | 961 |
CsTRM19 | 903 | 903 | 987 | 987 | 906 | 987 | 906 | 906 | 906 | 906 | 906 | 906 | 906 |
CsTRM20 | 785 | 785 | 785 | 785 | 781 | 781 | 781 | 781 | 785 | 785 | 745 | 785 | |
CsTRM21 | 476 | 476 | 476 | 476 | 476 | 476 | 476 | 476 | 476 | 476 | 476 | 476 | 476 |
CsTRM22 | 495 | 495 | 495 | 495 | 495 | 495 | 495 | 495 | 495 | 495 | 495 | 449 | |
CsTRM23 | 794 | 794 | 794 | 848 | 795 | 795 | 794 | 795 | 794 | 794 | 795 | 794 | 736 |
CsTRM24 | 1049 | 1049 | 1049 | 1049 | 1049 | 1049 | 1049 | 1049 | 1049 | 1049 | 1049 | 1049 | 958 |
CsTRM25 | 1011 | 1011 | 1011 | 1011 | 902 | 959 | 1009 | 1011 | 1022 | 1009 | 1011 | 940 | 1011 |
CsTRM26 | 936 | 936 | 936 | 936 | 936 | 936 | 938 | 936 | 936 | 936 | 936 | 936 | 936 |
CsTRM27 | 505 | 505 | 505 | 505 | 505 | 505 | 505 | 736 | 505 | 473 | 505 | 505 | 505 |
CsTRM28 | 960 | 960 | 960 | 959 | 959 | 994 | 995 | 1047 | 895 | 995 | 995 | 976 | 978 |
CsTRM29 | 788 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Wang, K.; Wang, Z.; Chu, S.; Chen, C.; Wang, L.; Ren, Z. Pan-Genome Analysis of TRM Gene Family and Their Expression Pattern under Abiotic and Biotic Stresses in Cucumber. Horticulturae 2024, 10, 908. https://doi.org/10.3390/horticulturae10090908
Zhao L, Wang K, Wang Z, Chu S, Chen C, Wang L, Ren Z. Pan-Genome Analysis of TRM Gene Family and Their Expression Pattern under Abiotic and Biotic Stresses in Cucumber. Horticulturae. 2024; 10(9):908. https://doi.org/10.3390/horticulturae10090908
Chicago/Turabian StyleZhao, Lili, Ke Wang, Zimo Wang, Shunpeng Chu, Chunhua Chen, Lina Wang, and Zhonghai Ren. 2024. "Pan-Genome Analysis of TRM Gene Family and Their Expression Pattern under Abiotic and Biotic Stresses in Cucumber" Horticulturae 10, no. 9: 908. https://doi.org/10.3390/horticulturae10090908
APA StyleZhao, L., Wang, K., Wang, Z., Chu, S., Chen, C., Wang, L., & Ren, Z. (2024). Pan-Genome Analysis of TRM Gene Family and Their Expression Pattern under Abiotic and Biotic Stresses in Cucumber. Horticulturae, 10(9), 908. https://doi.org/10.3390/horticulturae10090908