Characterization of Lectin from Bauhinia holophylla Using Bioinformatics Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material, Callus Culture, and Hemagglutination Assay
2.3. Obtaining the Nucleotide Sequence
2.3.1. Primer Construction
2.3.2. Extraction of Genomic DNA
2.3.3. Gene Amplification and Cloning
2.3.4. Transformation of Electrocompetent Cells
2.3.5. Purification of Plasmid DNA
2.3.6. Sequencing
2.4. In Silico Characterization of the Lectin Associated with the Bhl Gene
2.4.1. Search for Homologous Sequences
2.4.2. Global Alignment between Homologous Sequences
2.4.3. Analysis of the Physicochemical Properties and Characterization of Amino Acids
2.4.4. Prediction of Post-Translational Modifications
2.4.5. Characterization of Functional Domains
2.4.6. Search for Signal Peptides
2.4.7. Prediction of Transmembrane Domains and Structural Characterization
3. Results
3.1. Obtaining the Nucleotide Sequence of B. holophylla Lectin
3.2. In Silico Characterization of the Lectin Associated with the Bhl Gene
3.2.1. Search for Homologous Sequences and Conserved Regions
3.2.2. Global Alignment between Homologous Sequences
3.2.3. Analysis of Physicochemical Properties and Characterization of Amino Acids
3.2.4. Prediction of Post-Translational Modifications
3.2.5. Characterization of Functional Domains and the Presence of Signal Peptides
3.2.6. Prediction of Transmembrane Domains and Structural Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Damme, E.J.M. 35 years in plant lectin research: A journey from basic science to applications in agriculture and medicine. Glycoconj. J. 2022, 39, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Bellande, K.; Bono, J.J.; Savelli, B.; Jamet, E.; Canut, H. Plant lectins and lectin receptor-like kinases: How do they sense the outside? Int. J. Mol. Sci. 2017, 18, 1164. [Google Scholar] [CrossRef] [PubMed]
- Cavada, B.S.; Pinto-Junior, V.R.; Osterne, V.J.S.; Oliveira, M.V.; Lossio, C.F.; Silva, M.T.L.; Bari, A.U.; Lima, L.D.; Souza-Filho, C.H.D.; Nascimento, K.S. Comprehensive review on Caelsalpinioideae lectins: From purification to biological activities. Int. J. Biol. Macromol. 2020, 162, 333–348. [Google Scholar] [CrossRef] [PubMed]
- Tsaneva, M.; Van Damme, E.J.M. 130 years of plant lectin research. Glycoconj. J. 2020, 37, 533–551. [Google Scholar] [CrossRef] [PubMed]
- Lagarda-Diaz, I.; Guzman-Partida, A.M.; Vazquez-Moreno, L. Legume lectins: Proteins with diverse applications. Int. J. Mol. Sci. 2017, 18, 1242. [Google Scholar] [CrossRef] [PubMed]
- Cagliari, R.; Kremer, F.S.; Pinto, L.S. Bauhinia lectins: Biochemical properties and biotechnological applications. Int. J. Biol. Macromol. 2018, 119, 811–820. [Google Scholar] [CrossRef]
- Vaz, A.M.S.F. Bauhinia in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Available online: https://floradobrasil.jbrj.gov.br/FB111840 (accessed on 22 November 2023).
- Filho, V.C. Chemical composition and biological potential of plants from the genus Bauhinia. Phytother. Res. 2009, 23, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Lannoo, N.; Van Damme, E.J.M. Lectin domains at the frontiers of plant defense. Front. Plant Sci. 2014, 5, 397. [Google Scholar] [CrossRef]
- Naithani, S.; Komath, S.S.; Nonomura, A.; Govindjee, G. Plant lectins and their many roles: Carbohydrate-binding and beyond. J. Plant Physiol. 2021, 266, 153531. [Google Scholar] [CrossRef]
- Van Holle, S.; Van Damme, E.J.M. Signaling through plant lectins: Modulation of plant immunity and beyond. Biochem. Soc. Trans. 2018, 46, 217–233. [Google Scholar] [CrossRef]
- Girão, D.K.F.B.; Cavada, B.S.; Pires, A.F.; Martins, T.V.; Franco, A.X.; Morais, C.M.; Nascimento, K.S.; Delatorre, P.; Silva, H.C.; Nagano, C.S.; et al. The galactose-binding lectin isolated from Bauhinia bauhinioides Mart. seeds inhibits neutrophil rolling and adhesion via primary cytokines. J. Mol. Recognit. 2015, 28, 285–292. [Google Scholar] [CrossRef]
- Campos, J.K.L.; Araújo, C.S.F.; Araújo, T.F.S.; Santos, A.F.S.; Teixeira, J.A.; Lima, V.L.M.; Coelho, L.C.B.B. Anti-inflammatory and antinociceptive activities of Bauhinia monandra leaf lectin. Biochim. Open 2016, 2, 62–68. [Google Scholar] [CrossRef]
- Lubkowski, J.; Durbin, S.V.; Silva, M.C.C.; Farnsworth, D.; Gildersleeve, J.C.; Oliva, M.L.V.; Wlodawer, A. Structural analysis and unique molecular recognition properties of a Bauhinia forficata lectin that inhibits cancer cell growth. FEBS J. 2017, 284, 429–450. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.S.; Cardoso, G.; Kremer, F.S.; Woloski, R.D.S.; Dellagostin, O.A.; Campos, V.F. Heterologous expression and characterization of a new galactose-binding lectin from Bauhinia forficata with antiproliferative activity. Int. J. Biol. Macromol. 2019, 128, 877–884. [Google Scholar] [CrossRef]
- Konozy, E.; Osman, M.; Dirar, A. Plant lectins as potent anti-coronaviruses, anti-inflammatory, antinociceptive and antiulcer agents. Saudi J. Biol. Sci. 2022, 29, 103301. [Google Scholar] [CrossRef]
- Zhong, C.; Zhou, Z.; Zhang, Y.M.; Jia, S.R.; Sun, Z.; Dale, B.E. Integrating kinetics with thermodynamics to study the alkaline extraction of protein from Caragana korshinskii Kom. Biotechnol. Bioeng. 2014, 111, 1801–1808. [Google Scholar] [CrossRef] [PubMed]
- Saw, H.S.; Sankaran, R.; Khoo, K.S.; Chew, K.W.; Phong, W.N.; Tang, M.S.Y.; Lim, S.S.; Zaid, H.F.M.; Naushad, M.; Show, P.L. Application of a liquid biphasic flotation (LBF) system for protein extraction from Persiscaria Tenulla leaf. Processes 2020, 8, 247. [Google Scholar] [CrossRef]
- Raemaekers, R.J.M.; Muro, L.; Gatehouse, J.A.; Fordham-Skelton, A.P. Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris. Eur. J. Biochem. 1999, 265, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.F.; Gonçalves, D.B.; Lopes, D.O. The use of bioinformatics tools to characterize a hypothetical protein from Penicillium rubens. Genet. Mol. Res. 2020, 19, 18574. [Google Scholar] [CrossRef]
- Mallick, P.; Kuster, B. Proteomics: A pragmatic perspective. Nat. Biotechnol. 2010, 28, 695–709. [Google Scholar] [CrossRef]
- Sivashankari, S.; Shanmughavel, P. Functional annotation of hypothetical proteins—A review. Bioinformation 2006, 1, 335–338. [Google Scholar] [CrossRef]
- Srinivasa, K.G.; Siddesh, G.M.; Manisekhar, S.R. Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications. In Algorithms for Intelligent Systems; Srinivasa, K.G., Siddesh., G.M., Manisekhar, S.R., Eds.; Springer: Singapore, 2020; pp. 3–9. [Google Scholar]
- Ijaq, J.; Malik, G.; Kumar, A.; Das, P.S. A model to predict the function of hypothetical proteins through a nine-point classification scoring schema. BMC Bioinform. 2019, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Helmick, H.; Jain, A.; Terashi, G.; Liceaga, A.; Bhunia, A.K.; Kihara, D.; Kokini, J.L. Bioinformatic approaches for characterizing molecular structure and function of food proteins. Annu. Rev. Food Sci. Technol. 2023, 14, 203–224. [Google Scholar] [CrossRef]
- Patel, B.; Singh, V.; Patel, S. Structural bioinformatics. In Essentials of Bioinformatics; Shaik, N.A., Hakeem, K.R., Eds.; Springer: New York, NY, USA, 2019; Volume 1, pp. 169–199. [Google Scholar]
- Tandang-Silvas, M.R.G.; Fukuda, T.; Fukuda, C.; Prak, K.; Cabanos, C.; Kimura, A.; Itoh, T.; Mikami, B.; Utsumi, S.; Maruyamaet, N. Conservation and divergence on plant seed 11S globulins based on crystal structures. Biochim. Biophys. Acta 2010, 1804, 1432–1442. [Google Scholar] [CrossRef]
- Santos, M.; Teixeira, T.R.; Santos, F.R.S.; Lima, W.G.; Ferraz, A.C.; Silva, N.L.; Leite, F.J.; Siqueira, J.M.; Luyten, W.; Castro, A.H.F.; et al. Bauhinia holophylla (Bong.) Steud. leaves-derived extracts as potent anti-dengue serotype 2. Nat. Prod. Res. 2019, 35, 2804–2809. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.H.F.; Tavares, H.S.; Pereira, S.R.F.; Granjeiro, P.A.; Silva, J.A.; Galdino, A.S. Production and characterization of lectin from Bauhinia holophylla (Fabaceae:Cercideae) calli. Plant Cell Tissue Organ Cult. 2018, 134, 423–432. [Google Scholar] [CrossRef]
- Lloyd, G.; Mc Cown, B. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int. Plant Propagators’ Soc. Proceed. 1980, 30, 421–427. [Google Scholar]
- Bala, T.N.N.; Mathur, K.; Kumar, S.; Vyas, M.; Saini, A.; Tomar, B. In vitro callus induction for determination of lectin activity in pea (Pisum sativum L.) variety (AP-1). Rom. Biotechnol. Lett. 2010, 15, 5781–5787. [Google Scholar]
- Liener, I.E.; Hill, E.G. The effect of heat treatment on the nutritive value and hemagglutinin activity of soybean oil meal. J. Nutr. 1953, 49, 609–620. [Google Scholar] [CrossRef]
- Inbar, M.; Sachs, L. Structural difference in sites on the surface membrane of normal and transformed cells. Nature 1969, 223, 710–712. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids. Symp. Ser. 1999, 41, 95–98. [Google Scholar] [CrossRef]
- Wu, A.M.; Wu, J.H.; Liu, J.H.; Singh, T. Recognition profile of Bauhinia purpurea agglutinin (BPA). Life Sci. 2004, 74, 1763–1779. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.D.; Silva, M.B.R.; Argolo, A.C.C.; Napoleão, T.H.; Sá, R.A.; Correia, M.T.S.; Paiva, P.M.G.; Silva, M.D.C.; Coelho, L.C.B.B. A new Bauhinia monandra galactose-specific lectin purified in milligram quantities from secondary roots with antifungal and termiticidal activities. Int. Biodeterior. Biodegrad. 2011, 65, 696–702. [Google Scholar] [CrossRef]
- Silva, A.L.C.; Horta, A.C.G.; Moreira, R.D.A. Isolation and partial characterization of a lectin from Bauhinia pentandra (Bong.) vog. Ex. Steud. Rev. Bras. Fisiol. Veg. 2001, 13, 262–269. [Google Scholar] [CrossRef]
- Chan, Y.S.; Ng, T.B. Bauhinia variegata var. variegata lectin: Isolation, characterization, and comparison. Appl. Biochem. Biotechnol. 2015, 175, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.C.; Bari, A.U.; Pereira-Jénior, F.N.; Simões, R.C.; Barroso-Neto, I.L.; Nobre, C.B.; Pereira, M.G.; Nascimento, K.S.; Rocha, B.A.M.; Delatorre, P.; et al. Purification and partial characterization of a new pro-inflammatory lectin from Bauhinia bauhinioides Mart. (Caesalpinoideae) seeds. Protein Pept. Lett. 2011, 18, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.C.C.; Santana, L.A.; Mentele, R.; Ferreira, R.S.; De Miranda, A.; Silva-Lucca, R.A.; Sampaio, M.U.; Correia, M.T.S.; Oliva, M.L.V. Purification, primary structure and potential functions of a novel lectin from Bauhinia forficata seeds. Process Biochem. 2012, 47, 1049–1059. [Google Scholar] [CrossRef]
- Silva, H.C.; Pinto, L.D.S.; Teixeira, E.H.; Nascimento, K.S.; Cavada, B.S.; Silva, A.L.C. BUL: A novel lectin from Bauhinia ungulata L. seeds with fungistatic and antiproliferative activities. Process Biochem. 2014, 49, 203–209. [Google Scholar] [CrossRef]
- Katoch, R.; Tripathi, A. Research advances and prospects of legume lectins. J. Biosci. 2021, 46, 104. [Google Scholar] [CrossRef]
- Cunningham, A.B.; Brinckmann, J.A.; Harter, D.E.V. From forest to pharmacy: Should we be depressed about a sustainable Griffonia simplicifolia (Fabaceae) seed supply chain? J. Ethnopharmacol. 2021, 278, 114202. [Google Scholar] [CrossRef]
- De Coninck, T.; Van Damme, E.J.M. Review: The multiple roles of plant lectins. Plant Sci. 2021, 313, 111096. [Google Scholar] [CrossRef] [PubMed]
- De Simone, G.; Pasquadibisceglie, A.; Proietto, R.; Polticelli, F.; Aime, S.; Op den Camp, H.J.M.; Ascenzi, P. Contaminations in (meta)genome data: An open issue for the scientific community. IUBMB Life 2020, 72, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Loris, R.; Hamelryck, T.; Bouckaert, J.; Wyns, L. Legume lectin structure. Biochim. Biophys. Acta 1998, 1383, 9–36. [Google Scholar] [CrossRef] [PubMed]
- Sharon, N. Lectins: Carbohydrate-specific reagents and biological recognition molecules. Biol. Chem. 2007, 282, 2753–2764. [Google Scholar] [CrossRef] [PubMed]
- Van Holle, S.; De Schutter, K.; Eggermont, L.; Tsaneva, M.; Dang, L.; Van Damme, E.J.M. Comparative study of lectin domains in model species: New insights into evolutionary dynamics. Int. J. Mol. Sci. 2017, 18, 1136. [Google Scholar] [CrossRef] [PubMed]
- Vieira-Silva, S.; Touchona, M.; Abby, S.S.; Rocha, E.P.C. Investment in rapid growth shapes the evolutionary rates of essential proteins. Proc. Natl. Acad. Sci. USA 2011, 108, 20030–20035. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Kahali, B.; Ghosh, T.C. Protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks. BMC Syst. Biol. 2010, 4, 155. [Google Scholar] [CrossRef] [PubMed]
- Drummond, A.; Raval, A.; Wilke, C.A. A single determinant dominates the rate of yeast protein evolution. Mol. Biol. Evol. 2006, 23, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the expasy server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, New Jersey, USA, 2005; pp. 571–607. [Google Scholar]
- Katoch, R.; Tripathi, A.; Hallan, V.; Purohit, R.R. Structure prediction and protein-ligand interaction of lectin from rice bean (Vigna umbellata). Authorea 2024. [Google Scholar] [CrossRef]
- Streicher, H.; Sharon, N. Recombinant plant lectins and their mutants. Methods in Enzymol. 2003, 363, 47–77. [Google Scholar] [CrossRef]
- Kaushik, S.; Mohanty, D.; Surolia, A. The role of metal ions in substrate recognition and stability of concanavalin A: A molecular dynamics study. Biophys. J. 2009, 96, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Mi, F.; Guana, M.; Hu, C.; Peng, F.; Sun, S.; Wang, X. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: A review. Analyst 2021, 146, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Kapp, K.; Schrempf, S.; Lemberg, M.K.; Dobberstein, B. Post-targeting functions of signal peptides. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Heidelberg, Germany, 2009. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6322/ (accessed on 23 March 2024).
- Cheng, P.-N.; Pham, J.D.; Nowick, J.S. The supramolecular chemistry of β-sheets. J. Am. Chem. Soc. 2013, 135, 5477–5492. [Google Scholar] [CrossRef] [PubMed]
- Perczel, A.; Gáspári, Z.; Csizmadia, I.G. Structure and stability of β-pleated sheets. J. Comput. Chem. 2005, 26, 1155–1168. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.K.; Regan, L. Construction and design of β-sheets. Acc. Chem. Res. 1997, 30, 153–161. [Google Scholar] [CrossRef]
- Deller, M.C.; Kong, L.; Rupp, B. Protein stability: A crystallographer’s perspective. Acta Cryst. 2016, 72, 72–95. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Ejigu, G.F.; Jung, J. Review on the computational genome annotation of sequences obtained by next-generation sequencing. Biology 2020, 9, 295. [Google Scholar] [CrossRef]
- Mereghetti, P.; Ganadu, M.L.; Papaleo, E.; Fantucci, P.; Gioia, L. de Validation of protein models by a neural network approach. BMC Bioinform. 2008, 9, 66. [Google Scholar] [CrossRef]
Primers | Sequence (5′→3′) | Tm (°C) |
---|---|---|
Forward | TAAGCA1GGATCC 2ATGCTTCTCTACAACTCAA | 69.5 |
Reverse | TAAGCA1CTCGAG 3CATACTGGAATAAGAGGC | 69.5 |
Accession (NCBI) | Description | Max Score | Total Score | Query Cover | E Value | Per. Identity |
---|---|---|---|---|---|---|
KX907616.1 | Bauhinia forficata lectin | 1365 | 1365 | 100% | 0.0 | 95.06% |
DQ372702.1 | Bauhinia ungulata mRNA, partial cds | 1079 | 1079 | 88% | 0.0 | 92.01% |
EU596376.1 | Bauhinia variegata lectin I (bvl) gene, bvl-2 allele, complete cds | 1114 | 1114 | 100% | 0.0 | 89.84% |
D12481.1 | Bauhinia purpurea mRNA, complete cds | 1000 | 1000 | 100% | 0.0 | 87.56% |
Accession (NCBI) | Description | Max Score | Total Score | Query Cover | E Value | Per. Identity |
---|---|---|---|---|---|---|
APD76156.1 | Bauhinia forficata lectin | 521 | 521 | 100% | 0.0 | 90.00% |
ABD19775.1 | Bauhinia ungulata lectin | 436 | 436 | 88% | 4e−152 | 85.27% |
ABQ45362.1 | Bauhinia variegata lectin I precursor | 452 | 452 | 100% | 9e−158 | 79.04% |
P16030.2 | RecName: Full = Lectin; Flags: Precursor [Bauhinia purpurea] | 440 | 440 | 100% | 3e−153 | 78.01% |
P24146.3 | RecName: Full = Lectin-4; AltName: Full = GS4; AltName: Full = Lectin IV [Griffonia simplicifolia] | 338 | 338 | 83% | 1e−113 | 69.83% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargos, L.M.G.G.d.; Lopes, D.d.O.; Castro, A.H.F. Characterization of Lectin from Bauhinia holophylla Using Bioinformatics Tools. Horticulturae 2024, 10, 682. https://doi.org/10.3390/horticulturae10070682
Camargos LMGGd, Lopes DdO, Castro AHF. Characterization of Lectin from Bauhinia holophylla Using Bioinformatics Tools. Horticulturae. 2024; 10(7):682. https://doi.org/10.3390/horticulturae10070682
Chicago/Turabian StyleCamargos, Ludmila Maria Gonçalves Godoi de, Débora de Oliveira Lopes, and Ana Hortência Fonseca Castro. 2024. "Characterization of Lectin from Bauhinia holophylla Using Bioinformatics Tools" Horticulturae 10, no. 7: 682. https://doi.org/10.3390/horticulturae10070682
APA StyleCamargos, L. M. G. G. d., Lopes, D. d. O., & Castro, A. H. F. (2024). Characterization of Lectin from Bauhinia holophylla Using Bioinformatics Tools. Horticulturae, 10(7), 682. https://doi.org/10.3390/horticulturae10070682