Impacts of Epihomobrassinolide and Thiamethoxam·Flutolanil·Azoxystrobin on the Continuous Cropping Stress of Pinellia ternata
Abstract
:1. Introduction
2. Materials and Methods
2.1. P. ternata Orchard
2.2. Hormone, Seed Pesticides, and Seed
2.3. Seed Soaking and Coating Experiments
- (1)
- EBR1-TFA1—P. ternata seeds soaked with 0.004% EBR AS in a 1000-times dilution liquid + P. ternata seed coated with 24% TFA FC at 1.6 mL kg−1 seed;
- (2)
- EBR1-TFA2—P. ternata seeds soaked with 0.004% EBR AS in a 1000-times dilution liquid + P. ternata seeds coated with 24% TFA FC at 2.0 mL kg−1 seed;
- (3)
- EBR1—P. ternata seeds soaked with 0.004% EBR AS in a 1000-times dilution liquid;
- (4)
- EBR2—P. ternata seeds soaked with 0.004% EBR AS in a 1500-times dilution liquid;
- (5)
- TFA1—P. ternata seeds coated with 24% TFA FC at 1.6 mL kg−1 seed;
- (6)
- TFA2—P. ternata seeds coated with 24% TFA FC at 2.0 mL kg−1 seed;
- (7)
- C1—P. ternata seed soaked with clear water (intragroup control).
- (8)
- C2—no continuous cropping of P. ternata seeds soaked in clear water (intergroup control).
2.4. Growth Determination
2.5. Electrophysiological Information Determination
2.6. Photosynthesis Determination
2.7. Resistance Determination
2.8. Yield and Quality Determination
2.9. Statistical Analysis
3. Results
3.1. Effects of EBR and TFA on P. ternata Growth
3.2. Effects of EBR and TFA on the Emergence Seedling Ratio and Inverted Seedling Ratio of P. ternata
3.3. Effects of EBR and TFA on the Electrical Signals, Intracellular Water Metabolism, Nutrient Transport, and Plant Metabolic Activity of P. ternata
3.4. Effects of EBR and TFA on P. ternata Photosynthesis
3.5. Effects of EBR and TFA on P. ternata Resistance
3.6. Effects of EBR and TFA on P. ternata Quality
3.7. Effects of EBR and TFA on P. ternata Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Newmaster, S.; Wu, X.; Liu, Y.; Long, C. Pinellia hunanensis (Araceae), A New Species Supported by Morphometric Analysis and DNA Barcoding. Phytotaxa 2013, 130, 1–13. [Google Scholar] [CrossRef]
- Ji, X.; Huang, B.; Wang, G.; Zhang, C. The Ethnobotanical, Phytochemical and Pharmacological Profile of the Genus Pinellia. Fitoterapia 2014, 93, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Pan, Y.; Wu, H.; Ge, X.; Cai, B. The Alum-processing Mechanism Attenuating Toxicity of Araceae Pinellia ternata and Pinellia pedatisecta. Arch. Pharmacal Res. 2015, 38, 1810–1821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, Y.; Cheng, X.; Lin, R.; Dai, Z.; Zhou, C. Metabonomic Study of Biochemical Changes in the Rat Urine Induced by Pinellia ternata (thunb.) berit. J. Pharm. Biomed. Anal. 2013, 85, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cui, G.; Liu, J.; Tan, R. Pinelloside, An Antimicrobial Cerebroside from Pinellia ternata. Phytochemistry 2003, 64, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, Z.; Li, Q.; Gui, G.; Zhao, G.; Lin, L. Surface Controlled Electrochemical Sensing of Chlorpyrifos in Pinellia ternate Based on a One Step Synthesis of Palladium-reduced Graphene Nanocomposites. J. Electrochem. Soc. 2016, 164, B48–B53. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. General Principles of Four Parts of Chinese Pharmacopoeia 2020; China Medical Science and Technology Press: Beijing, China, 2019. [Google Scholar]
- Li, X.; Zhang, X.; Yang, W.; Guo, L.; Huang, L.; Li, X.; Gao, W. Preparation and Characterization of Native and Autoclaving-cooling Treated Pinellia ternate Starch and Its Impact on Gut Microbiota. Int. J. Biol. Macromol. 2021, 182, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Chen, H.; Liang, L.; Dong, J.; Liang, Z.; Zhao, L. Alteration of Crop Rotation in Continuous Pinellia ternate Cropping Soils Profiled via Fungal ITS Amplicon Sequencing. Lett. Appl. Microbiol. 2019, 68, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Luo, F.; Zhao, Z.; Hang, Y.; Wang, H.; Cheng, S.; Liu, H. The Allelopathy of Pinellia ternata Decomposed Liquid on 8 Crops and Composition of Allelochemicals. J. Nucl. Agric. Sci. 2018, 32, 1639–1648. [Google Scholar]
- Tang, C.; Lei, Q.; Luo, F.; Zhao, Z.; Hang, Y.; Wang, H.; Luo, C.; Cheng, S. Allelopathic Effects of Pinellia ternata Extracts on Eight Crops. Guizhou Agric. Sci. 2019, 47, 31–37. [Google Scholar]
- Xiao, Y.; Luo, F. Analysis of Transcriptome Response to 4-methyl-2,6-di-tert-butylphenol in Pinellia ternate root. Mol. Plant Breed. 2022, 1–22. Available online: http://kns.cnki.net/kcms/detail/46.1068.S.20220225.0902.006.html (accessed on 26 February 2022).
- He, Z.; Mao, R.; Dong, J.; Liang, Z.; Zhang, H.; Liu, L. Remediation of Deterioration in Microbial Structure in Continuous Pinellia ternata, Cropping Soil by Crop Rotation. Can. J. Microbiol. 2019, 65, 282–295. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qin, X.; Tian, X.; Yang, T.; Huang, J. Effects of Continuous Cropping of Pinellia ternata (Thunb.) Breit. on Soil Physicochemical Properties, Enzyme Activities, Microbial Communities and Functional Genes. Chem. Biol. Technol. Agric. 2021, 8, 43. [Google Scholar] [CrossRef]
- Hang, Y.; Luo, F.; Zhao, Z.; Tang, C.; Cheng, S.; Lin, J. Comprehensive Assessment of Pinellia ternata with Different Intercropping Patterns on Yield and Quality. North. Hortic. 2018, 13, 132–140. [Google Scholar]
- Dehghana, M.; Balouchib, H.; Yadavib, A.; Zare, E. Improve Wheat (Triticum aestivum) Performance by Brassinolide Application Under Different Irrigation Regimes. S. Afr. J. Bot. 2020, 130, 259–267. [Google Scholar] [CrossRef]
- Soares, T.; Dias, D.; Oliveira, A.; Ribeiro, D.M.; Dias, L. Exogenous Brassinosteroids Increase Lead Stress Tolerance in Seed Germination Seedling Growth of Brassica juncea L. Ecotoxicol. Environ. Saf. 2020, 193, 110296. [Google Scholar] [CrossRef] [PubMed]
- Demissie, Z.A.; Huang, F.; Song, H.; Todd, A.T.; Loewen, M.C. Barley “uzu” Wheat “uzu-like” Brassinosteroid Receptor BRI1 Kinase Domain Variations Modify Phosphorylation Activity in Vitro. Biochemistry 2020, 59, 2986–2997. [Google Scholar] [CrossRef] [PubMed]
- Nolan, T.M.; Vukašinovi´c, N.; Liu, D.; Yin, Y.H. Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, Stress Responses. Plant Cell 2020, 32, 295–318. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Wei, L.; Liao, W. Brassinosteroids in Plants: Crosstalk with Small-Molecule Compounds. Biomolecules 2021, 11, 1800. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lei, W.; He, R.; Tang, X.; Zhang, D. Brassinosteroids Regulate Root Meristem Development by Mediating BIN2-UPB1 Module in Arabidopsis. PLoS Genet. 2020, 16, e1008883. [Google Scholar] [CrossRef] [PubMed]
- Kolomeichuk, L.V.; Efimova, M.V.; Zlobin, I.E.; Kreslavski, V.D.; Allakhverdiev, S.I. 24-Epibrassinolide Alleviates the Toxic eEffects of NaCl on Photosynthetic Processes in Potato Plants. Photosynth. Res. 2020, 146, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Sun, P.; Luo, Y.; Zhou, H.; Gao, J.; Zhao, D.; Pubu, Z.; Liu, J.; Hu, T. Brassinosteroids Enhance Cold Tolerance in Elymusnutans via Mediating Redox Homeostasis Proline Biosynthesis. Environ. Exp. Bot. 2019, 167, 103831. [Google Scholar] [CrossRef]
- Li, L.; Yin, S.; Pan, W.; Wang, F.; Fan, J. Comprehensive Metabolome and Growth Effects of Thiamethoxam Uptake and Accumulation from Soil on Pak Choi. Food Chem. 2024, 433, 137286. [Google Scholar] [CrossRef] [PubMed]
- Nauen, R.; Jeschke, P.; Schindler, M.; Elbert, A. Overview of the Status and Global Strategy for Neonicotinoids. J. Agr. Food Chem. 2011, 59, 2897–2908. [Google Scholar] [CrossRef]
- Zhao, C.; Li, S.; Ma, Z.; Wang, W.; Gao, L.; Han, C.; Yang, A.; Wu, X. Anastomosis Groups and Mycovirome of Rhizoctonia Isolates Causing Sugar Beet Root and Crown Rot and Their Sensitivity to Flutolanil, Thifluzamide, and Pencycuron. J. Fungi 2023, 9, 545. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Morelos, V.H.; Calonne-Salmon, M.; Bremhorst, V.; Garcés-Ruiz, M.; Declerck, S. Fungicides With Contrasting Mode of Action Differentially Affect Hyphal Healing Mechanism in Gigaspora sp. and Rhizophagus irregularis. Front. Plant Sci. 2021, 12, 642094. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Huang, N.; Ji, J.; Chen, C. An Integrated Approach for Evaluating the Interactive Effects Between Azoxystrobin and Ochratoxin A: Pathway-based in Vivo Analyses. Pestic. Biochem. Physiol. 2023, 195, 105556. [Google Scholar] [CrossRef]
- Dong, J.; Huang, M.; Guo, H.; Zhang, J.; Tan, X.; Wang, D. Ternary Mixture of Azoxystrobin, Boscalid and Pyraclostrobin Disrupts the Gut Microbiota and Metabolic Balance of Honeybees (Apis cerana cerana). Int. J. Mol. Sci. 2023, 24, 5354. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Zhang, R.; Qiao, W.; Peng, T.; Qin, Y.; Wang, J.; Tian, B.; Yu, Y.; Sun, W.; Yang, Y.; et al. Sensitivity Baselines, Resistance Monitoring, and Molecular Mechanisms of the Rice False Smut Pathogen Ustilaginoidea virens to Prochloraz and Azoxystrobin in Four Regions of Southern China. J. Fungi 2023, 9, 832. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, Q.; Su, Y.; Lei, Y.; Zhang, C. Chitosan Spraying Enhances the Growth, Photosynthesis, and Resistance of Continuous Pinellia ternata and Promotes Its Yield and Quality. Molecules 2023, 28, 2053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wu, Y.; Su, Y.; Xing, D.; Dai, Y.; Wu, Y.; Fang, L. A Plant’s Electrical Parameters Indicate Its Physiological State: A Study of Intracellular Water Metabolism. Plants 2020, 9, 1256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Su, Y.; Wu, Y.; Li, H.; Zhou, Y.; Xing, D. Comparison on the Nutrient Plunder Capacity of Orychophragmus violaceus and Brassica napus L. Based on Electrophysiological Information. Horticulturae 2021, 7, 206. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Y.; Su, Y.; Li, H.; Fang, L.; Xing, D. Plant’s Electrophysiological Information Manifests the Composition and Nutrient Transport Characteristics of Membrane Proteins. Plant Signal. Behav. 2021, 16, 1918867. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, H.; Lei, Y.; Su, Y.; Long, Y. Chitosan as an Adjuvant to Improve Isopyrazam Azoxystrobin against Leaf Spot Disease of Kiwifruit and Enhance Its Photosynthesis, Quality, and Amino Acids. Agriculture 2022, 12, 373. [Google Scholar] [CrossRef]
- Zhang, C.; Long, Y.; Wang, Q.; Li, J.; Wu, X.; Li, M. The Effect of Preharvest 28.6% Chitosan Composite Film Sprays for Controlling the Soft Rot on Kiwifruit. Hortic. Sci. 2019, 46, 180–194. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Q.; Li, J.; Su, Y.; Wu, X. Chitosan as an Adjuvant to Enhance the Control Efficacy of Low-Dosage Pyraclostrobin against Powdery Mildew of Rosa roxburghii and Improve Its Photosynthesis, Yield, and Quality. Biomolecules 2022, 12, 1304. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, W.; Li, D.; Li, L.; Luo, Z. Effect of high carbon dioxide treatment on reactive oxygen species accumulation and antioxidant capacity in fresh-cut pear fruit during storage. Sci. Hortic. 2021, 281, 109925. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Liao, W.; Hu, L.; Dawuda, M.M.; Jin, X.; Yu, J. Nitric Oxide Is Involved in the Brassinolide-induced Adventitious Root Development in Cucumber. BMC Plant Biol. 2020, 20, 102. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Quan, Y.; Wang, L.; Wang, S. Brassinosteroid Promotes Grape Berry Quality-Focus on Physicochemical Qualities and Their Coordination with Enzymatic and Molecular Processes: A Review. Int. J. Mol. Sci. 2023, 24, 445. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Cao, J.; Yuan, J.; Liang, Y.; Li, J. Integration of Light and Brassinosteroid Signaling during Seedling Establishment. Int. J. Mol. Sci. 2021, 22, 12971. [Google Scholar] [CrossRef] [PubMed]
- Sukhov, V. Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth. Res. 2016, 130, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Szechyńska-Hebda, M.; Lewandowska, M.; Karpiński, S. Electrical signaling, photosynthesis and systemic acquired acclimation. Front. Physiol. 2017, 8, 684. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Mao, R.; Li, Z.; Wu, Y.; Qin, X.; Fu, W. Leaf intracellular water transport rate based on physiological impedance: A possible role of leaf internal retained water in photosynthesis and growth of tomatoes. Front. Plant Sci. 2022, 13, 845628. [Google Scholar] [CrossRef] [PubMed]
- Gallé, A.; Lautner, S.; Flexas, J.; Fromm, J. Environmental stimuli and physiological responses: The current view on electrical signaling. Environ. Exp. Bot. 2015, 114, 15–21. [Google Scholar] [CrossRef]
- Sukhov, V.; Gaspirovich, V.; Mysyagin, S.; Vodeneev, V. High-temperature tolerance of photosynthesis can be linked to local electrical responses in leaves of Pea. Funct. Front. Physiol. 2017, 8, 763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wu, Y.; Xing, D.; Zhao, K.; Yu, R. Rapid measurement of drought resistance in plants based on electrophysiological properties. Trans. ASABE 2015, 58, 1441–1446. [Google Scholar]
- Xing, D.; Chen, X.; Wu, Y.; Zwiazek, J. Leaf physiological impedance and elasticity modulus in Orychophragmus violaceus seedlings subjected to repeated osmotic stress. Sci. Hortic. 2021, 276, 109763. [Google Scholar] [CrossRef]
- Peres, A.L.; Soares, J.S.; Tavares, R.G.; Righetto, G.; Zullo, M.A.; Mandava, N.B.; Menossi, M. Brassinosteroids, the Sixth Class of Phytohormones: A Molecular View From the Discovery to Hormonal Interactions in Plant Development Stress Adaptation. Int. J. Mol. Sci. 2019, 20, 331. [Google Scholar] [CrossRef] [PubMed]
- Junior, U.O.B.; Lima, M.D.R.; Alsahli, A.A.; Lobato, A.K.S. Unraveling the Roles of Brassinosteroids in Alleviating Drought stress in Young Eucalyptus urophylla Plants: Implications on Redox Homeostasis Photosynthetic Apparatus. Physiol. Plant. 2020, 172, 748–761. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, Q.; Luo, M.; Wang, Q.; Wu, X. Bacillus cereus WL08 Immobilized on Tobacco Stem Charcoal Eliminates Butylated Hydroxytoluene in Soils and Alleviates the Continuous Cropping Obstacle of Pinellia ternata. J. Hazard. Mater. 2023, 450, 131091. [Google Scholar] [CrossRef] [PubMed]
- Vlot, A.C.; Sales, J.H.; Lenk, M.; Bauer, K.; Brambilla, A.; Sommer, A.; Nayem, S. Systemic Propagation of Immunity in Plants. New Phytol. 2020, 229, 1234–1250. [Google Scholar] [CrossRef] [PubMed]
- Rattan, A.; Kapoor, D.; Kapoor, N.; Bhardwaj, R.; Sharma, A. Brassinosteroids Regulate Functional Components of Antioxidative Defense System in Salt Stressed Maize Seedlings. J. Plant Growth Regul. 2020, 39, 1465–1475. [Google Scholar] [CrossRef]
Fertility | Content (g kg−1) | Fertility | Content (mg kg−1) |
---|---|---|---|
Organic matter | 15.02 | Available iron | 6.51 |
Total nitrogen | 1.45 | Exchangeable magnesium | 305.18 |
Total phosphorus | 1.71 | Available zinc | 0.95 |
Total potassium | 1.15 | Available manganese | 16.33 |
pH | 6.35 | Available copper | 1.06 |
Exchangeable calcium | 19.41 cmol kg−1 | Available boron | 0.28 |
Growth Period | Treatment | Plant Height (cm) | Leaf Area (cm2) | Stem Diameter (mm) |
---|---|---|---|---|
Full-seedling phase | EBR1-TFA1 | 6.06 ± 0.03 a | 8.35 ± 0.06 ab | 2.14 ± 0.04 a |
EBR1-TFA2 | 5.93 ± 0.04 a | 8.34 ± 0.06 ab | 2.09 ± 0.05 ab | |
EBR1 | 5.14 ± 0.07 c | 8.27 ± 0.07 abc | 2.06 ± 0.04 b | |
EBR2 | 5.04 ± 0.11 c | 8.25 ± 0.12 bc | 2.05 ± 0.04 b | |
TFA1 | 5.34 ± 0.19 b | 8.31 ± 0.14 abc | 2.07 ± 0.04 b | |
TFA2 | 5.18 ± 0.04 c | 8.28 ± 0.04 abc | 2.06 ± 0.04 b | |
C1 | 4.86 ± 0.08 d | 8.16 ± 0.04 c | 2.03 ± 0.02 b | |
C2 | 5.94 ± 0.07 a | 8.42 ± 0.09 a | 2.15 ± 0.02 a | |
Vigorous growth phase | EBR1-TFA1 | 7.58 ± 0.07 a | 15.08 ± 0.10 a | 2.18 ± 0.04 a |
EBR1-TFA2 | 7.05 ± 0.05 b | 14.89 ± 0.30 a | 2.11 ± 0.01 ab | |
EBR1 | 6.58 ± 0.09 d | 13.25 ± 0.06 c | 2.07 ± 0.04 b | |
EBR2 | 6.39 ± 0.05 e | 12.78 ± 0.35 d | 2.06 ± 0.07 b | |
TFA1 | 6.88 ± 0.05 c | 13.93 ± 0.32 b | 2.09 ± 0.02 ab | |
TFA2 | 6.63 ± 0.04 d | 13.42 ± 0.29 c | 2.07 ± 0.06 b | |
C1 | 6.14 ± 0.04 f | 11.03 ± 0.04 e | 2.04 ± 0.10 b | |
C2 | 7.69 ± 0.11 a | 15.05 ± 0.15 a | 2.18 ± 0.04 a | |
Inverted seedling phase | EBR1-TFA1 | 8.06 ± 0.05 a | 15.08 ± 0.26 a | 2.27 ± 0.06 a |
EBR1-TFA2 | 7.86 ± 0.10 b | 14.92 ± 0.43 a | 2.22 ± 0.04 ab | |
EBR1 | 7.04 ± 0.03 d | 13.98 ± 0.06 b | 2.10 ± 0.05 cd | |
EBR2 | 6.87 ± 0.08 e | 13.26 ± 0.15 c | 2.08 ± 0.04 cd | |
TFA1 | 7.31 ± 0.04 c | 14.43 ± 0.43 b | 2.15 ± 0.03 bc | |
TFA2 | 7.05 ± 0.08 d | 14.03 ± 0.33 b | 2.11 ± 0.04 cd | |
C1 | 6.65 ± 0.12 f | 12.91 ± 0.15 c | 2.06 ± 0.07 d | |
C2 | 8.05 ± 0.07 a | 15.14 ± 0.21 a | 2.25 ± 0.04 a |
Treatment | IC (pF) | IR (MΩ) | IZ (MΩ) | IXL (MΩ) | IXc (MΩ) |
---|---|---|---|---|---|
EBR1-TFA1 | 178.89 ± 3.56 b | 2.14 ± 0.30 cd | 0.30 ± 0.02 ef | 0.30 ± 0.03 f | 2.31 ± 0.32 d |
EBR1-TFA2 | 160.07 ± 5.51 c | 1.69 ± 0.51 de | 0.33 ± 0.04 ef | 0.33 ± 0.01 ef | 1.87 ± 0.32 de |
EBR1 | 147.40 ± 4.98 d | 2.28 ± 0.42 cd | 0.34 ± 0.03 de | 0.36 ± 0.01 de | 2.49 ± 0.46 cd |
EBR2 | 132.13 ± 2.16 e | 3.03 ± 0.22 bc | 0.40 ± 0.02 cd | 0.40 ± 0.01 d | 3.24 ± 0.30 bc |
TFA1 | 109.70 ± 4.99 f | 3.56 ± 0.48 b | 0.46 ± 0.04 c | 0.49 ± 0.02 c | 3.58 ± 0.30 b |
TFA2 | 89.41 ± 1.18 g | 5.09 ± 0.17 a | 0.58 ± 0.02 b | 0.59 ± 0.01 b | 5.40 ± 0.20 a |
C1 | 79.45 ± 7.15 h | 5.76 ± 1.01 a | 0.70 ± 0.06 a | 0.67 ± 0.06 a | 5.98 ± 0.85 a |
C2 | 217.05 ± 1.58 a | 1.01 ± 0.46 e | 0.26 ± 0.06 f | 0.24 ± 0.01 g | 1.17 ± 0.46 e |
Treatment | Medicinal Material Weight (kg per 667 m2) | Seed Weight (kg per 667 m2) | Total Yield (kg per 667 m2) |
---|---|---|---|
EBR1-TFA1 | 52.16 ± 3.72 a | 244.87 ± 10.37 a | 192.71 ± 12.10 a |
EBR1-TFA2 | 48.86 ± 3.41 b | 216.36 ± 12.94 b | 167.50 ± 10.98 b |
EBR1 | 43.82 ± 6.12 b | 200.18 ± 17.61 bc | 156.36 ± 13.41 b |
EBR2 | 41.65 ± 2.65 b | 193.65 ± 10.37 c | 152.00 ± 9.20 b |
TFA1 | 47.53 ± 1.65 b | 211.27 ± 5.94 bc | 163.74 ± 7.05 b |
TFA2 | 44.68 ± 4.35 b | 202.56 ± 1.96 bc | 157.88 ± 3.74 b |
C1 | 28.17 ± 3.47 c | 125.26 ± 10.10 d | 97.09 ± 9.61 c |
C2 | 54.65 ± 1.55 a | 247.42 ± 4.30 a | 192.77 ± 5.85 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, B.; Tang, C.; Liu, J.; Wang, Q.; Feng, W.; Su, Y.; Zhang, C.; Lei, Y. Impacts of Epihomobrassinolide and Thiamethoxam·Flutolanil·Azoxystrobin on the Continuous Cropping Stress of Pinellia ternata. Horticulturae 2024, 10, 696. https://doi.org/10.3390/horticulturae10070696
Tian B, Tang C, Liu J, Wang Q, Feng W, Su Y, Zhang C, Lei Y. Impacts of Epihomobrassinolide and Thiamethoxam·Flutolanil·Azoxystrobin on the Continuous Cropping Stress of Pinellia ternata. Horticulturae. 2024; 10(7):696. https://doi.org/10.3390/horticulturae10070696
Chicago/Turabian StyleTian, Bing, Chenglin Tang, Jiaqi Liu, Qiuping Wang, Wenhao Feng, Yue Su, Cheng Zhang, and Yang Lei. 2024. "Impacts of Epihomobrassinolide and Thiamethoxam·Flutolanil·Azoxystrobin on the Continuous Cropping Stress of Pinellia ternata" Horticulturae 10, no. 7: 696. https://doi.org/10.3390/horticulturae10070696
APA StyleTian, B., Tang, C., Liu, J., Wang, Q., Feng, W., Su, Y., Zhang, C., & Lei, Y. (2024). Impacts of Epihomobrassinolide and Thiamethoxam·Flutolanil·Azoxystrobin on the Continuous Cropping Stress of Pinellia ternata. Horticulturae, 10(7), 696. https://doi.org/10.3390/horticulturae10070696