Do Cultivar, Watering and Plant Distance Impact Aphids and Their Natural Enemies in Chili (Capsicum chinense Jacq.)?
Abstract
:1. Introduction
- More aphids will be found on the cultivar Yellow Scotch Bonnet, as this variety has a bushier habit and yellow fruit. Denser foliage provides a higher humidity and protection for aphids;
- In the more irrigated areas, more aphids will occur, due to juicier tissues;
- More aphids will be present in the plots with smaller plant spacing because of the higher humidity and more uniform and denser foliage;
- Due to the higher aphid pressure, there will be more predators in all of these cases.
2. Materials and Methods
2.1. Study Layout
- C1: Trinidad Scorpion Butch T (TSBT);
- C2: Yellow Scotch Bonnet (YSB);
- C1PD1: Plant distance of 60 cm;
- C1PD2: Plant distance of 40 cm;
- C2PD1: Plant distance of 40 cm;
- C2PD2: Plant distance of 30 cm;
- W1: Watering daily, 40 min (7.33 L/m/day);
- W2: Watering every second day, 20 min (3.66 L/m/two days).
2.2. Weather Data
2.3. Properties of Investigated Cultivars
2.4. Monitoring Method
- Aphididae: individual;
- Thomisidae: individual;
- Chrysopidae: egg, larva, pupa, adult;
- Coccinellidae: egg, larva, pupa, adult.
2.5. Statistical Analysis
3. Results
3.1. Individual Number of Aphids and Their Natural Enemies by Settings
3.1.1. Cultivar
3.1.2. Watering
3.1.3. Plant Distance
Cultivar | Watering | Plant Distance | |||||||
---|---|---|---|---|---|---|---|---|---|
Arthropods | Effect Estimate | Test Statistics | p Value | Effect Estimate | Test Statistics | p Value | Effect Estimate | Test Statistics | p Value |
Aphid individuals | 384.10 | F = 0.387 | 0.538 | −798.3 | F = 1.761 | 0.195 | 718.10 | F = 0.712 | 0.405 |
Coccinellidae eggs | 0.267 | Χ2 = 0.071 | 0.789 | −0.665 | χ2 = 0.445 | 0.506 | 1.583 | χ2 = 2.635 | 0.113 |
Coccinellidae larvae | −0.896 | χ2 = 0.805 | 0.370 | 1.428 | χ2 = 2.095 | 0.153 | 0.705 | χ2 = 0.502 | 0.481 |
Coccinellidae pupae | 4.225 | χ2 = 18.236 | <0.001 | −13.430 | χ2 = 216.970 | <0.001 | 12.930 | χ2 = 205.90 | <0.001 |
Coccinellidae adults | −5.403 | χ2 = 29.980 | <0.001 | −7.559 | χ2 = 62.160 | <0.001 | 1.813 | χ2 = 3.320 | 0.069 |
Chrysopidae eggs | 0.036 | χ2 = 0.001 | 0.971 | 4.374 | χ2 = 25.080 | <0.001 | 2.398 | χ2 = 6.190 | 0.016 |
Chrysopidae larvae | −1.585 | χ2 = 2.510 | 0.113 | −2.931 | χ2 = 8.690 | 0.003 | 2.514 | χ2 = 6.410 | 0.011 |
Thomisidae individuals | 0.449 | χ2 = 0.202 | 0.653 | 2.205 | χ2 = 4.878 | 0.027 | 0.245 | χ2 = 0.060 | 0.806 |
3.2. Seasonal Dynamics of Aphids and Their Natural Enemies by Settings
3.2.1. Cultivar
3.2.2. Watering
3.2.3. Plant Distance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Omolo, M.A.; Wong, Z.Z.; Mergen, A.K.; Hastings, J.C.; Le, N.C.; Reiland, H.A.; Case, K.A.; Baumler, D.J. Antimicrobial properties of chili peppers. J. Infect. Dis. Ther. 2014, 2, 145. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Singh, J. Cayenne/American Pepper. In Handbook of Herbs and Spices, 1st ed.; Peter, K.V., Ed.; Woodhead: Cambridge, UK, 2006; Volume 3, pp. 299–312. [Google Scholar]
- Deepa, N.; Kaur, C.; George, B.; Singh, B.; Kapoor, H.C. Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity. LWT Food Sci. Technol. 2007, 40, 121–129. [Google Scholar] [CrossRef]
- Topuz, A.; Ozdemir, F. Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. J. Food Compos. Anal. 2007, 20, 596–602. [Google Scholar] [CrossRef]
- Luo, X.J.; Peng, J.; Li, Y.J. Recent advances in the study on capsaicinoids and capsinoids. Eur. J. Pharmacol. 2011, 650, 1–7. [Google Scholar] [CrossRef]
- Saleh, B.K.; Omer, A.; Teweldemedhin, B. Medicinal uses and health benefits of chili pepper (Capsicum spp.): A review. MOJ Food Process. Technol. 2018, 6, 325–328. [Google Scholar] [CrossRef]
- Parisi, M.; Alioto, D.; Tripodi, P. Overview of biotic stresses in pepper (Capsicum spp.): Sources of genetic resistance, molecular breeding and genomics. Int. J. Mol. Sci. 2020, 21, 2587. [Google Scholar] [CrossRef]
- Jobbágy, L. Védekezzünk a levéltetvek ellen. AgrárUnió 2004, 5, 10–11. [Google Scholar]
- Basky, Z. Levéltetvek, 1st ed.; Mezőgazda Kiadó: Budapest, Hungary, 2005; p. 264. [Google Scholar]
- Smith, C.M.; Chuang, W. Plant resistance to aphid feeding: Behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Manag. Sci. 2014, 70, 528–540. [Google Scholar] [CrossRef]
- Ferran, A.; Dixon, A.F.G. Foraging behaviour of ladybird larvae (Coleoptera: Coccinellidae). Eur. J. Entomol. 1993, 90, 383–402. [Google Scholar]
- Blümel, S.; Fischer-Colbrie, P.; Höbaus, E. Nützlinge: Helfer im Zeitgemässen Pflanzenschutz, 3rd ed.; Verlag Jugend und Volk: Wien, Austria, 1988; pp. 48–57. [Google Scholar]
- Lövei, G. Katicabogarak—Coccinellidae. In Biológiai Védekezés Természetes Ellenségekkel, 1st ed.; Balázs, K., Mészáros, Z., Eds.; Mezőgazdasági Kiadó: Budapest, Hungary, 1989; pp. 126–133. [Google Scholar]
- Gonzalez, D.; Nave, A.; Gonçalves, F.; Nunes, F.M.; Campos, M.; Torres, L. Higher longevity and fecundity of Chrysoperla carnea, a predator of olive pests on some native flowering Mediterranean plants. Agron. Sustain. Dev. 2016, 36, 30. [Google Scholar] [CrossRef]
- Nyffeler, M.; Benz, G. Spiders in natural pest control: A review. J. Appl. Entomol. 1987, 103, 321–339. [Google Scholar] [CrossRef]
- Loksa, I. Pókok—Araneae. In Biológiai Védekezés Természetes Ellenségekkel, 1st ed.; Balázs, K., Mészáros, Z., Eds.; Mezőgazdasági Kiadó: Budapest, Hungary, 1989; pp. 147–155. [Google Scholar]
- Greenstone, M.H. Spider predation: How and why we study it. J. Arachnol. 1999, 27, 333–342. [Google Scholar]
- Riechert, S.E. The consequences of being territorial: Spiders, a case study. Am. Nat. 1981, 117, 871–892. [Google Scholar] [CrossRef]
- Tanaka, K. Movement of the spiders in arable land. Plant Prot. 1989, 43, 34–39. [Google Scholar]
- Nyffeler, M.; Sterling, W.L.; Dean, D.A. How spiders make living. Environ. Entomol. 1994, 23, 1357–1367. [Google Scholar] [CrossRef]
- Barzman, M.; Bàrberi, P.; Birch, A.N.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.; Kiss, J.; Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Stanghellini, C.; Kempkes, F.L.K.; Knies, P. Enhancing environmental quality in agricultural systems. Acta Hortic. 2003, 609, 277–283. [Google Scholar] [CrossRef]
- Kirnak, H.; Naim Demirtas, M. Effects of different irrigation regimes and mulches on yield and macronutrition levels of drip-irrigated cucumber under open field conditions. J. Plant Nutr. 2006, 29, 1675–1690. [Google Scholar] [CrossRef]
- Maisiri, N.; Senzanje, A.; Rockstrom, J.; Twomlow, S.J. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system. Phys. Chem. Earth 2005, 30, 783–791. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A Review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef]
- Das, S.; Rahman, M.; Dash, P.K.; Kamal, M. Suppression of chili leaf curl virus (ChLCV) incidence in chili (Capsicum annuum L.) across Bangladesh via manipulated planting date and spacing. J. Plant Dis. Prot. 2021, 128, 535–548. [Google Scholar] [CrossRef]
- Boateng, E.; Adjei, E.A.; Osei, M.K.; Offei, K.O.; Olympio, N.S. Response of plant spacing on the morphology and yield of five hot pepper lines. Afr. J. Agric. Res. 2021, 7, 1281–1287. [Google Scholar] [CrossRef]
- Setiawati, W.; Muharam, A.; Hasyim, A.; Prabaningrum, L.; Moekasan, T.K.; Murtiningsih, R.; Lukman, L.; Mejaya, M.J. Growth, yield characters and pest and diseases severity of chili pepper under different plant density and pruning levels. Appl. Ecol. Environ. Res. 2022, 20, 543–553. [Google Scholar] [CrossRef]
- Karungi, J.; Obua, T.; Kyamanywa, S.; Mortensen, C.N.; Erbaugh, M. Seedling protection and field practices for management of insect vectors and viral diseases of hot pepper (Capsicum chinense Jacq.) in Uganda. Int. J. Pest Manag. 2013, 59, 103–110. [Google Scholar] [CrossRef]
- Juhász, A.L.; Szalai, M.; Szénási, Á. Assessing the impact of cultivar, irrigation, and plant distance on predatory and phytophagous insects in chili. Horticulturae 2022, 8, 741. [Google Scholar] [CrossRef]
- O’Keefe, D.A.; Palada, M.C. In-row plant spacing affects growth and yield of four hot pepper cultivars. In Proceedings of the Caribbean Food Crops Society 38th Annual Meeting, Martinique, France, 30–5 July 2002; Merlini, X., Jean-Baptiste, I., Mbolidi-Baron, H., Eds.; AMADEPA: Martinique, France, 2002; pp. 162–168. [Google Scholar]
- Werner, J. Capsaicinoids—Properties and mechanisms of pro-health action. In Analytical Methods in the Determination of Bioactive Compounds and Elements in Food; Food Bioactive Ingredients, Jeszka-Skowron, M., Zgoła-Grze’skowiak, A., Grzéskowiak, T., Ramakrishna, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 193–225. [Google Scholar]
- Bosland, P.W.; Coon, D.; Reeves, G. ‘Trinidad Moruga Scorpion’ pepper is the world’s hottest measured chile pepper at more than two million Scoville heat units. Horttechnology 2012, 22, 534–538. [Google Scholar] [CrossRef]
- Trinidad Scorpion Butch, T. Available online: https://pepperhead.com/shop/trinidad-scorpion-butch-t/ (accessed on 8 February 2024).
- Maguire, K. Red Hot Chilli Grower, 1st ed.; Mitchell Beazley: London, UK, 2015; p. 110. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 20 November 2023).
- Fox, J. Using the R Commander: A Point-and-Click Interface for R; Chapman & Hall/CRC: Boca Raton, FL, USA, 2017; pp. 1–233. [Google Scholar]
- Faraway, J.J. Linear Models with R, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2014; pp. 1–270. [Google Scholar]
- Hluchý, M.; Ackerman, P.; Zacharda, M.; Laštůvka, M.; Bagar, M.; Jetmarová, E.; Vanek, G.; Szőke, L.; Plíšek, B. A Gyümölcsfák és a Szőlő Betegségei és Kártevői; Biocont Laboratory: Brno, Czech Republic, 2007; pp. 154–155. [Google Scholar]
- González-Zamora, J.E.; Ruiz-Aranda, C.; Rebollo-Valera, M.; Rodríguez-Morales, J.M.; Gutiérrez-Jiménez, S. Deficit water irrigation in an almond orchard can reduce pest damage. Agronomy 2021, 11, 2486. [Google Scholar] [CrossRef]
- Blanchard, S.; Lognay, G.; Verheggen, F.; Detrain, C. Today and tomorrow: Impact of climate change on aphid biology and potential consequences on their mutualism with ants. Physiol. Entomol. 2019, 44, 77–86. [Google Scholar] [CrossRef]
- Pérez-Fuertes, O.; García-Tejero, S.; Pérez Hidalgo, N.; Mateo-Tomás, P.; Olea, P.P. Irrigation effects on arthropod communities in Mediterranean cereal agro-ecosystems. Ann. Appl. Biol. 2015, 167, 236–249. [Google Scholar] [CrossRef]
- Szalay-Marzsó, L. Levéltetvek—Aphidoidea. In A Növényvédelmi Állattan Kézikönyve, 1st ed.; Jermy, T., Balázs, K., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1989; pp. 88–94. [Google Scholar]
- Budai, C.; Hataláné, Z.I. Levéltetvek Tripszek. In Biológiai Növényvédelem Hajtató Kertészeknek, 1st ed.; Budai, C., Ed.; Mezőgazda Kiadó: Budapest, Hungary, 2006; pp. 22–25. [Google Scholar]
- Thangjam, R.; Kadam, V.; Borah, R.K.; Ningthoujam, K. Population dynamics of insect pests and their natural enemies in king chilli (Capsicum chinense Jacq.) ecosystem in North-East India. J. Entomol. Zool. Stud. 2020, 8, 561–568. [Google Scholar]
- Nasreen, A.; Ashfaq, M.; Mustafa, G. Studies on the response of green lacewing, Chrysopa carnea (Steph.) (Neuroptera: Chrysopidae), population in relation to plant spacing of cotton. Balochistan J. Agricult. Sci. 2000, 1, 19–21. [Google Scholar]
- Maloney, D.; Drummond, F.A.; Alford, R. Spider predation in agroecosystems: Can spider effectively control pest populations? MAFES Techn. Bull. 2003, 190, 1–32. [Google Scholar]
- Minoretti, N.; Weisser, W.W. The impact of individual ladybirds (Coccinella septempunctata, Coleoptera: Coccinellidae) on aphid colonies. Eur. J. Entomol. 2000, 97, 475–479. [Google Scholar] [CrossRef]
- Dixon, A.F.G.; Hemptinne, J.L.; Kindlmann, P. Effectiveness of ladybirds as biological control agents: Patterns and processes. Entomophaga 1997, 42, 71–83. [Google Scholar] [CrossRef]
- Altieri, M.; Nicholls, C.A. Ecological impacts of modern agriculture in the United States and Latin America. In Globalization and the Rural Environment, 1st ed.; Solbrig, O.T., Paarlberg, R., Di Castri, F., Eds.; Harvard University Press: Cambridge, MA, USA, 2001; pp. 21–135. [Google Scholar]
- Tscharntke, T.; Clough, Y.; Wanger, T.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Sajjad, S.; Sultan, A.; Khan, M.F.; din Keerio, I.; Channa, M.S.; Akbar, M.F. Biology, life table parameters, and functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) on different stages of invasive Paracoccus marginatus (Hemiptera: Pseudococcidae). J. Asia Pac. Biodivers. 2021, 14, 174–182. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Gurr, G.M.; Lu, Z.; Zheng, X.; Xu, H.; Zhu, P.; Chen, G.; Yao, X.; Cheng, J.; Zhu, Z.; Catindig, J.L. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2016, 2, 16014. [Google Scholar] [CrossRef]
C1PD1W1 | C2PD1W1 | C1PD1W1 | C1PD2W1 | C2PD1W1 | C1PD2W1 |
C1PD1W1 | C1PD2W1 | C2PD2W1 | C2PD1W1 | C2PD2W1 | C2PD2W1 |
C2PD2W2 | C2PD1W2 | C1PD2W2 | C1PD1W2 | C1PD2W2 | C1PD1W2 |
C1PD2W2 | C2PD1W2 | C1PD1W2 | C2PD1W2 | C2PD2W2 | C2PD2W2 |
Cultivar | Watering | Plant Distance | |||||||
---|---|---|---|---|---|---|---|---|---|
Arthropods | Effect Estimate | Test Statistics | p Value | Effect Estimate | Test Statistics | p Value | Effect Estimate | Test Statistics | p Value |
Aphid individuals | 0.071 | F = 0.0005 | 0.982 | −4.429 | F = 2.047 | 0.164 | −0.646 | F = 0.040 | 0.84 |
Coccinellidae eggs | 0.296 | Χ2 = 0.090 | 0.767 | 4.359 | χ2 = 20.450 | <0.001 | −0.286 | χ2 = 0.090 | 0.767 |
Coccinellidae larvae | 1.197 | χ2 = 1.529 | 0.231 | −1.462 | χ2 = 2.306 | 0.143 | 0.286 | χ2 = 0.081 | 0.775 |
Coccinellidae pupae | −1.368 | χ2 = 2.382 | 0.171 | −0.444 | χ2 = 0.201 | 0.656 | −0.287 | χ2 = 0.083 | 0.773 |
Coccinellidae adults | 1.185 | χ2 = 1.425 | 0.236 | −1.19 | χ2 = 1.427 | 0.234 | 0.334 | χ2 = 0.111 | 0.738 |
Chrysopidae eggs | −0.995 | χ2 = 0.990 | 0.320 | −3.090 | χ2 = 9.640 | 0.002 | 0.197 | χ2 = 0.040 | 0.844 |
Chrysopidae larvae | −0.143 | χ2 = 0.020 | 0.886 | −0.005 | χ2 = 5.545 | 0.996 | 0.143 | χ2 = 0.020 | 0.886 |
Thomisidae individuals | −1.075 | χ2 = 1.194 | 0.282 | −0.277 | χ2 = 0.077 | 0.7817 | −0.573 | χ2 = 0.335 | 0.566 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juhász, A.L.; Szénási, Á. Do Cultivar, Watering and Plant Distance Impact Aphids and Their Natural Enemies in Chili (Capsicum chinense Jacq.)? Horticulturae 2024, 10, 697. https://doi.org/10.3390/horticulturae10070697
Juhász AL, Szénási Á. Do Cultivar, Watering and Plant Distance Impact Aphids and Their Natural Enemies in Chili (Capsicum chinense Jacq.)? Horticulturae. 2024; 10(7):697. https://doi.org/10.3390/horticulturae10070697
Chicago/Turabian StyleJuhász, András Lajos, and Ágnes Szénási. 2024. "Do Cultivar, Watering and Plant Distance Impact Aphids and Their Natural Enemies in Chili (Capsicum chinense Jacq.)?" Horticulturae 10, no. 7: 697. https://doi.org/10.3390/horticulturae10070697
APA StyleJuhász, A. L., & Szénási, Á. (2024). Do Cultivar, Watering and Plant Distance Impact Aphids and Their Natural Enemies in Chili (Capsicum chinense Jacq.)? Horticulturae, 10(7), 697. https://doi.org/10.3390/horticulturae10070697