Simulation and Analysis of Bidirectional Reflection Factors of Southern Evergreen Fruit Trees Based on 3D Radiative Transfer Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Data Collection
2.2. Scenario Construction
2.3. BRF Simulation Based on 3D Radiation Transfer Model
2.3.1. Radiation Transfer Model
2.3.2. Setting Geometric Parameters
3. Results and Discussion
3.1. Evaluation of LESS
3.2. Effects of Leaf Physicochemical Parameters on Canopy BRF
3.3. Influence of the Illumination and Observed Geometry on Canopy BRF
3.4. Influence of LAI on Canopy BRF
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, Y.; Wen, J.G.; Xiao, Q.; Bao, Y.F.; Chen, X.; Liu, Q.; He, M. Research progress of land surface bidirectional re-flection (BRDF) inversion methods. J. Remote Sens. 2023, 27, 2024–2040. [Google Scholar] [CrossRef]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and Nomenclature for Reflectance; National Bureau of Standards: Gaithersburg, MD, USA, 1977. [Google Scholar]
- Li, W.; Suo, Y.T.; Chen, C.; Luo, H.P. Study on bidirectional reflection characteristics of single red jujube in southern Xinjiang. Xinjiang Agric. Mech. 2019, 4, 15–17. [Google Scholar] [CrossRef]
- Qiu, F.; Huo, J.W.; Zhang, Q.; Chen, X.H.; Zhang, Y.G. Observation and feature analysis of canopy hotspots and multi-angle UAV remote sensing in coniferous forest. J. Remote Sens. 2021, 25, 1013–1024. [Google Scholar] [CrossRef]
- Yan, G.J.; Jiang, H.L.; Yan, K.; Cheng, S.Y.; Song, W.J.; Tong, Y.Y.; Liu, Y.N.; Qi, J.B.; Mu, X.H.; Zhang, W.M.; et al. Multi-angle optical quantitative remote sensing. J. Remote Sens. 2021, 25, 83–108. [Google Scholar] [CrossRef]
- Wang, Q.; Li, P. Canopy Vertical Heterogeneity Plays a Critical Role in Reflectance Simulation. Agric. For. Meteorol. 2013, 169, 111–121. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Féret, J.-B.; Grau, E.; Gastellu-Etchegorry, J.-P.; Do Amaral, C.H.; Shimabukuro, Y.E.; De Souza Filho, C.R. Retrieving Structural and Chemical Properties of Individual Tree Crowns in a Highly Diverse Tropical Forest with 3D Radiative Transfer Modeling and Imaging Spectroscopy. Remote Sens. Environ. 2018, 211, 276–291. [Google Scholar] [CrossRef]
- Zhao, C.; Li, H.; Li, P.; Yang, G.; Gu, X.; Lan, Y. Effect of Vertical Distribution of Crop Structure and Biochemical Parameters of Winter Wheat on Canopy Reflectance Characteristics and Spectral Indices. IEEE Trans. Geosci. Remote Sens. 2017, 55, 236–247. [Google Scholar] [CrossRef]
- Malenovský, Z.; Homolová, L.; Zurita-Milla, R.; Lukeš, P.; Kaplan, V.; Hanuš, J.; Gastellu-Etchegorry, J.-P.; Schaepman, M.E. Retrieval of Spruce Leaf Chlorophyll Content from Airborne Image Data Using Continuum Removal and Radiative Transfer. Remote Sens. Environ. 2013, 131, 85–102. [Google Scholar] [CrossRef]
- Qi, J.B.; Xie, D.H.; Xu, Y.; Yan, G.J. Principle and application of the 3D radiative transfer model LESS. Remote Sens. Technol. Appl. 2019, 34, 914–924. [Google Scholar]
- Ma, H.Z.; Sun, S.Y.; Liu, S.M.; Ai, L.; Sun, G.Y.; Sun, L. Construction and simulation of 3D canopy BRF model. J. Remote Sens. 2022, 26, 2282–2291. [Google Scholar] [CrossRef]
- Zhen, Z.J.; Chen, S.B.; Qin, W.H.; Li, J.; Meng, F.X.; Yu, Y. Simulation and sensitivity analysis of surface bidirectional reflection factor based on radiosity. Adv. Laser Optoelectron. 2018, 55, 418–424. [Google Scholar] [CrossRef]
- Braghiere, R.K.; Quaife, T.; Black, E.; He, L.; Chen, J.M. Underestimation of Global Photosynthesis in Earth System Models Due to Representation of Vegetation Structure. Glob. Biogeochem. Cycles 2019, 33, 1358–1369. [Google Scholar] [CrossRef]
- Zhang, Z. Effects of Litchi High Light-Efficiency Tree Shape on Canopy and Leaf Photosynthetic Characteristics and Fruit Quality. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2022. [Google Scholar] [CrossRef]
- Qi, W.E.; Chen, H.B.; Li, W.W.; Zhang, H.J. Development status, trends and suggestions of litchi industry in China. Guangdong Agric. Sci. 2016, 43, 173–179. [Google Scholar] [CrossRef]
- Qi, W.E.; Chen, H.B.; Li, J.X. Development status, trend and countermeasures of litchi industry in mainland China in 2022. Guangdong Agric. Sci. 2023, 50, 147–155. [Google Scholar] [CrossRef]
- Ma, Z.H.; Xue, J.J.; Ding, Z.C.; Hou, Y.J.; Xu, J.Z. Influence of longan tree shape on growth results and mechanism. Bot. Guangxi 2015, 35, 880–884. [Google Scholar] [CrossRef]
- Féret, J.-B.; Berger, K.; De Boissieu, F.; Malenovský, Z. PROSPECT-PRO for Estimating Content of Nitrogen-Containing Leaf Proteins and Other Carbon-Based Constituents. Remote Sens. Environ. 2021, 252, 112173. [Google Scholar] [CrossRef]
- Ravi, J.; Nigam, R.; Bhattacharya, B.K.; Desai, D.; Patel, P. Retrieval of Crop Biophysical-Biochemical Variables from Airborne AVIRIS-NG Data Using Hybrid Inversion of PROSAIL-D. Adv. Space Res. 2024, 73, 1269–1289. [Google Scholar] [CrossRef]
- Sun, Q.; Jiao, Q.; Qian, X.; Liu, L.; Liu, X.; Dai, H. Improving the Retrieval of Crop Canopy Chlorophyll Content Using Vegetation Index Combinations. Remote Sens. 2021, 13, 470. [Google Scholar] [CrossRef]
- Stuckens, J.; Somers, B.; Delalieux, S.; Verstraeten, W.W.; Coppin, P. The Impact of Common Assumptions on Canopy Radiative Transfer Simulations: A Case Study in Citrus Orchards. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1–21. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, H.; Qi, J.; Sun, Z.; Han, S.; Feng, H.; Jiang, J.; Xu, W.; Li, Z.; Yang, G.; et al. Estimating Canopy-Scale Chlorophyll Content in Apple Orchards Using a 3D Radiative Transfer Model and UAV Multispectral Imagery. Comput. Electron. Agric. 2022, 202, 107401. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, H.; Qi, J.; Han, S.; Sun, Z.; Feng, H.; Chen, R.; Zhang, C.; Li, J.; Yang, G. Evaluation of the Effect of Leaf Spatial Aggregation on Chlorophyll Content Retrieval in Open-Canopy Apple Orchards. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103367. [Google Scholar] [CrossRef]
- Liu, L.Y.; Wang, J.H.; Zhang, Y.J.; Huang, W.J. Calculation of leaf radiation equivalent water thickness and quantitative inversion of leaf water content. J. Remote Sens. 2007, 11, 289–295. [Google Scholar] [CrossRef]
- Xu, G.P.; Wu, X.B.; Liu, F.; Wang, Y.K.; Gao, Y.; Zuo, Z.J.; Wen, G.S.; Zhang, R.M. Correlation between pigment content and reflectance spectrum in leaves of bamboo under high-temperature stress. Sci. For. 2014, 50, 41–48. [Google Scholar]
- De Vries, F.P. The Cost of Maintenance Processes in Plant Cells. Ann. Bot. 1975, 39, 77–92. [Google Scholar] [CrossRef]
- Li, W.; Wu, W.; Yu, M.; Tao, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Monitoring Rice Grain Protein Accumulation Dynamics Based on UAV Multispectral Data. Field Crops Res. 2023, 294, 108858. [Google Scholar] [CrossRef]
- Yan, B.Y.; Xu, X.R.; Fan, W.J. An integrated model of bidirectional reflection (BRDF) in row crops. Sci. China Earth Sci. 2012, 42, 411–424. [Google Scholar] [CrossRef]
- Li, Y.M.; Wang, R.C.; Wang, X.Z.; Shen, Z.Q. Effects of changes in canopy structure on bidirectional reflectance of rice. Chin. J. Appl. Ecol. 2001, 12, 401–404. [Google Scholar]
- Yang, S.H. Effect of Aggregation on Directional Reflection Characteristics of Forest Canopy. Master’s Thesis, Beijing University of Civil Engineering and Architecture, Beijing, China, 2024. [Google Scholar]
- Guo, Y.H. Influence of Bidirectional Reflection Characteristics of Maize Canopy on Soil Moisture Estimation by UAV Multi-Spectral Remote Sensing. Master’s Thesis, Northwest Agriculture and Forestry University of Science and Technology, Xianyang, China, 2023. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.H.; Huang, W.J.; Jing, Y.S.; Peng, D.L.; Wang, L.; Song, X.Y. LAI inversion of different plant types of wheat based on hot spot effect. Spectrosc. Spectr. Anal. 2014, 34, 207–211. [Google Scholar] [CrossRef]
- Wenge, N.; Xiaowen, L.; Woodcock, C.E.; Caetano, M.R.; Strahler, A.H. An Analytical Hybrid GORT Model for Bidirectional Reflectance over Discontinuous Plant Canopies. IEEE Trans. Geosci. Remote Sens. 1999, 37, 987–999. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+SAIL Models: A Review of Use for Vegetation Characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Jay, S.; Maupas, F.; Bendoula, R.; Gorretta, N. Retrieving LAI, Chlorophyll and Nitrogen Contents in Sugar Beet Crops from Multi-Angular Optical Remote Sensing: Comparison of Vegetation Indices and PROSAIL Inversion for Field Phenotyping. Field Crops Res. 2017, 210, 33–46. [Google Scholar] [CrossRef]
- Li, C.; Song, J.; Wang, J. Modifying Geometric-Optical Bidirectional Reflectance Model for Direct Inversion of Forest Canopy Leaf Area Index. Remote Sens. 2015, 7, 11083–11104. [Google Scholar] [CrossRef]
- Xie, D.J.; Lv, C.L.; Zu, M.; Cheng, H.F. Progress in visual-near-infrared reflectance spectroscopy simulation materials for green vegetation. Spectrosc. Spectr. Anal. 2021, 41, 1032–1038. [Google Scholar]
- Hapke, B.; Di Mucci, D.; Nelson, R.; Smythe, W. The Cause of the Hot Spot in Vegetation Canopies and Soils: Shadow-Hiding versus Coherent Backscatter. Remote Sens. Environ. 1996, 58, 63–68. [Google Scholar] [CrossRef]
- Yang, P. Exploring the interrelated effects of soil background, canopy structure and sun-observer geometry on canopy photochemical reflectance index. Remote Sens. Environ. 2022, 279, 113133. [Google Scholar] [CrossRef]
- Dorigo, W.A. Improving the Robustness of Cotton Status Characterisation by Radiative Transfer Model Inversion of Multi-Angular CHRIS/PROBA Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 18–29. [Google Scholar] [CrossRef]
- Cao, B.; Gastellu-Etchegorry, J.-P.; Yin, T.; Bian, Z.; Bai, J.; Fang, J.; Qin, B.; Du, Y.; Li, H.; Xiao, Q.; et al. Optimizing the Protocol of Near-Surface Remote Sensing Experiments Over Heterogeneous Canopy Using DART Simulated Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Shi, H.L.; Cao, H.X.; Zhang, W.J.; Zhu, S.; He, Z.J.; Zhang, Z. Inversion of leaf area index of cotton in multi-growth period based on UAV multi-spectrum. Chin. J. Agric. Sci. 2024, 57, 80–95. [Google Scholar] [CrossRef]
- Yang, S.; Wang, B.; Gong, Z.Q.; Zhang, P.J.; Wang, Z.H. Remote sensing inversion of leaf area index of larix forest in Xing’an. Sci. Technol. Innov. Appl. 2023, 13, 19–22+27. [Google Scholar] [CrossRef]
- Gao, S.; Zhong, R.; Yan, K.; Ma, X.; Chen, X.; Pu, J.; Gao, S.; Qi, J.; Yin, G.; Myneni, R.B. Evaluating the Saturation Effect of Vegetation Indices in Forests Using 3D Radiative Transfer Simulations and Satellite Observations. Remote Sens. Environ. 2023, 295, 113665. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Luo, W.B.; Ma, X.; Zhang, Y. LAI estimation of potato by integrating multi-spectral and texture features of UAV. J. South China Agric. Univ. 2023, 44, 93–101. [Google Scholar] [CrossRef]
- Huang, X.F.; Wei, Y.L.; Yu, J.C.; Tian, H.J.; Yuan, Z.Y. Leaf traits analysis of 14 litchi varieties. Subtrop. Plant Sci. 2017, 46, 126–130. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Zhou, G.; Mao, F.; Zhang, M.; Han, N.; Fan, W.; Liu, H.; Huang, Z.; He, S.; et al. Phenology Estimation of Subtropical Bamboo Forests Based on Assimilated MODIS LAI Time Series Data. ISPRS J. Photogramm. Remote Sens. 2021, 173, 262–277. [Google Scholar] [CrossRef]
- Wang, S.; Garcia, M.; Bauer-Gottwein, P.; Jakobsen, J.; Zarco-Tejada, P.J.; Bandini, F.; Paz, V.S.; Ibrom, A. High Spatial Resolution Monitoring Land Surface Energy, Water and CO2 Fluxes from an Unmanned Aerial System. Remote Sens. Environ. 2019, 229, 14–31. [Google Scholar] [CrossRef]
Item | Parameter Symbol and Unit | Parameters Range | Fixed Value | Step Length |
---|---|---|---|---|
Structure coefficient | N | 1–2.5 | 1.5 | 0.5 |
Chlorophyll content | Cab (μg/cm−2) | 10–110 | 40 | 20 |
Carotenoid content | Car (μg/cm−2) | 0–20 | 10 | 5 |
Equivalent water thickness | Cw (cm) | 0.002–0.042 | 0.015 | 0.01 |
Protein content | Prot (g/cm−2) | 0–0.003 | 0.001 | 0.001 |
Carbon-based constituents | CBC (g/cm−2) | 0–0.01 | 0.009 | 0.002 |
Leaf area index | LAI (m2/m2) | 1.29, 2.53, 3.80, 4.98 (100–400) | 3.80 (300) | 100 |
Solar zenith angles | SZA (°) | 0–70 | 45 | 10 |
Solar azimuth angles | SAA (°) | 0–360 | 90 | 30 |
View zenith angles | VZA (°) | 0–70 | 0 | 10 |
View azimuth angles | VAA (°) | — | 90 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, C.; Li, D.; Han, L.; Du, X.; Chen, S.; Qi, J.; Wang, C.; Zhou, X.; Qin, B.; Jiang, H.; et al. Simulation and Analysis of Bidirectional Reflection Factors of Southern Evergreen Fruit Trees Based on 3D Radiative Transfer Model. Horticulturae 2024, 10, 790. https://doi.org/10.3390/horticulturae10080790
Hong C, Li D, Han L, Du X, Chen S, Qi J, Wang C, Zhou X, Qin B, Jiang H, et al. Simulation and Analysis of Bidirectional Reflection Factors of Southern Evergreen Fruit Trees Based on 3D Radiative Transfer Model. Horticulturae. 2024; 10(8):790. https://doi.org/10.3390/horticulturae10080790
Chicago/Turabian StyleHong, Chaofan, Dan Li, Liusheng Han, Xiong Du, Shuisen Chen, Jianbo Qi, Chongyang Wang, Xia Zhou, Boxiong Qin, Hao Jiang, and et al. 2024. "Simulation and Analysis of Bidirectional Reflection Factors of Southern Evergreen Fruit Trees Based on 3D Radiative Transfer Model" Horticulturae 10, no. 8: 790. https://doi.org/10.3390/horticulturae10080790
APA StyleHong, C., Li, D., Han, L., Du, X., Chen, S., Qi, J., Wang, C., Zhou, X., Qin, B., Jiang, H., Jia, K., & Su, Z. (2024). Simulation and Analysis of Bidirectional Reflection Factors of Southern Evergreen Fruit Trees Based on 3D Radiative Transfer Model. Horticulturae, 10(8), 790. https://doi.org/10.3390/horticulturae10080790