Transcriptomic Analyses Reveal the Mechanism by Which Different Light Qualities and Light Duration Induce Anthocyanin Biosynthesis in ‘Kyoho’ Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Determination of Physicochemical Specifications of Berries
2.3. Transcriptomic Sequencing
2.3.1. RNA Extraction and cDNA Library Construction
2.3.2. Transcriptome Sequencing and Data Quality Control
2.3.3. Analysis of Differentially Expressed Genes (DEGs) and Function Annotation
2.4. Quantitative Real-Time Polymerase Chain Reaction Assay (qRT-PCR)
2.5. Statistical Analysis
3. Results
3.1. Effect of DL and DT on Physiochemical Characteristics of Grape Berries
3.2. Transcriptome Data Analysis and DEG Analysis
3.3. GO and KEGG Analysis of DEGs
3.3.1. GO and KEGG Analysis under DL Treatments
3.3.2. GO and KEGG Analysis under DT Treatments
3.3.3. Gene-Set Enrichment Analysis (GSEA) under DL and DT Treatments
3.4. Transcription Factor Analysis
3.5. qRT-PCR Validation of Relevant Differential Genes
4. Discussion
4.1. Phenylpropanoid Biosynthesis and Phenylalanine Metabolism
4.2. Flavonoid, Flavone and Flavonol Biosynthesis
4.3. Anthocyanin Biosynthesis
4.4. TFs That Regulate Anthocyanin Accumulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kandylis, P.; Dimitrellou, D.; Moschakis, T. Recent applications of grapes and their derivatives in dairy products. Trends Food Sci. Technol. 2021, 114, 696–711. [Google Scholar] [CrossRef]
- Sridhar, K.; Charles, A.L. Proximate, functional, and sensory properties of ‘Kyoho’ grape (Vitis labruscana) skin herbal infusions: Potential as sustainable novel functional beverages. LWT-Food Sci. Technol. 2021, 152, 112289. [Google Scholar] [CrossRef]
- Zhou, D.D.; Li, J.H.; Xiong, R.G.; Saimaiti, A.; Huang, S.Y.; Wu, S.X.; Yang, Z.J.; Shang, A.; Zhao, C.N.; Gan, R.Y.; et al. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods 2022, 11, 2755. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, S.C.; Tang, X.P.; Fan, X.C.; Zhang, Y.; Jiang, J.F.; Liu, J.H.; Liu, C.H. Transcriptome analysis reveal the putative genes involved in light-induced anthocyanin accumulation in grape ‘Red Globe’ (V. vinifera L.). Gene 2020, 728, 144284. [Google Scholar] [CrossRef] [PubMed]
- Beata, O. Berry Phenolic Antioxidants—Implications for Human Health? Front. Pharmacol. 2018, 9, 78. [Google Scholar]
- LaFountain, A.M.; Yuan, Y.W. Repressors of anthocyanin biosynthesis. New Phytol. 2021, 231, 933–949. [Google Scholar] [CrossRef]
- Li, J.J.; Javed, H.U.; Wu, Z.S.; Wang, L.; Han, J.Y.; Zhang, Y.; Ma, C.; Jiu, S.; Zhang, C.X.; Wang, S.P. Improving berry quality and antioxidant ability in ‘Ruidu Hongyu’ grapevine through preharvest exogenous 2,4-epibrassinolide, jasmonic acid and their signaling inhibitors by regulating endogenous phytohormones. Front. Plant Sci. 2022, 13, 1035022. [Google Scholar] [CrossRef]
- An, J.P.; Zhang, X.W.; Li, H.L.; Wang, D.R.; You, C.X.; Han, Y.P. The E3 ubiquitin ligases SINA1 and SINA2 integrate with the protein kinase CIPK20 to regulate the stability of RGL2a, a positive regulator of anthocyanin biosynthesis. New Phytol. 2023, 239, 1332–1352. [Google Scholar] [CrossRef] [PubMed]
- Song, R.F.; Xiao, Y.H.; Liu, W.C.; Yuan, H.M. ABA functions in low phosphate-induced anthocyanin accumulation through the transcription factor ABI5 in Arabidopsis. Plant Cell Rep. 2024, 43, 55. [Google Scholar] [CrossRef]
- Xu, W.J.; Christian, D.; Loïc, L. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci. 2015, 20, 176–185. [Google Scholar] [CrossRef]
- Liu, M.Y.; Zhu, Q.; Yang, Y.; Jiang, Q.; Cao, H.; Zhang, Z.W. Light influences the effect of exogenous ethylene on the phenolic composition of Cabernet sauvignon grapes. Front. Plant Sci. 2024, 15, 1356257. [Google Scholar] [CrossRef]
- Meng, J.; Ning, P.F.; Xu, T.F.; Zhang, Z.W. Effect of Rain-Shelter Cultivation of Vitis vinifera cv. Cabernet gernischet on the Phenolic Profile of Berry Skins and the Incidence of Grape Diseases. Molecules 2013, 18, 381–397. [Google Scholar]
- Zhang, Y.T.; Jiang, L.Y.; Li, Y.L.; Chen, Q.; Ye, Y.T.; Zhang, Y.; Luo, Y.; Sun, B.; Wang, X.R.; Tang, H.R. Effect of Red and Blue Light on Anthocyanin Accumulation and Differential Gene Expression in Strawberry (Fragaria × ananassa). Molecules 2018, 23, 820. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.J.; Cheng, Y.; Gao, H.S.; Chen, X.H. Effects of Supplemental Lighting on Flavonoid and Anthocyanin Biosynthesis in Strawberry Flesh Revealed via Metabolome and Transcriptome Co-Analysis. Plants 2024, 13, 1070. [Google Scholar] [CrossRef]
- Lee, J.H.; Yong, B.K.; Yoo, H.R.; Lee, C.; Jidong, K.; Yongduk, K.; Yoon, H.S.; Kang, H.M. Effect of Various LED Light Qualities, Including Wide Red Spectrum-LED, on the Growth and Quality of Mini Red Romaine Lettuce (cv. Breen). Plants 2023, 12, 2056. [Google Scholar] [CrossRef]
- Zhang, J.X.; Li, W.P.; Zhang, P.; Zhang, X.H.; Wang, J.F.; Wang, L.J.; Zhang, K.K. Effect of Supplementary Light with Different Wavelengths on Anthocyanin Composition, Sugar Accumulation and Volatile Compound Profiles of Grapes. Foods 2023, 12, 4165. [Google Scholar] [CrossRef] [PubMed]
- Nassarawa, S.S.; Bao, N.; Zhang, X.; Ru, Q.; Luo, Z. Evaluation of light irradiation on anthocyanins and energy metabolism of grape (Vitis vinifera L.) during storage. Food Chem. 2023, 431, 137141. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Pan, H.; Zhang, J.; Wang, Q.; Que, Q.X.; Pan, R.; Lai, Z.X.; Lai, G.T. Light Quality Modulates Growth, Triggers Differential Accumulation of Phenolic Compounds, and Changes the Total Antioxidant Capacity in the Red Callus of Vitis davidii. J. Agric. Food Chem. 2022, 70, 13264–13278. [Google Scholar] [CrossRef] [PubMed]
- Hooks, T.; Sun, L.; Kong, Y.; Masabni, J.; Niu, G. Short-Term Pre-Harvest Supplemental Lighting with Different Light Emitting Diodes Improves Greenhouse Lettuce Quality. Horticulturae 2022, 8, 435. [Google Scholar] [CrossRef]
- Lanoue, J.; Little, C.; Hao, X. The Power of Far-Red Light at Night: Photomorphogenic, Physiological, and Yield Response in Pepper During Dynamic 24 Hour Lighting. Front. Plant Sci. 2022, 13, 857616. [Google Scholar] [CrossRef]
- Rodyoung, A.; Masuda, Y.; Tomiyama, H.; Saito, T.; Okawa, K.; Ohara, H.; Kondo, S. Effects of light emitting diode irradiation at night on abscisic acid metabolism and anthocyanin synthesis in grapes in different growing seasons. Plant Growth Regul. 2016, 79, 39–46. [Google Scholar] [CrossRef]
- Taghavi, T.; Patel, H.; Akande, O.E.; Galam, D.C.A. Total anthocyanin content of strawberry and the profile changes by extraction methods and sample processing. Foods 2022, 11, 1072. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ma, X.; Gao, X.; Wu, W.; Zhou, B. Light Induced Regulation Pathway of Anthocyanin Biosynthesis in Plants. Int. J. Mol. Sci. 2021, 22, 11116. [Google Scholar] [CrossRef]
- Gao, S.W.; Wang, F.; Zhang, X.Q.; Li, B.; Yao, Y.X. Characterization of anthocyanin and nonanthocyanidin phenolic compounds and/or their biosynthesis pathway in red-fleshed ‘Kanghong’ grape berries and their wine. Food Res. Int. 2022, 161, 111789. [Google Scholar] [CrossRef]
- Siebeneichler, T.J.; Crizel, R.L.; Rombaldi, C.V.; Galli, V. Regulation of phenylpropanoid biosynthesis in strawberry ripening: Molecular and hormonal mechanisms. Phytochem. Rev. 2024, in press. [Google Scholar] [CrossRef]
- Cheng, X.H.; Wang, P.P.; Chen, Q.Y.; Ma, T.T.; Wang, R.; Gao, Y.J.; Zhu, H.D.; Liu, Y.; Liu, B.C.; Sun, X.Y.; et al. Enhancement of anthocyanin and chromatic profiles in ‘Cabernet sauvignon’ (Vitis vinifera L.) by foliar nitrogen fertilizer during veraison. J. Sci. Food Agric. 2022, 102, 383–395. [Google Scholar] [CrossRef]
- Movahed, N.; Pastore, C.; Cellini, A.; Allegro, G.; Valentini, G.; Zenoni, S.; Cavallini, E.; D’Incà, E.; Tornielli, G.B.; Filippetti, I. The grapevine vviprx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. J. Plant Res. 2016, 129, 513–526. [Google Scholar] [CrossRef]
- Wei, Z.W.; Yang, H.Y.; Shi, J.; Duan, Y.K.; Wu, W.L.; Lyu, L.; Li, W.L. Effects of Different Light Wavelengths on Fruit Quality and Gene Expression of Anthocyanin Biosynthesis in Blueberry (Vaccinium corymbosm). Cells 2023, 12, 1225. [Google Scholar] [CrossRef]
- Massonnet, M.; Fasoli, M.; Tornielli, G.B.; Altieri, M.; Sandri, M.; Zuccolotto, P.; Paci, P.; Gardiman, M.; Zenoni, S.; Pezzotti, M. Ripening transcriptomic program in red and white grapevine varieties correlates with berry skin anthocyanin accumulation. Plant Physiol. 2017, 174, 2376–2396. [Google Scholar] [CrossRef]
- Ma, S.; Hu, R.; Ma, J.; Fan, J.; Wu, F.; Wang, Y.; Huang, L.K.; Feng, G.Y.; Li, D.D.; Nie, G.; et al. Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of anthocyanins and proanthocyanidins biosynthesis in trifolium repens. Ind. Crop Prod. 2022, 187, 115529. [Google Scholar] [CrossRef]
- Vainio, J.; Mattila, S.; Abdou, S.M.; Sipari, N.; Teeri, T.H. Petunia dihydroflavonol 4-reductase is only a few amino acids away from producing orange pelargonidin-based anthocyanins. Front. Plant Sci. 2023, 14, 1227219. [Google Scholar] [CrossRef]
- Zhou, Y.; Mumtaz, M.A.; Zhang, Y.H.; Shu, H.Y.; Hao, Y.Y.; Lu, X.; Wang, Z.W. Response of Anthocyanin Accumulation in Pepper (Capsicum annuum) Fruit to Light Days. Int. J. Mol. Sci. 2022, 23, 8357. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhou, L.J.; Wang, Y.G.; Liu, S.H.; Chen, F.D. Functional identification of a flavone synthase and a flavonol synthase genes affecting flower color formation in chrysanthemum morifolium. Plant Physiol. Biochem. 2021, 166, 1109–1120. [Google Scholar] [CrossRef]
- Mirza, R.; Robinson, R. Conversion of flavonols into anthocyanidins. Nature 1950, 166, 997. [Google Scholar] [CrossRef]
- Dbski, H.; Wiczkowski, W.; Szawara, N.D.; Bczek, N.; Szwed, M.; Horbowicz, M. Enhanced light intensity increases flavonol and anthocyanin concentrations but reduces flavone levels in the cotyledons of common buckwheat seedlings. Cereal Res. Commun. 2017, 45, 225–233. [Google Scholar] [CrossRef]
- Clayton-Cuch, D.; Yu, L.; McDougal, D.; Burbidge, C.A.; Bruning, J.B.; Bradley, D.; Böttcher, C.; Bulone, V. Biochemical and in silico characterization of glycosyltransferases from red sweet cherry (Prunus avium L.) reveals their broad specificity toward phenolic substrates. Food Chem.-Mol. Sci. 2024, 8, 100193. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Wang, X.; Jiao, Z.; Zhang, W.; Long, Y. Characterization of Glycosyltransferase Family 1 (GT1) and Their Potential Roles in Anthocyanin Biosynthesis in Maize. Genes 2023, 14, 2099. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Xiao, Y.Q.; Sun, Y.T.; Zhang, X.; Du, B.Y.; Turupu, M.; Yao, Q.S.; Gai, S.L.; Tong, S.; Huang, J.; et al. Two B-box proteins, PavBBX6/9, positively regulate light-induced anthocyanin accumulation in sweet cherry. Plant Physiol. 2023, 192, 2030–2048. [Google Scholar] [CrossRef]
- Bai, Y.; Jiang, L.T.; Li, Z.; Liu, S.; Hu, X.; Gao, F. Flavonoid Metabolism in Tetrastigma hemsleyanum Diels et Gilg Based on Metabolome Analysis and Transcriptome Sequencing. Molecules 2022, 28, 83. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.H.; Cao, Y.L.; Xing, M.Y.; Guo, Y.; Li, J.J.; Xue, L.; Sun, C.D.; Xu, C.J.; Chen, K.S.; Li, X. Genome-wide analysis of UDP-glycosyltransferase gene family and identification of members involved in flavonoid glucosylation in Chinese bayberry (Morella rubra). Front. Plant Sci. 2022, 13, 998985. [Google Scholar] [CrossRef]
- Sun, R.Z.; Cheng, G.; Li, Q.; Zhu, Y.R.; Zhang, X.; Wang, Y.; Wang, J.; He, Y.N.; Li, S.Y.; He, L.; et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet sauvignon grape berries. BMC Plant Biol. 2019, 19, 583. [Google Scholar] [CrossRef]
- Yin, H.N.; Wang, L.; Xi, Z.M. Involvement of Anthocyanin Biosynthesis of Cabernet sauvignon Grape Skins in Response to Field Screening and In Vitro Culture Irradiating Infrared Radiation. J. Agric. Food Chem. 2022, 70, 12807–12818. [Google Scholar] [CrossRef]
- Lu, R.; Song, M.; Wang, Z.; Zhai, Y.; Hu, C.; Perl, A.; Ma, H. Independent flavonoid and anthocyanin biosynthesis in the flesh of a red-fleshed table grape revealed by metabolome and transcriptome co-analysis. BMC Plant Biol. 2023, 23, 361. [Google Scholar] [CrossRef]
- Pang, Q.Q.; Yu, W.B.; Sadeghnezhad, E.; Chen, X.Q.; Hong, P.J.; Pervaiz, T.; Ren, Y.H.; Zhang, Y.P.; Dong, T.Y.; Jia, H.F.; et al. Omic analysis of anthocyanin synthesis in wine grape leaves under low-temperature. Sci. Hortic. 2023, 307, 111483. [Google Scholar] [CrossRef]
- Sun, Q.; Jiang, S.H.; Zhang, T.L.; Xu, H.F.; Fang, H.C.; Zhang, J.; Chen, X.S.; Su, M.Y.; Wang, Y.C.; Zhang, Z.Y.; et al. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Sci. 2019, 289, 110286. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Jiang, C.Y.; Lin, H.; Zhao, Y.H.; Guo, Y.S. VvWRKY5 positively regulates wounding-induced anthocyanin accumulation in grape by interplaying with VvMYBA1 and promoting jasmonic acid biosynthesis. Hortic. Res. 2024, 11, uhae083. [Google Scholar] [CrossRef]
- Su, M.Y.; Zuo, W.F.; Wang, Y.C.; Liu, W.J.; Zhang, Z.Y.; Wang, N.; Chen, X.S. The WKRY transcription factor MdWRKY75 regulates anthocyanins accumulation in apples (Malus domestica). Funct. Plant Biol. 2022, 49, 799–809. [Google Scholar] [CrossRef]
- Su, M.Y.; Wang, S.; Li, C.X.; Zhang, Z.Y.; Wang, N.; Li, B.; Chen, X.S. Ultraviolet-B-induced MdWRKY71-L expression regulates anthocyanin synthesis in apple. Environ. Exp. Bot. 2022, 201, 105000. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Yan, Y.; Muhammad, Z.; Zhang, G. Transcriptomic Analyses Reveal the Mechanism by Which Different Light Qualities and Light Duration Induce Anthocyanin Biosynthesis in ‘Kyoho’ Grapes. Horticulturae 2024, 10, 791. https://doi.org/10.3390/horticulturae10080791
Sun W, Yan Y, Muhammad Z, Zhang G. Transcriptomic Analyses Reveal the Mechanism by Which Different Light Qualities and Light Duration Induce Anthocyanin Biosynthesis in ‘Kyoho’ Grapes. Horticulturae. 2024; 10(8):791. https://doi.org/10.3390/horticulturae10080791
Chicago/Turabian StyleSun, Wu, Yingying Yan, Zafarullah Muhammad, and Guoqiang Zhang. 2024. "Transcriptomic Analyses Reveal the Mechanism by Which Different Light Qualities and Light Duration Induce Anthocyanin Biosynthesis in ‘Kyoho’ Grapes" Horticulturae 10, no. 8: 791. https://doi.org/10.3390/horticulturae10080791
APA StyleSun, W., Yan, Y., Muhammad, Z., & Zhang, G. (2024). Transcriptomic Analyses Reveal the Mechanism by Which Different Light Qualities and Light Duration Induce Anthocyanin Biosynthesis in ‘Kyoho’ Grapes. Horticulturae, 10(8), 791. https://doi.org/10.3390/horticulturae10080791