Emerging Sensory Methodologies to Support Strawberry Breeding and Future Prospects Combined with Augmented Reality
Abstract
:1. Introduction
2. Sensory Evaluation and Breeding
3. New Rapid Sensory Test
3.1. Specific Attribute Methodologies
3.1.1. Check All That Apply (CATA)
3.1.2. Penalty Analysis (PA)
3.1.3. Rate All That Apply (RATA)
3.1.4. Flash Profile (FP)
3.2. Holistic Methodologies
3.2.1. Free Sorting
3.2.2. Napping and Ultra Flash Profile (UFP)
4. Future Prospects with Augmented Reality Integration (AR) and Biometrics
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 18 June 2024).
- Zacharaki, A.K.; Monaghan, J.M.; Bromley, J.R.; Vickers, L.H. Opportunities and challenges for strawberry cultivation in urban food production systems. Plants People Planet 2024, 6, 611–621. [Google Scholar] [CrossRef]
- Diamanti, J.; Mazzoni, L.; Balducci, F.; Cappelletti, R.; Capocasa, F.; Battino, M.; Dobson, G.; Stewart, D.; Mezzetti, B. Use of Wild Genotypes in Breeding Program Increases Strawberry Fruit Sensorial and Nutritional Quality. J. Agric. Food Chem. 2014, 62, 3944–3953. [Google Scholar] [CrossRef] [PubMed]
- Predieri, S.; Lippi, N.; Daniele, G. What can we learn from consumers’ perception of strawberry quality? Acta Hortic. 2021, 1309, 987–994. [Google Scholar] [CrossRef]
- Senger, E.; Osorio, S.; Olbricht, K.; Shaw, P.; Denoyes, B.; Davik, J.; Predieri, S.; Karhu, S.; Raubach, S.; Lippi, N.; et al. Towards smart and sustainable development of modern berry cultivars in Europe. Plant J. 2022, 111, 1238–1251. [Google Scholar] [CrossRef] [PubMed]
- Vicente, E.; Varela, P.; de Saldamando, L.; Ares, G. Evaluation of the sensory characteristics of strawberry cultivars throughout the harvest season using projective mapping: Sensory characteristics of strawberry cultivars. J. Sci. Food Agric. 2014, 94, 591–599. [Google Scholar] [CrossRef]
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Schwieterman, M.L.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.R.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Folta, K.M.; Klee, H.J. Sensory sacrifices when we mass-produce mass produce. Hortic. Res. 2016, 3, 16032. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, D.; Komes, D.; Olbricht, K.; Hoberg, E. Diversity of aroma patterns in wild and cultivated Fragaria accessions. Genet. Resour. Crop Evol. 2007, 54, 1185–1196. [Google Scholar] [CrossRef]
- Mazzoni, L.; Perez-Lopez, P.; Giampieri, F.; Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Quiles, J.L.; Mezzetti, B.; Battino, M. The genetic aspects of berries: From field to health. J. Sci. Food Agric. 2016, 96, 365–371. [Google Scholar] [CrossRef]
- Lado, J.; Moltini, A.I.; Vicente, E.; Rodríguez, G.; Arcia, P.; Rodríguez, M.; López, M.; Billiris, A.; Ares, G. Integration of Sensory Analysis into Plant Breeding: A Review. Agrociencia Urug. 2019, 23, 101–115. [Google Scholar] [CrossRef]
- Hampson, C.; Quamme, H.; Hall, J.; MacDonald, R.; King, M.; Cliff, M. Sensory evaluation as a selection tool in apple breeding. Euphytica 2000, 111, 79–90. [Google Scholar] [CrossRef]
- Brash, D.W.; Charles, C.M.; Wright, S.; Bycroft, B.L. Shelf-life of stored asparagus is strongly related to postharvest respiratory activity. Postharvest Biol. Technol. 1995, 5, 77–81. [Google Scholar] [CrossRef]
- Cetinkaya, N.; Ozyardımci, B.; Denli, E.; Ic, E. Radiation processing as a post-harvest quarantine control for raisins, dried figs and dried apricots. Radiat. Phys. Chem. 2006, 75, 424–431. [Google Scholar] [CrossRef]
- Parvez, S.; Wani, I.A. Postharvest Biology and Technology of Strawberry. In Postharvest Biology and Technology of Temperate Fruits; Mir, S., Shah, M., Mir, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 331–348. [Google Scholar] [CrossRef]
- Garcia, L.C.; Pereira, L.M.; Sarantópoulos, C.I.G.d.L.; Hubinger, M.D. Effect of Antimicrobial Starch Edible Coating on Shelf-Life of Fresh Strawberries. Packag. Technol. Sci. 2012, 25, 413–425. [Google Scholar] [CrossRef]
- Ariza, M.T.; Soria, C.; Medina-Mínguez, J.J.; Martínez-Ferri, E. Incidence of Misshapen Fruits in Strawberry Plants Grown under Tunnels Is Affected by Cultivar, Planting Date, Pollination, and Low Temperatures. HortScience 2012, 47, 1569–1573. [Google Scholar] [CrossRef]
- Cervantes, L.; Martínez-Ferri, E.; Soria, C.; Ariza, M.T. Bioavailability of phenolic compounds in strawberry, raspberry and blueberry: Insights for breeding programs. Food Biosci. 2020, 37, 100680. [Google Scholar] [CrossRef]
- Lado, J.; Vicente, E.; Manzzioni, A.; Ares, G. Application of a check-all-that-apply question for the evaluation of strawberry cultivars from a breeding program: A check-all-that-apply question for the evaluation of strawberry cultivars. J. Sci. Food Agric. 2010, 90, 2268–2275. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.; Delahunty, C.; Baxter, I. Descriptive sensory analysis: Past, present and future. Food Res. Int. 2001, 34, 461–471. [Google Scholar] [CrossRef]
- Delarue, J. The use of rapid sensory methods in R&D and research: An introduction. In Rapid Sensory Profiling Techniques; Elsevier: Amsterdam, The Netherlands, 2023; pp. 3–26. [Google Scholar] [CrossRef]
- Ares, G.; Varela, P. (Eds.) Chapter 8—Consumer-Based Methodologies for Sensory Characterization. In Methods in Consumer Research; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2018; Volume 1, pp. 187–209. [Google Scholar] [CrossRef]
- Ares, G.; Jaeger, S.R. Check-all-that-apply (CATA) questions with consumers in practice: Experimental considerations and impact on outcome. In Rapid Sensory Profiling Techniques; Elsevier: Amsterdam, The Netherlands, 2023; pp. 257–280. [Google Scholar] [CrossRef]
- Driesener, C.; Romaniuk, J. Comparing Methods of Brand Image Measurement. Int. J. Mark. Res. 2006, 48, 681–698. [Google Scholar] [CrossRef]
- Rasinski, K.A.; Mingay, D.; Bradburn, N.M. Do Respondents Really “Mark All That Apply” on Self-Administered Questions? Public Opin. Q. 1994, 58, 400. [Google Scholar] [CrossRef]
- Smyth, J.D.; Dillman, D.A.; Christian, L.M.; Stern, M.J. Comparing Check-All and Forced-Choice Question Formats in Web Surveys. Public Opin. Q. 2006, 70, 66–77. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Beresford, M.K.; Paisley, A.G.; Antúnez, L.; Vidal, L.; Cadena, R.S.; Giménez, A.; Ares, G. Check-all-that-apply (CATA) questions for sensory product characterization by consumers: Investigations into the number of terms used in CATA questions. Food Qual. Prefer. 2015, 42, 154–164. [Google Scholar] [CrossRef]
- Oliver, P.; Cicerale, S.; Pang, E.; Keast, R. Check-all-that-applies as an alternative for descriptive analysis to establish flavors driving liking in strawberries. J. Sens. Stud. 2018, 33, e12316. [Google Scholar] [CrossRef]
- Meyners, M.; Castura, J.C.; Carr, B.T. Existing and new approaches for the analysis of CATA data. Food Qual. Prefer. 2013, 30, 309–319. [Google Scholar] [CrossRef]
- Bock, T. Improving the Display of Correspondence Analysis Using Moon Plots. Int. J. Mark. Res. 2011, 53, 307–326. [Google Scholar] [CrossRef]
- Ares, G.; Dauber, C.; Fernández, E.; Giménez, A.; Varela, P. Penalty analysis based on CATA questions to identify drivers of liking and directions for product reformulation. Food Qual. Prefer. 2014, 32, 65–76. [Google Scholar] [CrossRef]
- Giménez-Sanchis, A.; Tárrega, A.; Tarancón, P.; Aleza, P.; Besada, C. Check-All-That-Apply Questions including the Ideal Product as a Tool for Selecting Varieties in Breeding Programs. A Case Study with Mandarins. Agronomy 2021, 11, 2243. [Google Scholar] [CrossRef]
- Meyners, M. Testing for differences between impact of attributes in penalty-lift analysis. Food Qual. Prefer. 2016, 47, 29–33. [Google Scholar] [CrossRef]
- Schouteten, J.J.; Gellynck, X.; De Bourdeaudhuij, I.; Sas, B.; Bredie, W.L.; Perez-Cueto, F.J.; De Steur, H. Comparison of response formats and concurrent hedonic measures for optimal use of the EmoSensory® Wheel. Food Res. Int. 2017, 93, 33–42. [Google Scholar] [CrossRef]
- Vidal, L.; Ares, G.; Hedderley, D.I.; Meyners, M.; Jaeger, S.R. Comparison of rate-all-that-apply (RATA) and check-all-that-apply (CATA) questions across seven consumer studies. Food Qual. Prefer. 2018, 67, 49–58. [Google Scholar] [CrossRef]
- Meyners, M.; Jaeger, S.R.; Ares, G. On the analysis of Rate-All-That-Apply (RATA) data. Food Qual. Prefer. 2016, 49, 1–10. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Food Science Text Series; Springer: New York, NY, USA, 2010. [Google Scholar]
- Dairou, V.; Sieffermann, J. A Comparison of 14 Jams Characterized by Conventional Profile and a Quick Original Method, the Flash Profile. J. Food Sci. 2002, 67, 826–834. [Google Scholar] [CrossRef]
- Varela, P.; Ares, G. Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Res. Int. 2012, 48, 893–908. [Google Scholar] [CrossRef]
- Bredie, W.L.; Liu, J.; Dehlholm, C.; Heymann, H. Flash Profile Method. In Descriptive Analysis in Sensory Evaluation; Kemp, S.E., Hort, J., Hollowood, T., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2018; pp. 513–533. [Google Scholar] [CrossRef]
- Albert, A.; Varela, P.; Salvador, A.; Hough, G.; Fiszman, S. Overcoming the issues in the sensory description of hot served food with a complex texture. Application of QDA®, flash profiling and projective mapping using panels with different degrees of training. Food Qual. Prefer. 2011, 22, 463–473. [Google Scholar] [CrossRef]
- Courcoux, P.; Faye, P.; Qannari, E.M. Free sorting as a sensory profiling technique for product development. In Rapid Sensory Profiling Techniques; Elsevier: Amsterdam, The Netherlands, 2023; pp. 173–208. [Google Scholar] [CrossRef]
- Chollet, S.; Lelièvre, M.; Abdi, H.; Valentin, D. Sort and beer: Everything you wanted to know about the sorting task but did not dare to ask. Food Qual. Prefer. 2011, 22, 507–520. [Google Scholar] [CrossRef]
- Teillet, E.; Schlich, P.; Urbano, C.; Cordelle, S.; Guichard, E. Sensory methodologies and the taste of water. Food Qual. Prefer. 2010, 21, 967–976. [Google Scholar] [CrossRef]
- Blancher, G.; Clavier, B.; Egoroff, C.; Duineveld, K.; Parcon, J. A method to investigate the stability of a sorting map. Food Qual. Prefer. 2012, 23, 36–43. [Google Scholar] [CrossRef]
- Hamilton, L.M.; Lahne, J. Assessment of instructions on panelist cognitive framework and free sorting task results: A case study of cold brew coffee. Food Qual. Prefer. 2020, 83, 103889. [Google Scholar] [CrossRef]
- Lelièvre, M.; Chollet, S.; Abdi, H.; Valentin, D. What is the validity of the sorting task for describing beers? A study using trained and untrained assessors. Food Qual. Prefer. 2008, 19, 697–703. [Google Scholar] [CrossRef]
- Coxon, A.P.M. Sorting Data: Collection and Analysis; SAGE: London, UK, 1999. [Google Scholar]
- István, M.; Kókai, Z. The applicability of Napping in the analysis of fermented foods and beverages—A review. Prog. Agric. Eng. Sci. 2021, 17, 119–125. [Google Scholar] [CrossRef]
- Pagès, J. Collection and analysis of perceived product inter-distances using multiple factor analysis: Application to the study of 10 white wines from the Loire Valley. Food Qual. Prefer. 2005, 16, 642–649. [Google Scholar] [CrossRef]
- Risvik, E.; McEwan, J.A.; Colwill, J.S.; Rogers, R.; Lyon, D.H. Projective mapping: A tool for sensory analysis and consumer research. Food Qual. Prefer. 1994, 5, 263–269. [Google Scholar] [CrossRef]
- Pagès, J.; Cadoret, M.; Lê, S. The sorted napping: A new holistic approach in sensory evaluation. J. Sens. Stud. 2010, 25, 637–658. [Google Scholar] [CrossRef]
- Oliver, P.; Cicerale, S.; Pang, E.; Keast, R. Comparison of Quantitative Descriptive Analysis to the Napping methodology with and without product training. J. Sens. Stud. 2018, 33, e12331. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M.; Pintado, T.; Delgado-Pando, G. Sensory Analysis and Consumer Research in New Meat Products Development. Foods 2021, 10, 429. [Google Scholar] [CrossRef] [PubMed]
- Lê, S.; Lê, T.M.; Cadoret, M. Napping and sorted Napping as a sensory profiling technique. In Rapid Sensory Profiling Techniques; Elsevier: Amsterdam, The Netherlands, 2023; pp. 219–236. [Google Scholar] [CrossRef]
- Ong, S.K.; Nee, A.Y.C. (Eds.) A Brief Introduction of VR and AR Applications in Manufacturing. In Virtual and Augmented Reality Applications in Manufacturing; Springer: London, UK, 2004; pp. 1–11. [Google Scholar] [CrossRef]
- Crofton, E.; Botinestean, C.; Fenelon, M.; Gallagher, E. Potential applications for virtual and augmented reality technologies in sensory science. Innov. Food Sci. Emerg. Technol. 2019, 56, 102178. [Google Scholar] [CrossRef]
- Azuma, R.; Baillot, Y.; Behringer, R.; Feiner, S.; Julier, S.; MacIntyre, B. Recent advances in augmented reality. IEEE Comput. Graph. Appl. 2001, 21, 34–47. [Google Scholar] [CrossRef]
- Rampolla, J.; Kipper, G. Augmented Reality: An Emerging Technologies Guide to AR; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Beyts, C.; Chaya, C.; Dehrmann, F.; James, S.; Smart, K.; Hort, J. A comparison of self-reported emotional and implicit responses to aromas in beer. Food Qual. Prefer. 2017, 59, 68–80. [Google Scholar] [CrossRef]
- Verastegui-Tena, L.; van Trijp, H.; Piqueras-Fiszman, B. Heart rate, skin conductance, and explicit responses to juice samples with varying levels of expectation (dis)confirmation. Food Qual. Prefer. 2019, 71, 320–331. [Google Scholar] [CrossRef]
- Torrico, D.D.; Fuentes, S.; Viejo, C.G.; Ashman, H.; Gunaratne, N.M.; Gunaratne, T.M.; Dunshea, F.R. Images and chocolate stimuli affect physiological and affective responses of consumers: A cross-cultural study. Food Qual. Prefer. 2018, 65, 60–71. [Google Scholar] [CrossRef]
- He, W.; Boesveldt, S.; de Graaf, C.; de Wijk, R.A. The relation between continuous and discrete emotional responses to food odors with facial expressions and non-verbal reports. Food Qual. Prefer. 2016, 48, 130–137. [Google Scholar] [CrossRef]
- de Wijk, R.A.; Kooijman, V.; Verhoeven, R.H.; Holthuysen, N.T.; de Graaf, C. Autonomic nervous system responses on and facial expressions to the sight, smell, and taste of liked and disliked foods. Food Qual. Prefer. 2012, 26, 196–203. [Google Scholar] [CrossRef]
- Siegrist, M.; Leins-Hess, R.; Keller, C. Which front-of-pack nutrition label is the most efficient one? The results of an eye-tracker study. Food Qual. Prefer. 2015, 39, 183–190. [Google Scholar] [CrossRef]
- Viemose, I.; Møller, P.; Laugesen, J.L.; Schachtman, T.R.; Manoharan, T.; Christoffersen, G.R. Appetitive long-term taste conditioning enhances human visually evoked EEG responses. Behav. Brain Res. 2013, 253, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Penco, L.; Serravalle, F.; Profumo, G.; Viassone, M. Mobile augmented reality as an internationalization tool in the “Made In Italy” food and beverage industry. J. Manag. Gov. 2021, 25, 1179–1209. [Google Scholar] [CrossRef]
- Billinghurst, M. Grand Challenges for Augmented Reality. Front. Virtual Real. 2021, 2, 578080. [Google Scholar] [CrossRef]
- Rauschnabel, P.A.; Ro, Y.K. Augmented reality smart glasses: An investigation of technology acceptance drivers. Int. J. Technol. Mark. 2016, 11, 123. [Google Scholar] [CrossRef]
Sample | Strawberry Flavour | Sweet Taste | Juicy | Firm | Astringent | Typical Odor | Seedy | Wild Strawberry | Crunchy |
---|---|---|---|---|---|---|---|---|---|
Strawberry 1 | 13 | 9 | 13 | 64 | 60 | 15 | 25 | 34 | 73 |
Strawberry 2 | 74 | 30 | 9 | 32 | 63 | 24 | 52 | 76 | 49 |
Strawberry 3 | 68 | 14 | 4 | 41 | 44 | 24 | 14 | 32 | 78 |
Strawberry 4 | 63 | 63 | 10 | 59 | 8 | 31 | 66 | 42 | 44 |
Strawberry 5 | 30 | 71 | 22 | 41 | 72 | 26 | 31 | 44 | 62 |
Strawberry 6 | 56 | 68 | 77 | 56 | 7 | 71 | 73 | 68 | 53 |
Ideal | 100 | 100 | 82 | 70 | 20 | 100 | 15 | 65 | 73 |
Sample | Consumer 1 | Consumer 2 | Consumer 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Sour | Sweet | Juicy | Sugary | Acid | Succculent | Moist | Crispy | Honeyed | |
Strawberry 1 | 3 | 3 | 1 | 10 | 12 | 6 | 3 | 4 | 5 |
Strawberry 2 | 2 | 5 | 9 | 16 | 11 | 18 | 7 | 7 | 6 |
Strawberry 3 | 4 | 5 | 7 | 14 | 10 | 15 | 5 | 9 | 6 |
Strawberry 4 | 4 | 0 | 1 | 2 | 9 | 6 | 2 | 4 | 2 |
Strawberry 5 | 8 | 5 | 5 | 11 | 18 | 13 | 6 | 6 | 7 |
Strawberry 6 | 0 | 8 | 2 | 19 | 2 | 4 | 4 | 5 | 10 |
Sample | Consumer 1 | Consumer 2 | Consumer 3 | |||
---|---|---|---|---|---|---|
Group | Description | Group | Description | Group | Description | |
Strawberry 1 | 1 | Fruity | 2 | Sweet | 2 | Fruity |
Strawberry 2 | 2 | Tasteless | 2 | Sweet | 1 | Fruity |
Strawberry 3 | 1 | Fruity | 3 | Sour | 1 | Fruity |
Strawberry 4 | 2 | Tasteless | 1 | Fruity | 1 | Tasteless |
Strawberry 5 | 3 | Sour | 1 | Fruity | 3 | Sweet |
Strawberry 6 | 1 | fruity | 3 | Sour | 1 | Tasteless |
Samples | Consumer 1 | Consumer 2 | Consumer 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
X1 | Y1 | C1 | X2 | Y2 | C2 | X3 | Y3 | C3 | |
straw1 | 40.8 | 54.4 | Sweet; Juicy | 98.1 | 11.8 | Sweet | 97.4 | 34.5 | Acid; Bright |
straw2 | 39 | 12 | Acid | 90.9 | 10.5 | Acid | 32.3 | 33.8 | Aromatic; Juicy |
straw3 | 18.5 | 78.3 | Sweet; Tasty | 60.3 | 42.8 | Acid; Bright | 86.3 | 14.7 | Juicy; Sweet |
straw4 | 27.2 | 21.7 | Tasteless | 78.4 | 35.5 | Acid; Juicy | 69.1 | 17.4 | Sweet; Fresh |
straw5 | 23.2 | 54.8 | Sweet; Acid | 80.2 | 50.6 | Acid; Crunchy | 31.8 | 11.7 | Sweet; Bright |
straw6 | 52.6 | 36.6 | Ripe | 47.8 | 46.6 | Sweet; Aromatic | 34.7 | 30.3 | Fresh; Bright |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lippi, N. Emerging Sensory Methodologies to Support Strawberry Breeding and Future Prospects Combined with Augmented Reality. Horticulturae 2024, 10, 835. https://doi.org/10.3390/horticulturae10080835
Lippi N. Emerging Sensory Methodologies to Support Strawberry Breeding and Future Prospects Combined with Augmented Reality. Horticulturae. 2024; 10(8):835. https://doi.org/10.3390/horticulturae10080835
Chicago/Turabian StyleLippi, Nico. 2024. "Emerging Sensory Methodologies to Support Strawberry Breeding and Future Prospects Combined with Augmented Reality" Horticulturae 10, no. 8: 835. https://doi.org/10.3390/horticulturae10080835
APA StyleLippi, N. (2024). Emerging Sensory Methodologies to Support Strawberry Breeding and Future Prospects Combined with Augmented Reality. Horticulturae, 10(8), 835. https://doi.org/10.3390/horticulturae10080835