Heterogeneity in Seed Samples from Vineyards and Natural Habitats Along the Eurasian Vitis vinifera Range: Implications for Domestication and Hybridization
Abstract
:1. Introduction
- Post-cultural wild or post-cultural lambruscae thrive in abandoned vineyards, closely resembling the ampelographic characteristics and seed parameters of the same cultivar in cultivated vineyards.
- Sub-spontaneous feral lambruscae grow in uncultivated soil from seeds originating in domesticated grapevine vineyards. While sharing most characteristics with the parent grapevine cultivar, they exhibit greater differences from wild grapevines in the same natural habitat.
- Spontaneous wild lambruscae represents a natural autochthonous element of Western Eurasian flora. This category has multiple origins:
- (a)
- Colonial wild grapevines that arise from wild sub-spontaneous plants that have found favorable conditions for returning to the wild. They are naturalized but of cultivated origin.
- (b)
- Autochthonous wild (spontaneous native) grapevines descended from ancestors that were likely never cultivated; these grapevines are predominantly dioecious, wild, native, and autochthonous.
- (c)
- Wild mestizo grapevines resulting from the hybridization of native wild plants with post-cultural or sub-spontaneous lambruscae. They are naturalized but non-native due to exogenous parentage.
2. Materials and Methods
2.1. Geographic Locations of the Vineyards and Natural Habitats Sampled
2.2. Process of Seed Collection and Criteria for Inclusion in the Study
2.3. Methods Used for Calculating the Domestication Index and Probabilities of Domestication
2.4. Methods Used for Calculating the Heterogeneity and Entropy Levels
2.5. Methods Used for Calculating the Information and Entropy Levels
3. Results
3.1. Phenotypic Seed Patterns of Variability Within Samples
3.2. The Place and Role of Intermediate Samples: Markers of Introgression
3.3. Domestication Probability Variability Within Samples and Entropy Estimates
4. Discussion
4.1. Interpreting the Results in the Context of Domestication and Hybridization
4.2. Discussing the Importance of Finding Similar Samples in Both Vineyards and Natural Habitats
4.3. Cultivar Origins Unveiled: Exploring the Influence of Hybridization on the Evolution of Modern Grapevine Varieties
4.4. Unraveling the Geographical Gradient of Phenotypic Characteristics in Western Europe
4.5. Highlighting Conservation Significance: Recognizing Mixed Grapevine Populations as Crucial Repositories of Genetic Diversity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magurran, A.E. Ecological Diversity and Its Measurement; Springer Science & Business Media: Secaucus, Spain, 2013. [Google Scholar]
- Rivera, D.; Alcaraz, F.; Rivera-Obón, D.J.; Obón, C. Phenotypic Diversity in Wild and Cultivated Date Palm (Phoenix, Arecaceae): Quantitative Analysis Using Information Theory. Horticulturae 2022, 8, 287. [Google Scholar] [CrossRef]
- Dong, Y.; Duan, S.; Xia, Q.; Liang, Z.; Dong, X.; Margaryan, K.; Musayev, M.; Goryslavets, S.; Zdunić, G.; Bert, P.F.; et al. Dual domestications and origin of traits in grapevine evolution. Science 2023, 379, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Grassi, F.; De Lorenzis, G. Back to the origins: Background and perspectives of grapevine domestication. Int. J. Mol. Sci. 2021, 22, 4518. [Google Scholar] [CrossRef] [PubMed]
- Arnold, C. Ecologie de la vigne sauvage, Vitis vinifera L. ssp. sylvestris (Gmelin) Hegi, dans les forêts alluviales et colluviales d’Europe. Geobot. Helv. 2002, 6, 1–256. [Google Scholar]
- Arnold, C.; Gillet, F.; Gobat, J.M. Occurrence of the wild grapevine Vitis vinifera ssp. sylvestris in Europe. Vitis 1998, 37, 159–170. [Google Scholar]
- Martínez de Toda, F. Biología de la Vid; Mundi-Prensa: Madrid, Spain, 1991; pp. 1–346. [Google Scholar]
- Levadoux, L. Les populations sauvages et cultivées de Vitis vinifera L. Ann. Amélior. Plant. 1956, 1, 59–118. [Google Scholar]
- Mercuri, A.M.; Torri, P.; Florenzano, A.; Clò, E.; Mariotti Lippi, M.; Sgarbi, E.; Bignami, C. Sharing the Agrarian Knowledge with Archaeology: First Evidence of the Dimorphism of Vitis Pollen from the Middle Bronze Age of N Italy (Terramara Santa Rosa di Poviglio). Sustainability 2021, 13, 2287. [Google Scholar] [CrossRef]
- Gallardo, A.; Ocete, R.; López Martínez, M.A.; Lara, M.; Rivera, D. Assesment of pollen dimorphism in populations of Vitis vinifera L. subsp. sylvestris(Gmelin) Hegi in Spain. Vitis 2009, 48, 59–62. [Google Scholar]
- This, P.; Lacombe, T.; Thomas, M.R. Historical origins and genetic diversity of wine grapes. Trends Genet. 2006, 22, 511–519. [Google Scholar] [CrossRef]
- Stummer, A. Zur Urgeschichte der Rebe und des Weinbaumes. Mitt. Anthrop. Ges. Wien 1911, 41, 283–296. [Google Scholar]
- Ocete, C.A.; Martínez-Zapater, J.; Ocete, R.; Lara, M.; Cantos, M.; Arroyo, R.; Morales, R.; Iriarte-Chiapusso, M.; Hidalgo, J.; Valle, J.M.; et al. La vid silvestre euroasiática; un recurso fitogenético amenazado ligado a la historia de la humanidad. Enoviticultura 2018, 50, 1–16. [Google Scholar]
- Ocete, R.; Arnold, C.; Failla, O.; Lovicu, G.; Biagini, B.; Imazio, S.; Lara, M.; Maghradze, D.; Lopez, M.A. Considerations on the European wild grapevine (Vitis vinifera L. ssp. sylvestris (Gmelin) Hegi) and Phylloxera infestation. Vitis 2011, 50, 97–98. [Google Scholar]
- Turkovic, Z. Untersuchungs ergebnisse über Vitis sylvestris Gmelin im Jahre 1954. Weinb. Keller 1955, 2, 74–79. [Google Scholar]
- Bitsadze, N.; Kikilashvili, S.; Chipashvili, R.; Mamasakhlisashvili, L.; Maghradze, T.; Kikvadze, M.; Toffolatti, S.L.; De Lorenzis, G.; Failla, O.; Ocete, R.; et al. Resistance to downy mildew in wildly growing Eurasian Vitis vinifera L. grapevines. J. Plant Pathol. 2024, 106, 1759–1771. [Google Scholar] [CrossRef]
- Campostrini, F.; Anzani, R.; Failla, O.; Iacono, F.; Scienza, A.; de Micheli, L. Application of the phyllometric analysis to the geographic classification of Italian population of wild grapevine (Vitis vinifera L. ssp. sylvestris Hegi). J. Int. Sci. Vigne Vin 1993, 27, 255–262. [Google Scholar]
- Rathay, E. Die Geschlechtsverhältnisse der Reben und ihre Bedeutung für den Weinbau; K.K. Hofbuchhandlung Wilhem Frick: Wien, Austria, 1889; Volume 2. [Google Scholar]
- Zdunić, G.; Maul, E.; Eiras Dias, J.; Muňoz-Organero, G.; Carka, F.; Maletić, E.; Savvides, S.; Jahnke, G.; Nagy, Z.; Nikolić, D.; et al. Guiding principles for identification, evaluation and conservation of Vitis vinifera L. subsp. sylvestris. Vitis 2017, 56, 127–131. [Google Scholar] [CrossRef]
- Facsar, G. Összehasonlitö morfolögiai vizsgälatok kerti szölöfajtäk magjain I (Vergleichende morphologische Unter-suchungen der Samen von Gartenrebensorten. I.). Bot. Közlemenyek 1970, 57, 221–231. [Google Scholar]
- Terpó, A. The carpological examination of wild growing grapevine species of Hungary. I. Qualitative and quantitative characteristics of grapevine seeds. Acta Bot. Hung. 1976, 22, 209–247. [Google Scholar]
- Terpó, A. The carpological examination of wild growing grapevine species of Hungary. II. Qualitative and quantitative characteristics of grapevine seeds. Acta Bot. Hung. 1977, 23, 247–273. [Google Scholar]
- Facsar, G.; Jerem, E. Zum urgeschichtlichen Weinbau in Mitteleuropa. Rebkernfunde von Vitis vinifera L. aus der urnenfelder-, hallstatt-und latenezeitlichen Siedlung Sopron-Krautacker. Wiss. Arb. Burgenland 1985, 71, 121–144. [Google Scholar]
- Rivera, D.; Walker, M. A review of paleobotanical findings of early Vitis in the Mediterranean and of the origins of cultivated grape-vines, with special reference to prehistoric exploitation in the Western Mediterranean. Paleobot. Palynol. 1989, 61, 205–237. [Google Scholar] [CrossRef]
- Mangafa, M.; Kotsakis, K. A new method for the identification of wild and cultivated charred grape seeds. J. Archaeol. Sci. 1996, 23, 409–418. [Google Scholar] [CrossRef]
- Perret, M. Caractérisation et Evaluation du Polymorphisme des Génotypes Sauvages et Cultivés de Vitis vinifera L. à L’aide de Marqueurs RAPD et de Certains Traits Morphologiques; Travail de Diplôme, Université de Neuchâtel: Neuchâtel, Switzerland, 1997. [Google Scholar]
- Rivera, D.; Miralles, B.; Obón, C.; Carreño, E.; Palazón, J.A. Multivariate analysis of Vitis subgenus Vitis seed morphology. Vitis 2007, 46, 158–167. [Google Scholar]
- Obón, C.; Rivera, D.; Carreño, E.; Alcaraz, F.; Palazón, J.A. Seed Morphology of Vitis vinifera and Its Relationship to Ecogeographical Groups and Chlorotypes. Acta Hortic. 2008, 799, 51–69. [Google Scholar] [CrossRef]
- Orrù, M.; Grillo, O.; Lovicu, G.; Venora, G.; Bacchetta, G. Morphological characterisation of Vitis vinifera L. seeds by image analysis and comparison with archaeological remains. Veg. Hist. Archaeobot. 2012, 22, 231–242. [Google Scholar] [CrossRef]
- Orrù, M.; Grillo, O.; Venora, G.; Bacchetta, G. Computer vision as a method complementary to molecular analysis: Grapevine cultivar seeds case study. C. R. Biol. 2012, 335, 602–615. [Google Scholar] [CrossRef]
- Orrù, M.; Grillo, O.; Venora, G.; Bacchetta, G. Seed morpho-colotimetric análisis by computer vision: A helpful tool to identify grapevine (Vitis vinifera L.) cultivars. Aust. J. Grape Wine Res. 2015, 21, 508–519. [Google Scholar] [CrossRef]
- Ucchesu, M.; Orrù, M.; Grillo, O.; Venora, G.; Usai, A.; Serreli, P.F.; Bacchetta, G. Earliest evidence of a primitive cultivar of Vitis vinífera L. during the Bronze Age in Sardinia (Italy). Veg. Hist. Archaeobot. 2015, 24, 587–600. [Google Scholar] [CrossRef]
- Ucchesu, M.; Orrò, M.; Grillo, O.; Venora, G.; Pagietti, G.; Ardu, A.; Bacchetta, G. Predictive method for correct identification of archaeological charred grape sedes: Support for advances in knowledge of grape domestication process. PLoS ONE 2016, 11, e0149814. [Google Scholar] [CrossRef]
- Bonhomme, V.; Ivorra, S.; Lacombe, T.; Evin, A.; Figueiral, I.; Maghradze, D.; Marchal, C.; Pagnoux, C.; Pastor, T.; Pomarèdes, H.; et al. Pip shape echoes grapevine domestication history. Sci. Rep. 2021, 11, 21381. [Google Scholar] [CrossRef]
- Obón, C.; Rivera-Obón, D.J.; Valera, J.; Matilla, G.; Alcaraz, F.; Maghradze, D.; Kikvadze, M.; Ocete, C.A.; Ocete, R.; Nebish, A.; et al. Is there a domestication syndrome in Vitis (Vitaceae) seed morphology? Genet. Resour. Crop Evol. 2024, 1–25. [Google Scholar] [CrossRef]
- POWO. Plants of the World Online. Available online: https://powo.science.kew.org/ (accessed on 15 February 2024).
- GRIN. Search Taxonomy Data in GRIN-Global. Available online: https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch (accessed on 15 February 2024).
- Facsar, G.; Udvardy, L. Adventive grapevine species (Vitis-hybrids). In The Most Important Invasive Plants in Hungary; Botta-Dukát, Z., Balogh, L., Eds.; Institute of Ecology and Botany, Hungarian Academy of Sciences: Vácrátót, Hungary, 2008; pp. 47–54. [Google Scholar]
- Schnitzler, A.; Arnold, C.; Guibal, F.; Walter, J.M. Histoire de la vigne sauvage, Vitis vinifera ssp. sylvestris, en Camargue / Wild grapevine Vitis vinifera ssp. sylvestris in Camargue, southern France. Ecol. Mediterr. 2018, 44, 53–66. [Google Scholar] [CrossRef]
- Ardenghi, N.M.; Galasso, G.; Banfi, E.; Zoccola, A.; Foggi, B.; Lastrucci, L. A taxonomic survey of the genus Vitis L. (Vitaceae) in Italy, with special reference to Elba Island (Tuscan Archipelago). Phytotaxa 2014, 166, 163–198. [Google Scholar] [CrossRef]
- Vázquez, F.M.; García Alonso, D. Aproximación al conocimiento de los táxones del género Vitis L. (Vitaceae) que viven silvestres en Extremadura (España). Folia Bot. Extrem. 2017, 11, 5–37. [Google Scholar]
- Valera, J.; Matilla-Seiquer, G.; Obón, C.; Alcaraz, F.; Rivera, D. Grapevine in the ancient Upper Euphrates: Horticultural implications of a Bayesian morphometric study of archaeological seeds. Horticulturae 2023, 9, 803. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Son: Hoboken, NJ, USA, 2013. [Google Scholar]
- Couronné, R.; Probst, P.; Boulesteix, A.L. Random forest versus logistic regression: A large-scale benchmark experiment. BMC Bioinform. 2018, 19, 1–14. [Google Scholar] [CrossRef]
- randomForest. randomForest: Breiman and Cutler’s Random Forests for Classification and Regression. Available online: https://cran.r-project.org/web/packages/randomForest/index.html (accessed on 18 December 2023).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L.; Cutler, A.; Liaw, A.; Wiener, M. Package ‘randomForest’ 2022. Available online: https://cran.r-project.org/web/packages/randomForest/randomForest.pdf (accessed on 18 December 2023).
- Rossiter, D.G. Random Forests Two Ways. Available online: https://www.css.cornell.edu/faculty/dgr2/_static/files/R_PDF/CompareRandomForestPackages.pdf (accessed on 18 December 2023).
- R Project. The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 18 December 2023).
- RStudio. RStudio Desktop. Available online: https://posit.co/download/rstudio-desktop/ (accessed on 18 December 2023).
- Liu, Y.; Wang, Y.; Zhang, J. New Machine Learning Algorithm: Random Forest. In ICICA 2012, LNCS 7473; Liu, B., Ma, M., Chang, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 246–252. [Google Scholar]
- R-Bloggers. Random Forest in R. 2023. Available online: https://www.r-bloggers.com/2021/04/random-forest-in-r/ (accessed on 18 December 2023).
- Negrul, A.M. Origin of the cultivated grapevine and its classification. In Ampelografiia SSSR [Ampelography of the USSR]; Varanov, A., Ed.; Pischepromizdat: Moscow, Russia, 1946; Volume 1, pp. 133–216. (In Russian) [Google Scholar]
- La Mancha Denominación de Origen. Available online: https://lamanchawines.com/denominacion-de-origen/mapa-y-estadisticas/ (accessed on 3 September 2024).
- Manchuela Denominación de Origen. Available online: https://www.manchuela.wine/cifras-y-anadas/ (accessed on 3 September 2024).
- Almansa Denominación de Origen. Available online: https://denominacion-origen-almansa.com/zona-de-produccion/ (accessed on 3 September 2024).
- Jumilla Denominación de Origen. Available online: https://jumilla.wine/municipios-de-la-dop/ (accessed on 3 September 2024).
- D’Onofrio, C. Introgression among cultivated and wild grapevine in Tuscany. Front. Plant Sci. 2020, 11, 202. [Google Scholar] [CrossRef]
- Di Vecchi-Staraz, M.; Laucou, V.; Bruno, G.; Lacombe, T.; Gerber, S.; Bourse, T.; Boselli, M.; This, P. Low level of pollen-mediated gene flow from cultivated to wild grapevine: Consequences for the evolution of the endangered subspecies Vitis vinifera L. subsp. silvestris. J. Hered. 2009, 100, 66–75. [Google Scholar] [CrossRef]
- Riaz, S.; De Lorenzis, G.; Velasco, D.; Koehmstedt, A.; Maghradze, D.; Bobokashvili, Z.; Musayev, M.; Zdunic, G.; Laucou, V.; Andrew Walker, M.; et al. Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol. 2018, 18, 137. [Google Scholar] [CrossRef] [PubMed]
- Clemente, S. Ensayos Sobre las Variedades de vid que Vegetan en Andalucia; Villalpando: Madrid, Spain, 1807. [Google Scholar]
- Clemente, S. Essai sur les Variétés de la Vigne qui Végétent en Andalousie; Poulet: Paris, France, 1814. [Google Scholar]
- Clemente, S. Ensayo Sobre las Variedades de la vid Común que Vegetan en Andalucía; Estereotipia Perojo: Madrid, Spain, 1879. [Google Scholar]
- Bronner, J.P. Die Wilden Trauben des Rheinthales; Buchdruckerei von Georg Mohr: Heidelberg, Germany, 1857. [Google Scholar]
- Bronner, J.P. Description des vignes sauvages de la vallée du Rhin. La Bourgogne 1859, 1, 97–110. [Google Scholar]
- Scossiroli, R.E. Origine ed evoluzione della vite. Atti Ist. Bot. e Lab. Critt. 1988, 7, 35–55. [Google Scholar]
- Scienza, A.; Failla, O.; Anzani, R. Wild grapevine (Vitis vinifera L. sylvestris C.C.Gmel.) in Italy: Diffusion, characteristics and germplasm preservation. In Proceedings of the Germplasm Preservation of Horticultural Crops: Wild and·Cultivated Plants, Bejing, China, 1–3 September 1988. [Google Scholar]
- Scienza, A.; Protii, A.; Conca, E.; Romano, F. Diffusione e caratteristiche della Vitis vinifera sylvestris Gmelin in ltalia. In Proceedings of the Compte Rendu IV Symposium Lntern. de Génétique de la Vigne, Verona, Italy, 13–18 April 1986; pp. 86–95. [Google Scholar]
- Anzani, R.; Failla, O.; Scienza, A.; Campostrini, E. Wild grapevine (Vitis vinifera ssp. sylvestris) in Italy: Distribution characteristics and germplasm preservation. In Proceedings of the 5th International Symposium on Grape Breeding, St. Martin/Pfalz, Germany, 12–16 September 1989; pp. 97–113. [Google Scholar]
- Anzani, R.; Failla, O.; Scienza, A.; De Micheli, L. Individuazione e conservazione del germoplasma di vite selvatica (Vitis vinifera sylvestris) in Italia. Vignevini 1993, 6, 51–60. [Google Scholar]
- Failla, O.; Anzani, R.; Scienza, A. La vite selvatica in Italia: Diffusione, caratteristiche e conservazione del germoplasma. Vignevini 1992, 19, 37–46. [Google Scholar]
- Kikvadze, M.; Kikilashvili, S.; Bitsadze, N.; Maghradze, T.; De Lorenzis, G.; Rubio, R.O.; Rivera, D.; Bacilieri, R.; Failla, O.; Maghradze, D. Wildly growing Eurasian grapevine (Vitis vinifera L.) in Georgia: Composition, research and efforts for the preservation. Acta Hortic. ISHS 2024, 1385, 19–24. [Google Scholar] [CrossRef]
- Wagner, E. Die Feststellung des Geschlechts bei Rebensämlingen. Vitis 1960, 2, 190–197. [Google Scholar]
- Avramov, L.; Jelenkovi, G.; Jovanovi, M.; Rodic, Z. Inheritance of flower type in some grape varieties (Vitis vinifera L.). Vitis 1967, 6, 129–135. [Google Scholar]
- Dalbo’, M.A.; Ye, G.N.; Weeden, N.G.; Steinkellner, H.; Sefc, K.M.; Reisch, B.I. A gene controlling sex in grapevines placed on a molecular-based genetic map. Genome 2000, 43, 333–340. [Google Scholar] [CrossRef]
- Riaz, S.; Krivanek, A.F.; Xu, K.; Walker, M.A. Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris × V. arizonica. Theor. Appl. Genet. 2006, 113, 1317–1329. [Google Scholar] [CrossRef]
- Marguerit, E.; Boury, C.; Manicki, A.; Donnart, M.; Butterlin, G.; Ne’morin, A.; Wiedemann-Merdinoglu, S.; Merdinoglu, D.; Ollat, N.; Decroocq, S. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor. Appl. Genet. 2009, 118, 1261–1278. [Google Scholar] [CrossRef] [PubMed]
- Coito, J.L.; Silva, H.G.; Ramos, M.J.; Cunha, J.; Eiras-Dias, J.; Amâncio, S.; Costa, M.M.; Rocheta, M. Vitis flower types: From the wild to crop plants. PeerJ 2019, 7, e7879. [Google Scholar] [CrossRef] [PubMed]
- Fechter, I.; Hausmann, L.; Daum, M.; Sörensen, T.R.; Viehöver, P.; Weisshaar, B.; Töpfer, R. Candidate genes within a 143 kb region of the flower sex locus in Vitis. Mol. Genet. Genom. 2012, 287, 247–259. [Google Scholar] [CrossRef]
- Cunha, J.; Ibáñez, J.; Teixeira-Santos, M.; Brazão, J.; Fevereiro, P.; Martínez-Zapater, J.M.; Eiras-Dias, J.E. Genetic relationships among Portuguese cultivated and wild Vitis vinifera L. germplasm. Front. Plant Sci. 2020, 11, 127. [Google Scholar] [CrossRef]
- Albizuri, A.A.; Cano, A.G.; López, M.; Pérez, M.; Ocete, R. Distribución, ecología y caracterización in situ de la vid silvestre en la Reserva de la Biosfera de Urdaibai (Bizkaia). Munibe 2009, 57, 15–34. [Google Scholar]
- Laguna, E. Sobre las formas naturalizadas de Vitis en la Comunidad Valenciana. I. Las especies. Flora Montiberica 2003, 23, 46–82. Available online: https://dialnet.unirioja.es/descarga/articulo/1394799.pdf (accessed on 7 January 2025).
- Laguna, E. Datos foliares de las especies e híbridos alóctonos de vides (género Vitis) en el territorio valenciano. Toll Negre 2004, 3, 11–25. [Google Scholar]
- Laguna, E. American and hybrid grapevines (Vitis spp.): A new concept of invasive plants to Europe. In Proceedings of the 4th European Conference on the Conservation of the Wild Plants—A Workshop on the Implementation of the Global Strategy for Plant Conservation in Europe, Valencia, Spain, 17–20 August 2004; Aguilella, A., Ibars, A., Laguna, E., Pérez-Rocher, B., Eds.; CD Rom. Generalitat Valenciana: Valencia, Spain, 2006. [Google Scholar]
- De Andrés, M.T.; Benito, A.; Pérez-Rivera, G.; Ocete, R.; Lopez, M.A.; Gaforio, L.; Muñoz, G.; Cabello, F.; Martínez, J.; Arroyo-García, R. Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Mol. Ecol. 2012, 21, 800–816. [Google Scholar] [CrossRef]
- Ocete, R.; López, M.Á.; Gallardo, A.; Arnold, C. Comparative analysis of wild and cultivated grapevine (Vitis vinifera) in the Basque Region of Spain and France. Agric. Ecosyst. Environ. 2008, 123, 95–98. [Google Scholar] [CrossRef]
- Zecca, G.A.; De Mattia, F.; Lovicu, G.; Labra, M.; Sala, F.; Grassi, F. Wild grapevine: Silvestris, hybrids or cultivars that escaped from vineyards? Molecular evidence in Sardinia. Plant Biol. 2010, 12, 558–562. [Google Scholar] [CrossRef]
- Grassi, F.; Labra, M.; Imazio, S.; Spada, A.; Sgorbati, S.; Scienza, A.; Sala, F. Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor. Appl. Genet. 2003, 107, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Kikvadze, M.; Valera, J.; Obón, C.; Ocete, R.; Ocete, C.A.; Kikilashvili, S.; Maghradze, D.; Rivera-Obón, D.J.; Rivera, D. Wild grapevines of Georgia and their relationship with local cultivars: A Bayesian analysis of seed morphology. Vitis 2024, 63, 9. [Google Scholar] [CrossRef]
- Terpó, A. A Vitis sylvestris C.C.Gmel. Magyar középhegy ségi termőhelyi viszonyainak vizsgálata [Investiga tions on ecological conditions of habitats of Vitis sylvestris C.C.Gmel. in Central Hungarian Mountains]. Bot. Kőzlem. 1969, 56, 27–35. [Google Scholar]
- Terpó, A. Origin and distribution of Vitis sylvestris C.C.Gmel. In Proceedings of the II International Symposium on the problems of Balkan Flora and Vegetation, Istanbul, Turkey, 3–10 July 1978; pp. 1–5. [Google Scholar]
- Ocete, R.; Arroyo-Garcia, R.; Morales, M.L.; Cantos, M.; Gallardo, A.; Pérez, M.A.; Gómez, I.; López, M.A. Characterization of Vitis vinifera L. subspecies sylvestris (Gmelin) Hegi in the Ebro River Basin (Spain). Vitis 2011, 50, 11–16. [Google Scholar]
- Popescu, C.; Dejeu, L.; Ocete, R. Preliminary Characterization of Wild Grapevine Populations (Vitis vinifera ssp. sylvestris) Grown Along the Danube River. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 472–477. [Google Scholar] [CrossRef]
- Ardenghi, N.M.; Galasso, G.; Banfi, E.; Cauzzi, P. Vitis × nova-angliae (Vitaceae): Systematics, distribution and history of an “illegal” alien grape in Europe. Wiildenowia 2015, 45, 197–207. [Google Scholar] [CrossRef]
- Ardenghi, N.M.; Banfi, E.; Galasso, G. A taxonomic survey of the genus Vitis L. (Vitaceae) in Italy, part II: The ‘Euro-American’ hybrids. Phytotaxa 2015, 24, 232–246. [Google Scholar] [CrossRef]
- Stinca, A. The Genus Vitis L. (Vitaceae) in Campania (Southern Italy), with emphasis on alien units. Ann. Bot. 2019, 9, 107–112. [Google Scholar] [CrossRef]
- Karasik, A.; Rahimi, O.; David, M.; Weiss, E.; Drori, E. Development of a 3D seed morphological tool for grapevine variety identification, and its comparison with SSR analysis. Sci. Rep. 2018, 8, 6545. [Google Scholar] [CrossRef]
- Bouby, L.; Bonhomme, V.; Ivorra, S.; Bacilieri, R.; Ben Makhad, S.; Bonnaire, E.; Cabanis, M.; Derreumaux, M.; Dietsch-Sellami, M.; Durand, F.; et al. Seed morphometrics unravels the evolutionary history of grapevine in France. Sci. Rep. 2024, 14, 22207. [Google Scholar] [CrossRef]
Parameters | Types | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
μ (DI) | min (DI) | ρ (DI) | Int. | Feral | Cultivars | Wild | Others | Fossils | Primitive | S | |
Vineyards | |||||||||||
≤0.5 | ≤0.5 | 0 | - | - | - | - | - | - | 2 ** | 2 | |
0–0.4 | - | - | - | - | - | - | 2 ** | 2 | |||
0.6–1 | 2 * | - | - | - | - | - | - | 2 | |||
>0.6 | ≤0.5 | 0–0.4 | - | - | 2 | - | - | - | - | 2 | |
0.4–0.6 | - | - | 12 | - | - | - | - | 12 | |||
0.6–1 | 2 * | - | 0 | - | - | - | - | 2 | |||
>0.5 | 0 | - | - | 185 | - | - | - | - | 185 | ||
0–0.4 | - | - | 79 | - | - | - | - | 79 | |||
Natural habitats | |||||||||||
≤0.5 | 0 | - | - | - | 7 | 12 | 84 | 103 | |||
0–0.4 | 1 º | - | - | 8 | 17 | 9 | - | 35 | |||
0.4–0.6 | 1 º | - | - | 12 | 8 | - | - | 21 | |||
0.6–1 | 7 | - | - | 2 a | 3 | - | - | 12 | |||
>0.6 | ≤0.5 | 0–0.4 | - | 8 | - | - | 2 | - | - | 10 | |
0.4–0.6 | 1 | 12 | - | - | 1 | - | - | 14 | |||
0.6–1 | 20 | - | - | - | 5 | - | - | 25 | |||
>0.5 | - | - | 7 | - | - | 2 | 17 | - | 26 | ||
0–0.4 | - | 28 | - | - | 0 | 0 | - | 28 | |||
34 | 55 | 278 | 29 | 50 | 110 | 4 | |||||
Vineyards | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Het.\PD | 0–0.1 | 0.1–0.2 | 0.2–0.3 | 0.3–0.4 | 0.4–0.5 | 0.5–0.6 | 0.6–0.7 | 0.7–0.8 | 0.8–0.9 | 0.9–1 | MH |
0 ≤ Het. < 1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6747 | 0.6747 |
1 ≤ Het. < 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0683 | 0.0683 |
2 ≤ Het. < 3 | 0.0000 | 0.0000 | 0.0040 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0321 | 0.0643 | 0.1004 |
3 ≤ Het. < 4 | 0.0000 | 0.0080 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0281 | 0.0120 | 0.0482 |
4 ≤ Het. < 5 | 0.0000 | 0.0000 | 0.0000 | 0.0120 | 0.0000 | 0.0000 | 0.0040 | 0.0000 | 0.0241 | 0.0000 | 0.0402 |
5 ≤ Het. < 6 | 0.0000 | 0.0000 | 0.0000 | 0.0040 | 0.0040 | 0.0040 | 0.0000 | 0.0120 | 0.0201 | 0.0000 | 0.0442 |
6 ≤ Het. < 7 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0080 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0080 |
7 ≤ Het. < 8 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0120 | 0.0040 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0161 |
MP | 0.0000 | 0.0080 | 0.0040 | 0.0161 | 0.0161 | 0.0161 | 0.0040 | 0.0120 | 0.1044 | 0.8193 | 1.0000 |
Natural Habitats | |||||||||||
Het.\PD | 0–0.1 | 0.1–0.2 | 0.2–0.3 | 0.3–0.4 | 0.4–0.5 | 0.5–0.6 | 0.6–0.7 | 0.7–0.8 | 0.8–0.9 | 0.9–1 | MH |
0 ≤ Het. < 1 | 0.1033 | 0.0083 | 0.0041 | 0.0000 | 0.0041 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0331 | 0.1529 |
1 ≤ Het. < 2 | 0.0455 | 0.0207 | 0.0000 | 0.0000 | 0.0000 | 0.0041 | 0.0041 | 0.0000 | 0.0000 | 0.0413 | 0.1157 |
2 ≤ Het. < 3 | 0.0165 | 0.0248 | 0.0041 | 0.0083 | 0.0000 | 0.0000 | 0.0000 | 0.0041 | 0.0165 | 0.0331 | 0.1074 |
3 ≤ Het. < 4 | 0.0041 | 0.0207 | 0.0207 | 0.0083 | 0.0000 | 0.0124 | 0.0041 | 0.0083 | 0.0289 | 0.0124 | 0.1198 |
4 ≤ Het. < 5 | 0.0000 | 0.0165 | 0.0372 | 0.0083 | 0.0124 | 0.0041 | 0.0124 | 0.0207 | 0.0496 | 0.0083 | 0.1694 |
5 ≤ Het. < 6 | 0.0000 | 0.0000 | 0.0165 | 0.0331 | 0.0083 | 0.0124 | 0.0124 | 0.0331 | 0.0083 | 0.0000 | 0.1240 |
6 ≤ Het. < 7 | 0.0000 | 0.0000 | 0.0083 | 0.0331 | 0.0537 | 0.0207 | 0.0000 | 0.0165 | 0.0000 | 0.0000 | 0.1322 |
7 ≤ Het. < 8 | 0.0000 | 0.0000 | 0.0000 | 0.0041 | 0.0165 | 0.0413 | 0.0165 | 0.0000 | 0.0000 | 0.0000 | 0.0785 |
MP | 0.1694 | 0.0909 | 0.0909 | 0.0950 | 0.0950 | 0.0950 | 0.0496 | 0.0826 | 0.1033 | 0.1281 | 1.0000 |
Types According to Levadoux | Simplified | 1 − DI | PW | WS/2 | ME | SH | L (mm) | B (mm) | Stalk (mm) | Stummer Index |
---|---|---|---|---|---|---|---|---|---|---|
Wild autochthonous native | Vitis sylvestris modern | 0.8 ± 0.2 | 0.7 ± 0.3 | 0.7 ± 0.2 | 0.2 ± 0.2 | 2.1 ± 1.6 | 4.8 ± 0.4 | 3.6 ± 0.4 | 0.8 ± 0.2 | 76.1 ± 4.7 |
Asian Vitis spp. | Asian Vitis | 0.7 ± 0.3 | 0.6 ± 0.4 | 0.6 ± 0.4 | 0.4 ± 0.3 | 3.5 ± 3.1 | 4.7 ± 1.0 | 3.6 ± 4.2 | 0.8 ± 0.3 | 77.5 ± 8.5 |
American Vitis spp. | American Vitis | 0.7 ± 0.2 | 0.5 ± 0.4 | 0.6 ± 0.3 | 0.3 ± 0.2 | 3.1 ± 2.3 | 5.3 ± 0.8 | 4.0 ± 0.5 | 0.8 ± 0.2 | 77.1 ± 8.0 |
“Primitive” cultivars | Vitis vinifera “wild” | 0.6 ± 0.2 | 0.3 ± 0.3 | 0.5 ± 0.2 | 0.3 ± 0.3 | 2.7 ± 2.4 | 5.1 ± 0.3 | 3.7 ± 0.3 | 1.1 ± 0.2 | 73.9 ± 3.8 |
Vitis caucasica | Vitis caucasica | 0.5 ± 0.2 | 0.3 ± 0.2 | 0.4 ± 0.2 | 0.6 ± 0.2 | 5.4 ± 1.9 | 5.2 ± 0.6 | 4.0 ± 0.4 | 1.0 ± 0.2 | 77.1 ± 4.3 |
Wild mestizo (hybrids, different levels of introgression) | Vitis intermediate modern | 0.4 ± 0.1 | 0.2 ± 0.2 | 0.3 ± 0.1 | 0.5 ± 0.3 | 4.5 ± 2.6 | 5.2 ± 0.4 | 3.8.01± | 1.0 ± 0.2 | 72.2 ± 4.0 |
Wild colonial | Feral | 0.3 ± 0.1 | 0.0 ± 00 | 0.1 ± 00 | 0.3 ± 0.3 | 2.9 ± 2.5 | 5.4 ± 3.7 | 3.7 ± 0.2 | 1 ± 0.1 | 69.5 ± 4.9 |
Cultivars | Vitis vinifera modern | 0.1 ± 0.1 | 0.0 ± 00 | 0.0 ± 0.1 | 0.1 ± 0.2 | 1.0 ± 1.6 | 6.2 ± 0.7 | 3.9 ± 0.4 | 1.6 ± 0.3 | 63.2 ± 5.5 |
Postcultural vines in abandoned vineyards | Postcultural Vitis vinifera | 0.1 ± 0.1 | 0.0 ± 00 | 0.0 ± 00 | 0.1 ± 0.1 | 0.8 ± 1.3 | 5.6 ± 0.3 | 3.8 ± 0.3 | 1.3 ± 0.1 | 68.0 ± 4.4 |
Wild sub-spontaneous lambruscae | Sub-spontaneous Vitis vinifera | 0.1 ± 0.1 | 0.0 ± 00 | 0.1 ± 00 | 0.2 ± 0.3 | 2.2 ± 2.4 | 5.8 ± 4.4 | 3.9 ± 0.3 | 1.3 ± 0.2 | 67.3 ± 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera, D.; Valera, J.; Maghradze, D.; Kikvadze, M.; Nebish, A.; Ocete, R.; Ocete, C.Á.; Arnold, C.; Laguna, E.; Alcaraz, F.; et al. Heterogeneity in Seed Samples from Vineyards and Natural Habitats Along the Eurasian Vitis vinifera Range: Implications for Domestication and Hybridization. Horticulturae 2025, 11, 92. https://doi.org/10.3390/horticulturae11010092
Rivera D, Valera J, Maghradze D, Kikvadze M, Nebish A, Ocete R, Ocete CÁ, Arnold C, Laguna E, Alcaraz F, et al. Heterogeneity in Seed Samples from Vineyards and Natural Habitats Along the Eurasian Vitis vinifera Range: Implications for Domestication and Hybridization. Horticulturae. 2025; 11(1):92. https://doi.org/10.3390/horticulturae11010092
Chicago/Turabian StyleRivera, Diego, Javier Valera, David Maghradze, Maia Kikvadze, Anna Nebish, Rafael Ocete, Carlos Álvar Ocete, Claire Arnold, Emilio Laguna, Francisco Alcaraz, and et al. 2025. "Heterogeneity in Seed Samples from Vineyards and Natural Habitats Along the Eurasian Vitis vinifera Range: Implications for Domestication and Hybridization" Horticulturae 11, no. 1: 92. https://doi.org/10.3390/horticulturae11010092
APA StyleRivera, D., Valera, J., Maghradze, D., Kikvadze, M., Nebish, A., Ocete, R., Ocete, C. Á., Arnold, C., Laguna, E., Alcaraz, F., Rivera-Obón, D. J., Lovicu, G., Farci, M., & Obón, C. (2025). Heterogeneity in Seed Samples from Vineyards and Natural Habitats Along the Eurasian Vitis vinifera Range: Implications for Domestication and Hybridization. Horticulturae, 11(1), 92. https://doi.org/10.3390/horticulturae11010092