Integrative Analysis of Transcriptome and Metabolome Reveals the Regulatory Network Governing Aroma Formation in Grape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. mRNA Library Construction and Sequencing
2.3. Metabolite Extraction
2.4. GC-MS Analysis
2.5. Metabolomics Data Processing
2.6. qRT-PCR Validation
3. Results
3.1. Identification of Metabolites in Three Grape Cultivars
3.2. Differentially Accumulated Metabolites at Different Stages of Ripeness
3.3. Expression Analysis of Key Metabolites Affecting Aroma Formation
3.4. RNA-Seq Analysis of Grape Berries at Different Stages of Ripeness
3.5. Figures, Tables, and Schemes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Su, W.; Cai, Z.; Dong, L.; Wu, Z. Combined analysis of transcriptome and metabolome reveals the potential mechanism of coloration and fruit quality in yellow and purple Passiflora edulis Sims. J. Agric. Food Chem. 2020, 68, 12096–12106. [Google Scholar] [CrossRef] [PubMed]
- El Hadi, M.A.; Zhang, F.J.; Wu, F.F.; Zhou, C.H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fan, W.; Qian, M.C. Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction. J. Agric. Food Chem. 2007, 55, 3051–3057. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, Q.; Li, J.; Luo, J.; Chen, W.; Li, X. Comparative study of volatile compounds in the fruit of two Banana cultivars at different ripening stages. Molecules 2018, 23, 2456. [Google Scholar] [CrossRef]
- Li, C.; Xin, M.; Li, L.; He, X.; Yi, P.; Tang, Y. Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing. Food Chem. 2021, 355, 129685. [Google Scholar] [CrossRef]
- Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Floral scents and fruit aromas: Functions, compositions, biosynthesis, and regulation. Front. Plant Sci. 2022, 13, 860157. [Google Scholar] [CrossRef]
- Šikuten, I.; Štambuk, P.; Tomaz, I.; Marchal, C.; Kontić, J.K.; Lacombe, T. Discrimination of genetic and geographical groups of grape varieties (Vitis vinifera L.) based on their volatile organic compounds. Front. Plant Sci. 2022, 13, 942148. [Google Scholar] [CrossRef]
- Lin, J.; Massonnet, M.; Cantu, D. The genetic basis of grape and wine aroma. Hortic. Res. 2019, 6, 81. [Google Scholar] [CrossRef]
- Mario, N.C.; Tamames, E.L.; Jares, Y.C.M.G. Contribution to the study of the aromatic potential of three muscat Vitis Vinifera varieties: Identification of new compounds. Food Sci. Technol. Int. 1995, 1, 105–116. [Google Scholar] [CrossRef]
- Escalona, J.M.; Flexas, J.; Schultz, H.R.; Medrano, H. Effect of moderate irrigation on aroma potential and other markers of grape quality. Acta Hortic. 1999, 493, 261–268. [Google Scholar] [CrossRef]
- Buratti, S.R.A.; Benedetti, S.; Torreggiani, D. Electronic nose to detect strawberry aroma changes during osmotic dehydration. J. Food Sci. 2006, 71, 184–189. [Google Scholar] [CrossRef]
- Fenoll, J.; Manso, A.; Hellín, P.; Ruiz, L.; Flores, P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem. 2009, 114, 420–428. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.; Liang, Z.; Fan, P.; Li, S. Volatiles of grape berries evaluated at the germplasm level by head space SPME with GC–MS. Food Chem. 2009, 114, 1106–1114. [Google Scholar] [CrossRef]
- Li, Y.; He, L.; Song, Y.; Zhang, P.; Chen, D.; Guan, L.; Liu, S. Comprehensive study of volatile compounds and transcriptome data providing genes for grape aroma. BMC Plant Biol. 2023, 23, 171. [Google Scholar] [CrossRef]
- Lou, Q.; Liu, Y.; Qi, Y.; Jiao, S.; Tian, F.; Jiang, L.; Wang, Y. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. J. Exp. Bot. 2014, 65, 3157–3164. [Google Scholar] [CrossRef]
- Li, Y.; Fang, J.; Qi, X.; Lin, M.; Zhong, Y.; Sun, L.; Cui, W. Combined analysis of the fruit metabolome and transcriptome reveals candidate genes involved in flavonoid biosynthesis in Actinidia arguta. Int. J. Mol. Sci. 2018, 19, 1471. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Liu, Z.; Zhao, Z.; Zhao, J.; Wang, Z. Transcriptome and metabolome profiling unveil the mechanisms of Ziziphus jujuba Mill. peel coloration. Food Chem. 2020, 312, 125903. [Google Scholar] [CrossRef]
- Kourkoutas, D.; Elmore, J.S.; Mottram, D.S. Comparison of the volatile compositions and flavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chem. 2006, 97, 95–102. [Google Scholar] [CrossRef]
- Sun, L.; Zhu, B.; Zhang, X.; Zhang, G.; Yan, A.; Wang, H. Transcriptome profiles of three Muscat table grape cultivars to dissect the mechanism of terpene biosynthesis. Sci. Data 2019, 6, 89. [Google Scholar] [CrossRef]
- Caffrey, A.; Ebeler, S.E. The occurrence of glycosylated aroma precursors in Vitis vinifera fruit and Humulus lupulus hop cones and their roles in wine and beer volatile aroma production. Foods 2021, 10, 935. [Google Scholar] [CrossRef]
- Wang, W.; Feng, J.; Wei, L.; Khalil-Ur-Rehman, M.; Nieuwenhuizen, N.J.; Yang, L. Transcriptomics integrated with free and bound terpenoid aroma profiling during Shine Muscat (Vitis labrusca × V. vinifera) grape berry development reveals coordinate regulation of MEP pathway and terpene synthase gene expression. J. Agric. Food Chem. 2021, 69, 1413–1429. [Google Scholar] [CrossRef] [PubMed]
- Li, L.X.; Fang, Y.; Li, D.; Zhu, Z.H.; Zhang, Y.; Tang, Z.Y. Transcription factors MdMYC2 and MdMYB85 interact with ester aroma synthesis gene MdAAT1 in apple. Plant Physiol. 2023, 193, 2442–2458. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yu, W.W.; Zhao, W.J.; Song, L.P.; Xu, S.R.; Zhang, W.P.; Ma, C.X.; Wang, C.; Wang, L.; Shi, P. Study on the volatile composition of table grapes of three aroma types. LWT-Food Sci. Technol. 2019, 115, 108450. [Google Scholar] [CrossRef]
- Maoz, I.; Lewinsohn, E.; Gonda, I. Amino acids metabolism as a source for aroma volatiles biosynthesis. Curr. Opin. Plant Biol. 2022, 67, 102221. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Achnine, L.; Kota, P.; Liu, C.J.; Reddy, M.S.; Wang, L. The phenylpropanoid pathway and plant defence a genomics perspective. Mol. Plant Pathol. 2022, 3, 371–390. [Google Scholar] [CrossRef]
- Boatright, J.; Negre, F.; Chen, X.; Kish, C.M.; Wood, B.; Peel, G. Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 2004, 135, 1993–2011. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef]
- Gonda, I.; Davidovich-Rikanati, R.; Bar, E.; Lev, S.; Jhirad, P.; Meshulam, Y. Differential metabolism of L-phenylalanine in the formation of aromatic volatiles in melon (Cucumis melo L.) fruit. Phytochemistry 2018, 148, 122–131. [Google Scholar] [CrossRef]
- Cao, H.; Chen, J.; Yue, M.; Xu, C.; Jian, W.; Liu, Y. Tomato transcriptional repressor MYB70 directly regulates ethylene-dependent fruit ripening. Plant J. 2020, 104, 1568–1581. [Google Scholar] [CrossRef]
- Huang, W.; Hu, N.; Xiao, Z.; Qiu, Y.; Yang, Y.; Yang, J. A molecular framework of ethylene-mediated fruit growth and ripening processes in tomato. Plant Cell 2022, 34, 3280–3300. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, P.; Yu, X.; Cao, J.; Chen, X.; Gao, L. Contrasting roles of ethylene response factors in pathogen response and ripening in fleshy fruit. Cells 2022, 11, 2484. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhao, F.; Su, K.; Lin, H.; Guo, Y. Discovery of cold-resistance genes in Vitis amurensis using bud based quantitative trait locus mapping and RNA-seq. BMC Genom. 2022, 23, 551. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, A.; Qi, S.; Su, K.; Guo, Y. Identification of candidate genes related to anthocyanin biosynthesis in red sarcocarp hawthorn (Crataegus pinnatifida). Sci. Hortic. 2022, 298, 110987. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Miao, Y.; Deng, L.; Zhang, B.; Meng, J. Interaction between PpERF5 and PpERF7 enhances peach fruit aroma by up regulating PpLOX4 expression. Plant Physiol. Biochem. 2022, 185, 378–389. [Google Scholar] [CrossRef]
- Han, Y.; Wang, H.; Wang, X.; Li, K.; Dong, M.; Li, Y. Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, β-ionone and linalool. Hortic. Res. 2019, 6, 106. [Google Scholar] [CrossRef]
- Jian, W.; Cao, H.; Yuan, S.; Liu, Y.; Lu, J.; Lu, W. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Hortic. Res. 2019, 6, 22. [Google Scholar] [CrossRef]
- Li, W.F.; Ning, G.X.; Zuo, C.W.; Chu, M.Y.; Yang, S.J.; Ma, Z.H. MYB_SH[AL]QKY[RF] transcription factors MdLUX and MdPCL-like promote anthocyanin accumulation through DNA hypomethylation and MdF3H activation in apple. Tree Physiol. 2021, 41, 836–848. [Google Scholar] [CrossRef]
- Su, K.; Xia, W.; Li, W.; Guo, Y.; Jiang, T.; Xiao, X. Discovery of candidate genes related to carotenoid accumulation based on yellow sarcocarp bud mutation peach resource. Postharvest Biol. Technol. 2023, 206, 112568. [Google Scholar] [CrossRef]
- Yan, X.; Ding, W.; Wu, X.; Wang, L.; Yang, X.; Yue, Y. Insights into the MYB related transcription factors involved in regulating floral aroma synthesis in sweet Osmanthus. Front. Plant Sci. 2022, 13, 765213. [Google Scholar] [CrossRef]
- Colquhoun, T.A.; Kim, J.Y.; Wedde, A.E.; Levin, L.A.; Schmitt, K.C.; Schuurink, R.C.; Clark, D.G. PhMYB4 fine tunes the floral volatile signature of Petunia x hybrida through PhC4H. J. Exp. Bot. 2011, 62, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Abbas, F.; Ke, Y.; Zhou, Y.; Yu, Y.; Waseem, M.; Ashraf, U. Genome-Wide analysis reveals the potential role of MYB transcription factors in floral scent formation in Hedychium coronarium. Front. Plant Sci. 2021, 12, 623742. [Google Scholar] [CrossRef] [PubMed]
Class | A2 vs. A1 | J2 vs. J1 | M2 vs. M1 | ||||||
---|---|---|---|---|---|---|---|---|---|
No. | Up | Down | No. | Up | Down | No. | Up | Down | |
Acids | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 0 |
Alcohols | 7 | 7 | 0 | 6 | 5 | 1 | 6 | 6 | 0 |
Aldehydes | 5 | 5 | 0 | 2 | 2 | 0 | 3 | 3 | 0 |
Amines | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
Aromatics | 3 | 3 | 0 | 6 | 2 | 4 | 3 | 1 | 2 |
Esters | 9 | 7 | 2 | 6 | 4 | 2 | 12 | 8 | 4 |
Heterocyclic compounds | 17 | 16 | 1 | 6 | 3 | 3 | 8 | 5 | 2 |
Hydrocarbons | 8 | 7 | 1 | 5 | 3 | 2 | 3 | 2 | 1 |
Ketones | 6 | 6 | 0 | 4 | 3 | 1 | 3 | 3 | 1 |
Nitrogen compounds | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Terpenoids | 34 | 33 | 1 | 14 | 8 | 6 | 12 | 11 | 1 |
Other | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Zhu, Y.; Wang, M.; Xun, Z.; Ma, X.; Zhao, Q. Integrative Analysis of Transcriptome and Metabolome Reveals the Regulatory Network Governing Aroma Formation in Grape. Horticulturae 2024, 10, 1159. https://doi.org/10.3390/horticulturae10111159
Huang L, Zhu Y, Wang M, Xun Z, Ma X, Zhao Q. Integrative Analysis of Transcriptome and Metabolome Reveals the Regulatory Network Governing Aroma Formation in Grape. Horticulturae. 2024; 10(11):1159. https://doi.org/10.3390/horticulturae10111159
Chicago/Turabian StyleHuang, Liping, Yue Zhu, Min Wang, Zhili Xun, Xiaohe Ma, and Qifeng Zhao. 2024. "Integrative Analysis of Transcriptome and Metabolome Reveals the Regulatory Network Governing Aroma Formation in Grape" Horticulturae 10, no. 11: 1159. https://doi.org/10.3390/horticulturae10111159
APA StyleHuang, L., Zhu, Y., Wang, M., Xun, Z., Ma, X., & Zhao, Q. (2024). Integrative Analysis of Transcriptome and Metabolome Reveals the Regulatory Network Governing Aroma Formation in Grape. Horticulturae, 10(11), 1159. https://doi.org/10.3390/horticulturae10111159