Transcriptome and Physiological Analyses of Resistant and Susceptible Pepper (Capsicum annuum) to Verticillium dahliae Inoculum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment
2.2. Biochemical Indices
2.3. RNA Extraction, Sequencing, and Data Analysis
2.4. Differentially Expressed Gene Analysis and Weighted Gene Co-expression Network Analysis (WGCNA)
2.5. Validation of RNA-Seq Data by qRT-PCR
3. Results
3.1. Disease and Biochemical Indices Assessment
3.2. Sequencing Data Analysis
3.3. Transcriptome Profiles Analysis
3.3.1. DEGs of MS66 and MS72 Response to V. dahliae Inoculation
3.3.2. GO Analyses of DEGs
3.3.3. Pathway Enrichment Analyses of DEGs
3.3.4. Resistance Signaling Related Pathways Analysis to DEGs
3.3.5. Key Gene Modules Screened by WGCNA
3.3.6. Hub Gene Analysis of Key Modules by WGCNA
3.4. Validation of RNA-Seq Data by Quantitative Real-Time (qRT)-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, S.; Luo, X.; Jin, J.; Guo, Y.; Zhang, L.; Li, J.; Tong, S.; Luo, Y.; Li, T.; Chen, X.; et al. Key candidate genes for male sterility in peppers unveiled via transcriptomic and proteomic analyses. Front. Plant Sci. 2024, 15, 1334430. [Google Scholar] [CrossRef] [PubMed]
- Parisi, M.; Alioto, D.; Tripodi, P. Overview of biotic stresses in pepper (Capsicum spp.): Sources of genetic resistance, molecular breeding and genomics. Int. J. Mol. Sci. 2020, 21, 2587. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-J.; Peng, J.; Li, Y.-J. Recent advances in the study on capsaicinoids and capsinoids. Eur. J. Pharmacol. 2011, 650, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, B.; Cheng, C.; Fu, B.; Qi, M.; Du, H.; Geng, S.; Zhang, X. Comparative transcriptomics analysis reveals the differences in transcription between resistant and susceptible pepper (Capsicum annuum L.) varieties in response to anthracnose. Plants 2024, 13, 527. [Google Scholar] [CrossRef]
- Ao, N.; Zou, H.; Li, J.; Shao, H.; Kageyama, K.; Feng, W. First report of Pythium aphanidermatum and Pythium myriotylum causing root rot on chili pepper (Capsicum annuum L.) in Guizhou, China. Crop Prot. 2024, 181, 106704. [Google Scholar] [CrossRef]
- Evans, G.; McKeen, C.D. A strain of Verticillium dahliae pathogenic to sweet pepper in Southwestern Ontario. Can. J. Plant Sci. 1975, 55, 857–859. [Google Scholar] [CrossRef]
- Goicoechea, N. Verticillium-induced wilt in pepper: Physiological disorders and perspectives for controlling the disease. Plant Pathol. J. 2006, 5, 258–265. [Google Scholar] [CrossRef]
- Gurung, S.; Short, D.P.G.; Hu, X.; Sandoya, G.V.; Hayes, R.J.; Subbarao, K.V. Screening of wild and cultivated capsicum germplasm reveals new sources of Verticillium wilt resistance. Plant Dis. 2015, 99, 1404–1409. [Google Scholar] [CrossRef]
- Hassan, O.; Ryu, H.; Choi, H.-W. First report of Verticillium wilt caused by Verticillium dahliae on chilli in South Korea. Plant Dis. 2023. [Google Scholar] [CrossRef]
- Grau, C.R. Verticillium wilt of alfalfa in Wisconsin. Plant Dis. 1981, 65, 843. [Google Scholar] [CrossRef]
- Jing, R.; Li, H.; Hu, X.; Shang, W.; Shen, R.; Guo, C.; Guo, Q.; Subbarao, K.V. Verticillium wilt caused by Verticillium dahliae and V. nonalfalfae in potato in Northern China. Plant Dis. 2018, 102, 1958–1964. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.G.; Smith, R.F.; Koike, S.T.; Wu, B.M.; Subbarao, K.V. Characterization of Verticillium dahliae isolates and wilt epidemics of pepper. Plant Dis. 2003, 87, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Lacasa, C.M.; Cantó-Tejero, M.; Martínez, V.; Lacasa, A.; Guirao, P. Performance of Aubergine rootstocks against Verticillium dahliae isolates in Southeastern Spain. Agronomy 2024, 14, 998. [Google Scholar] [CrossRef]
- Xu, S.; Li, Y.Z.; Nan, Z.B. First report of Verticillium wilt of alfalfa caused by Verticillium alfalfae in China. Plant Dis. 2016, 100, 220. [Google Scholar] [CrossRef]
- Joaquim, T.R. Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate-nonutilizing mutants. Phytopathology 1990, 80, 1160. [Google Scholar] [CrossRef]
- Bardak, A.; Çelik, S.; Erdoğan, O.; Ekinci, R.; Dumlupinar, Z. Association mapping of Verticillium wilt disease in a worldwide collection of cotton (Gossypium hirsutum L.). Plants 2021, 10, 306. [Google Scholar] [CrossRef]
- Wilhelm, S.; Wilhelm, S. Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology 1955, 45, 180–181. [Google Scholar]
- Goicoechea, N. To what extent are soil amendments useful to control Verticillium wilt? Pest Manag. Sci. 2009, 65, 831–839. [Google Scholar] [CrossRef]
- Pei, D.; Zhang, Q.; Zhu, X.; Zhang, L. Biological control of Verticillium wilt and growth promotion in tomato by rhizospheric soil-derived Bacillus amyloliquefaciens Oj-2.16. Pathogens 2022, 12, 37. [Google Scholar] [CrossRef]
- Ziazia, P.; Poulaki, E.G.; Gkizi, D.; Lozano, L.; Serrano, M.; Tjamos, S.E. Feeding the microbes: A strategy to control Verticillium wilt. Agronomy 2021, 11, 1946. [Google Scholar] [CrossRef]
- Güneş, H.; Demir, S.; Durak, E.D.; Boyno, G. The effect of arbuscular mycorrhizal fungal species Funneliformis Mosseae and biochar against Verticillium dahliae in pepper plants under salt stress. Eur. J. Plant Pathol. 2024. [Google Scholar] [CrossRef]
- Poveda, J.; Calvo, J.; Barquero, M.; González-Andrés, F. Activation of sweet pepper defense responses by novel and known biocontrol agents of the genus Bacillus against Botrytis cinerea and Verticillium dahliae. Eur. J. Plant Pathol. 2022, 164, 507–524. [Google Scholar] [CrossRef]
- Vasileva, K.; Todorova, V.; Masheva, S. Evaluation of collection of pepper (Capsicum spp.) resources for resistance to Verticillium dahliae Kleb. Bulg. J. Agric. Sci. 2019, 25, 1030–1038. [Google Scholar] [CrossRef]
- González-Salán, M.M.; Bosland, P.W. Sources of resistance to Verticillium wilt in Capsicum. Euphytica 1991, 59, 49–53. [Google Scholar] [CrossRef]
- Garmendia, I.; Aguirreolea, J.; Goicoechea, N. Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae. BioControl 2006, 51, 293–310. [Google Scholar] [CrossRef]
- Coşkun, F.; Alptekin, Y.; Demir, S. Effects of arbuscular mycorrhizal fungi and salicylic acid on plant growth and the activity of antioxidative enzymes against wilt disease caused by Verticillium dahliae in pepper. Eur. J. Plant Pathol. 2023, 165, 163–177. [Google Scholar] [CrossRef]
- Goicoechea, N.; Aguirreolea, J.; García-Mina, J.M. Alleviation of Verticillium wilt in pepper (Capsicum annuum L.) by using the organic amendment COA H of natural origin. Sci. Hortic. 2004, 101, 23–37. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, D.; Ji, M.; Tian, J.; Ding, H.; Deng, Z. Transcriptome dynamic analysis reveals new candidate genes associated with resistance to Fusarium head blight in two Chinese contrasting wheat genotypes. Int. J. Mol. Sci. 2023, 24, 4222. [Google Scholar] [CrossRef]
- Li, P.; Tan, X.; Wang, H.; Sun, L.; Jiang, J.; Fan, X.; Liu, C.; Zhang, Y. Transcriptome analysis of resistant and susceptible grapes reveals molecular mechanisms underlying resistance of white rot disease. Hortic. Adv. 2023, 1, 9. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Ma, Z.-B.; Li, W.-H.; Zhu, W.; Gao, S.-Q.; Zhao, Y.-H.; Liu, W. Transcriptome and metabolome profiling reveals key pathways and metabolites involved in defense against Verticillium dahliae in upland cotton. Ind. Crops Prod. 2023, 196, 116505. [Google Scholar] [CrossRef]
- Feng, Z.; Wei, F.; Feng, H.; Zhang, Y.; Zhao, L.; Zhou, J.; Xie, J.; Jiang, D.; Zhu, H. Transcriptome analysis reveals the defense mechanism of cotton against Verticillium dahliae induced by hypovirulent fungus Gibellulopsis Nigrescens CEF08111. Int. J. Mol. Sci. 2023, 24, 1480. [Google Scholar] [CrossRef] [PubMed]
- Sanogo, S.; Etarock, B.F.; Clary, M. Recovery of Verticillium dahliae from tall morningglory (Ipomoea purpurea) in New Mexico and its pathogenicity on chile pepper. Plant Dis. 2009, 93, 428. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Soliman, A.; Islam, M.R.; Adam, L.R.; Daayf, F. Verticillium dahliae’s isochorismatase hydrolase is a virulence factor that contributes to interference with potato’s salicylate and jasmonate defense signaling. Front. Plant Sci. 2017, 8, 399. [Google Scholar] [CrossRef]
- Zhu, X.; Sayari, M.; Islam, M.R.; Daayf, F. NOXA is important for Verticillium Dahliae’s penetration ability and virulence. J. Fungi 2021, 7, 814. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systemsin acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- CNCB-NGDC Members and Partners. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022, 50, D27–D38. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinform. Oxf. Engl. 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Shi, W.; Wang, P.; Hu, R.; Wan, X.; Shen, H.; Li, H.; Wang, L.; Qiao, Y.; Jiang, G.; Cheng, J.; et al. Transcriptome analysis reveals hub genes in the hepatopancreas of Exopalaemon carinicauda in response to hypoxia and reoxygenation. Aquac. Int. 2021, 29, 1785–1811. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Rehman, S.; Aziz, E.; Akhtar, W.; Ilyas, M.; Mahmood, T. Structural and functional characteristics of plant proteinase inhibitor-II (PI-II) family. Biotechnol. Lett. 2017, 39, 647–666. [Google Scholar] [CrossRef]
- Zhu, H.; Song, J.; Dhar, N.; Shan, Y.; Ma, X.-Y.; Wang, X.-L.; Chen, J.-Y.; Dai, X.-F.; Li, R.; Wang, Z.-S. Transcriptome analysis of a cotton cultivar provides insights into the differentially expressed genes underlying heightened resistance to the devastating Verticillium wilt. Cells 2021, 10, 2961. [Google Scholar] [CrossRef]
- Tan, G.; Liu, K.; Kang, J.; Xu, K.; Zhang, Y.; Hu, L.; Zhang, J.; Li, C. Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing. Front. Plant Sci. 2015, 6, 428. [Google Scholar] [CrossRef]
- Clough, S.J.; Fengler, K.A.; Yu, I.-c.; Lippok, B.; Smith, R.K.; Bent, A.F. The Arabidopsis Dnd1 “Defense, No Death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 2000, 97, 9323–9328. [Google Scholar] [CrossRef] [PubMed]
- Asano, T.; Hayashi, N.; Kobayashi, M.; Aoki, N.; Miyao, A.; Mitsuhara, I.; Ichikawa, H.; Komatsu, S.; Hirochika, H.; Kikuchi, S.; et al. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J. Cell Mol. Biol. 2012, 69, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Dubiella, U.; Seybold, H.; Durian, G.; Komander, E.; Lassig, R.; Witte, C.-P.; Schulze, W.X.; Romeis, T. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc. Natl. Acad. Sci. USA 2013, 110, 8744–8749. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Su, H.; Liu, X.-X.; Sun, J.-F.; Xiang, L.; Liu, Y.-J.; Hu, Z.-W.; Xiong, X.-Y.; Yang, X.-M.; Bhutto, S.H.; et al. Identification of NADPH oxidase genes crucial for rice multiple disease resistance and yield traits. Rice 2024, 17, 1. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Tian, L.; Huang, L.; Liu, S.; Li, D.; Song, F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. Front. Plant Sci. 2015, 6, 463. [Google Scholar] [CrossRef]
- Ramos, R.N.; Zhang, N.; Lauff, D.B.; Valenzuela-Riffo, F.; Figueroa, C.R.; Martin, G.B.; Pombo, M.A.; Rosli, H.G. Loss-of-function mutations in WRKY22 and WRKY25 impair stomatal-mediated immunity and PTI and ETI responses against Pseudomonas syringae pv. tomato. Plant Mol. Biol. 2023, 112, 161–177. [Google Scholar] [CrossRef]
- Nie, W.; Liu, L.; Chen, Y.; Luo, M.; Feng, C.; Wang, C.; Yang, Z.; Du, C. Identification of the regulatory role of SlWRKYs in tomato defense against Meloidogyne incognita. Plants 2023, 12, 2416. [Google Scholar] [CrossRef]
- Long, Q.; Du, M.; Long, J.; Xie, Y.; Zhang, J.; Xu, L.; He, Y.; Li, Q.; Chen, S.; Zou, X. Transcription factor WRKY22 regulates canker susceptibility in sweet orange (Citrus sinensis Osbeck) by enhancing cell enlargement and CsLOB1 expression. Hortic. Res. 2021, 8, 50. [Google Scholar] [CrossRef]
- Berens, M.L.; Berry, H.M.; Mine, A.; Argueso, C.T.; Tsuda, K. Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 2017, 55, 401–425. [Google Scholar] [CrossRef]
- Fan, S.; Chang, Y.; Liu, G.; Shang, S.; Tian, L.; Shi, H. Molecular functional analysis of auxin/indole-3-acetic acid proteins (Aux/IAAs) in plant disease resistance in cassava. Physiol. Plant. 2020, 168, 88–97. [Google Scholar] [CrossRef]
- Lemarié, S.; Robert-Seilaniantz, A.; Lariagon, C.; Lemoine, J.; Marnet, N.; Jubault, M.; Manzanares-Dauleux, M.J.; Gravot, A. Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis. Plant Cell Physiol. 2015, 56, 2158–2168. [Google Scholar] [CrossRef]
- Liu, T.; Chen, T.; Kan, J.; Yao, Y.; Guo, D.; Yang, Y.; Ling, X.; Wang, J.; Zhang, B. The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants. Plant Biotechnol. J. 2022, 20, 722–735. [Google Scholar] [CrossRef]
- de Oliveira Carvalho, A.; Gomes, V.M. Plant Defensins-prospects for the biological functions and biotechnological properties. Peptides 2009, 30, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Carvalho, A.; Gomes, V.M. Plant defensins and defensin-like peptides-Biological activities and biotechnological applications. Curr. Pharm. Des. 2011, 17, 4270–4293. [Google Scholar] [CrossRef]
- Yang, M.; Jiao, J.; Liu, Y.; Li, M.; Xia, Y.; Hou, F.; Huang, C.; Zhang, H.; Wang, M.; Shi, J.; et al. Genome-wide investigation of defensin genes in apple (Malus × Domestica Borkh.) and in vivo analyses reveal that MdDEF25 confers resistance to Fusarium Solani. J. Integr. Agric. 2024. [Google Scholar] [CrossRef]
- Mondego, J.M.C.; Duarte, M.P.; Kiyota, E.; Martínez, L.; de Camargo, S.R.; De Caroli, F.P.; Alves, B.S.C.; Guerreiro, S.M.C.; Oliva, M.L.V.; Guerreiro-Filho, O.; et al. Molecular characterization of a miraculin-like gene differentially expressed during coffee development and coffee leaf miner infestation. Planta 2011, 233, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Ohkura, S.-I.; Hori, M.; Saitoh, K.; Okuzawa, T.; Okamoto, I.; Furukawa, N.; Shimizu-Ibuka, A. Structural and functional analysis of miraculin-like protein from Vitis vinifera. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 1125–1130. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; He, W.; Huang, M.; Yu, L.; Cheng, D.; Du, J.; Song, B.; Chen, H. StMLP1, as a Kunitz trypsin inhibitor, enhances potato resistance and specifically expresses in vascular bundles during Ralstonia solanacearum infection. Plant J. Cell Mol. Biol. 2023, 116, 1342–1354. [Google Scholar] [CrossRef]
- Broekaert, W.F.; VAN Parijs, J.; Leyns, F.; Joos, H.; Peumans, W.J. A Chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science 1989, 245, 1100–1102. [Google Scholar] [CrossRef]
- Trindade, M.B.; Lopes, J.L.S.; Soares-Costa, A.; Monteiro-Moreira, A.C.; Moreira, R.A.; Oliva, M.L.V.; Beltramini, L.M. Structural characterization of novel chitin-binding lectins from the genus artocarpus and their antifungal activity. Biochim. Biophys. Acta 2006, 1764, 146–152. [Google Scholar] [CrossRef]
- Chen, C.-S.; Chen, C.-Y.; Ravinath, D.M.; Bungahot, A.; Cheng, C.-P.; You, R.-I. Functional characterization of chitin-binding lectin from Solanum integrifolium containing anti-fungal and insecticidal activities. BMC Plant Biol. 2018, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S. Cell Wall signaling in plant development and defense. Annu. Rev. Plant Biol. 2022, 73, 323–353. [Google Scholar] [CrossRef] [PubMed]
- Douchkov, D.; Lueck, S.; Hensel, G.; Kumlehn, J.; Rajaraman, J.; Johrde, A.; Doblin, M.S.; Beahan, C.T.; Kopischke, M.; Fuchs, R.; et al. The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. New Phytol. 2016, 212, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.-H.; Liu, Y.-C. TaDIR13, a dirigent protein from wheat, promotes lignan biosynthesis and enhances pathogen resistance. Plant Mol. Biol. Rep. 2015, 33, 143–152. [Google Scholar] [CrossRef]
- Toledo-Ortiz, G.; Huq, E.; Quail, P.H. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 2003, 15, 1749–1770. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Sui, N. Transcriptional regulation of bHLH during plant response to stress. Biochem. Biophys. Res. Commun. 2018, 503, 397–401. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, M.; Wu, H.; Hou, L.; Li, S.; Chen, G.; Liu, L.; Liu, Z.; Lu, L.; Kabir, N.; et al. GhPAS1, a bHLH Transcription factor in upland cotton (Gossypium hirsutum), positively regulates Verticillium dahlia resistance. Ind. Crops Prod. 2023, 192, 116077. [Google Scholar] [CrossRef]
- Zhuo, T.; Wang, X.; Chen, Z.; Cui, H.; Zeng, Y.; Chen, Y.; Fan, X.; Hu, X.; Zou, H. The Ralstonia solanacearum effector RipI induces a defence reaction by interacting with the bHLH93 transcription factor in Nicotiana benthamiana. Mol. Plant Pathol. 2020, 21, 999–1004. [Google Scholar] [CrossRef]
Sample | RawData (bp) | CleanData (bp) | AF_Q20 (%) | AF_Q30 (%) | AF_GC (%) |
---|---|---|---|---|---|
MS66-01 * | 6,981,718,800 | 6,915,710,005 | 97.63% | 93.34% | 42.38% |
MS66-02 | 6,258,249,000 | 6,197,996,540 | 97.49% | 92.97% | 42.63% |
MS66-03 | 5,653,788,000 | 5,604,126,720 | 97.84% | 93.71% | 42.59% |
MS66-31 | 5,674,388,700 | 5,629,439,592 | 98.05% | 94.07% | 42.13% |
MS66-32 | 6,523,661,100 | 6,471,830,669 | 97.91% | 93.82% | 42.16% |
MS66-33 | 6,125,935,800 | 6,079,521,125 | 98.06% | 94.16% | 42.21% |
MS66-51 | 5,974,112,700 | 5,929,944,107 | 97.93% | 93.83% | 42.03% |
MS66-52 | 6,492,510,300 | 6,429,441,859 | 98.05% | 94.10% | 42.01% |
MS66-53 | 5,613,444,300 | 5,579,199,070 | 98.05% | 94.11% | 41.96% |
MS72-01 | 5,662,599,600 | 5,608,834,245 | 97.56% | 93.32% | 42.72% |
MS72-02 | 6,383,261,100 | 6,319,523,672 | 97.60% | 93.37% | 42.70% |
MS72-03 | 6,431,895,000 | 6,377,583,237 | 97.71% | 93.60% | 42.70% |
MS72-31 | 6,634,712,700 | 6,587,352,685 | 98.00% | 94.00% | 42.14% |
MS72-32 | 6,406,942,800 | 6,364,254,446 | 98.11% | 94.26% | 42.22% |
MS72-33 | 6,544,051,500 | 6,498,195,200 | 98.05% | 94.20% | 42.19% |
MS72-51 | 6,177,454,500 | 6,125,703,488 | 97.94% | 93.88% | 42.09% |
MS72-52 | 6,192,131,100 | 6,142,110,988 | 98.03% | 94.11% | 41.99% |
MS72-53 | 6,225,490,200 | 6,168,686,984 | 97.89% | 93.78% | 41.89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; He, L.; Tan, H.; Liu, J.; Qiu, Q.; Sun, Q.; Ouyang, L.; Han, H.; He, Q. Transcriptome and Physiological Analyses of Resistant and Susceptible Pepper (Capsicum annuum) to Verticillium dahliae Inoculum. Horticulturae 2024, 10, 1160. https://doi.org/10.3390/horticulturae10111160
Huang X, He L, Tan H, Liu J, Qiu Q, Sun Q, Ouyang L, Han H, He Q. Transcriptome and Physiological Analyses of Resistant and Susceptible Pepper (Capsicum annuum) to Verticillium dahliae Inoculum. Horticulturae. 2024; 10(11):1160. https://doi.org/10.3390/horticulturae10111160
Chicago/Turabian StyleHuang, Xinmin, Liming He, Huimin Tan, Jiayi Liu, Qiucheng Qiu, Qidi Sun, Lejun Ouyang, Hanbing Han, and Qinqin He. 2024. "Transcriptome and Physiological Analyses of Resistant and Susceptible Pepper (Capsicum annuum) to Verticillium dahliae Inoculum" Horticulturae 10, no. 11: 1160. https://doi.org/10.3390/horticulturae10111160
APA StyleHuang, X., He, L., Tan, H., Liu, J., Qiu, Q., Sun, Q., Ouyang, L., Han, H., & He, Q. (2024). Transcriptome and Physiological Analyses of Resistant and Susceptible Pepper (Capsicum annuum) to Verticillium dahliae Inoculum. Horticulturae, 10(11), 1160. https://doi.org/10.3390/horticulturae10111160