Compost and Vermicompost as Substrates Enriched with Trichoderma asperellum for the Production of Basic Potato Seed in the Venezuelan Andes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Compost-Vermicompost Blends with Coconut Fiber for Plant Growth Media
2.2. Physical, Chemical, and Biological Analysis of Substrate Mixtures
2.2.1. Determination of Organic Carbon in Compost Samples
2.2.2. Nitrogen Content (%)
2.2.3. Phosphorous Content (%)
2.2.4. Calcium Content (%)
2.2.5. Proportion of Humic and Fulvic Substances: E4/E6 Ratio
2.2.6. pH and Electrical Conductivity
2.2.7. Physical Properties
2.2.8. Microbial Populations
2.3. Data Analysis
3. Results
3.1. Evaluation of Biometric Variables Measured on Plants and Substrate Characteristics Affected by Treatments and Their Interactions
3.2. Evaluation of Growth Indices in Potato Plants
3.3. Effect of Substrate Characteristics on the Yield of Seed Potatoes of the INIAfrit Variety
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amanullah; Khalid, S. Agronomy—Climate Change & Food Security. In Agronomy-Food Security-Climate Change and the Sustainable Development Goals; IntechOpen: London, UK, 2020. [Google Scholar]
- Ghasemzadeh, A. Global Issues of Food Production. Agrotechnol 2012, 1, 1–2. [Google Scholar] [CrossRef]
- Escalamiento Industrial, Red Socialista de Innovacion Productiva de Papa del Municipio Rangel, Estado Merida. Available online: https://proinpameridavenezuela.blogspot.com/2014/02/escalamiento-industrial-red-socialista.html (accessed on 23 August 2024).
- Barrera Mosquera, V.H.; Delgado, J.A.; Alwang, J.R.; Escudero López, L.O.; Cartagena Ayala, Y.E.; Domínguez Andrade, J.M.; D’Adamo, R. Conservation Agriculture Increases Yields and Economic Returns of Potato, Forage, and Grain Systems of the Andes. Agron. J. 2019, 111, 2747–2753. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Walthall, C.L. Soil Biological Fertility: Foundation for the Next Revolution in Agriculture? Commun. Soil Sci. Plant Anal. 2015, 46, 753–762. [Google Scholar] [CrossRef]
- Lim, S.L.; Wu, T.Y.; Lim, P.N.; Shak, K.P.Y. The Use of Vermicompost in Organic Farming: Overview, Effects on Soil and Economics. J. Sci. Food Agric. 2015, 95, 1143–1156. [Google Scholar] [CrossRef] [PubMed]
- Neher, D.A.; Harris, J.M.; Horner, C.E.; Scarborough, M.J.; Badireddy, A.R.; Faulkner, J.W.; White, A.C.; Darby, H.M.; Farley, J.C.; Bishop-von Wettberg, E.J. Resilient Soils for Resilient Farms: An Integrative Approach to Assess, Promote, and Value Soil Health for Small- and Medium-Size Farms. Phytobiomes J. 2022, 6, 201–206. [Google Scholar] [CrossRef]
- Zayed, G.; Abdel-Motaal, H. Bio-Active Composts from Rice Straw Enriched with Rock Phosphate and Their Effect on the Phosphorous Nutrition and Microbial Community in Rhizosphere of Cowpea. Bioresour. Technol. 2005, 96, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Singh, K. Effect of Integrated Nutrient Management on Sequential Productivity, Economics and Nutrient Uptake of Rice (Oryza Sativa)—Potato (Solanum Tuberosum) Cropping Sequence. Indian J. Agric. Sci. 2014, 84, 1096–1101. [Google Scholar] [CrossRef]
- Ala, A.; Musa, Y.; Kadola, L. Effect of Compost Enrichment with Trichoderma Sp on the Growth of Arabica Coffee Seedlings. IOP Conf. Ser. Earth Environ. Sci. 2020, 575, 12145. [Google Scholar] [CrossRef]
- Sudheer, S.; Bai, R.G.; Usmani, Z.; Sharma, M. Insights on Engineered Microbes in Sustainable Agriculture: Biotechnological Developments and Future Prospects. Curr. Genom. 2020, 21, 321–333. [Google Scholar] [CrossRef]
- Singh, Y.P.; Arora, S.; Mishra, V.K.; Singh, A.K. Synergizing Microbial Enriched Municipal Solid Waste Compost and Mineral Gypsum for Optimizing Rice-Wheat Productivity in Sodic Soils. Sustainability 2022, 14, 7809. [Google Scholar] [CrossRef]
- Arthur, G.D.; Aremu, A.O.; Kulkarni, M.G.; Staden, J.V. Vermicompost Leachate Alleviates Deficiency of Phosphorus and Potassium in Tomato Seedlings. HortScience 2012, 47, 1304–1307. [Google Scholar] [CrossRef]
- Qasim, M.; Ju, J.; Zhao, H.; Bhatti, S.M.; Saleem, G.; Memon, S.P.; Ali, S.; Younas, M.U.; Rajput, N.; Jamali, Z.H. Morphological and Physiological Response of Tomato to Sole and Combined Application of Vermicompost and Chemical Fertilizers. Agronomy 2023, 13, 1508. [Google Scholar] [CrossRef]
- Singh, D.P.; Prabha, R.; Renu, S.; Sahu, P.K.; Singh, V. Agrowaste Bioconversion and Microbial Fortification Have Prospects for Soil Health, Crop Productivity, and Eco-Enterprising. Int. J. Recycl. Org. Waste Agric. 2019, 8, 457–472. [Google Scholar] [CrossRef]
- Holdridge, L. Ecología Basada En Zonas de Vida; Publicaciones y documentos; IICA: San José, Costa Rica, 1978; ISBN 92-9039-131-6. [Google Scholar]
- Devi, J.; Deb, U.; Barman, S.; Das, S.; Sundar Bhattacharya, S.; Fai Tsang, Y.; Lee, J.-H.; Kim, K.-H. Appraisal of Lignocellusoic Biomass Degrading Potential of Three Earthworm Species Using Vermireactor Mediated with Spent Mushroom Substrate: Compost Quality, Crystallinity, and Microbial Community Structural Analysis. Sci. Total Env. 2020, 716, 135215. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yang, J.; Xu, S.; Wang, J.; Zhou, Q.; Li, Y.; Tong, X. Rapid In-Situ Composting of Household Food Waste. Process Saf. Environ. Prot. 2020, 141, 259–266. [Google Scholar] [CrossRef]
- Pane, C.; Spaccini, R.; Piccolo, A.; Celano, G.; Zaccardelli, M. Disease Suppressiveness of Agricultural Greenwaste Composts as Related to Chemical and Bio-Based Properties Shaped by Different on-Farm Composting Methods. Biol. Control 2019, 137, 104026. [Google Scholar] [CrossRef]
- Arancon, N.; Edwards, C.; Atiyeh, R.; Metzger, J. Effects of Vermicomposts Produced from Food Waste on the Growth and Yields of Greenhouse Peppers. Bioresour. Technol. 2004, 93, 139–144. [Google Scholar] [CrossRef]
- Diánez, F.; Santos, M.; Carretero, F.; Marín, F. Trichoderma Saturnisporum, a New Biological Control Agent. J. Sci. Food Agric. 2016, 96, 1934–1944. [Google Scholar] [CrossRef]
- Peña, H.; Mendoza, H.; Dianez, F.; Santos, M. Parameter Selection for the Evaluation of Compost Quality. Agronomy 2020, 10, 1567. [Google Scholar] [CrossRef]
- Peña, H.; Santos, M.; Ramírez, B.; Sulbarán, J.; Arias, K.; Huertas, V.; Diánez, F. Essential Quality Attributes of Culture Media Used as Substrates in the Sustainable Production of Pre-Basic Potato Seeds. Sustainability 2024, 16, 8552. [Google Scholar] [CrossRef]
- Richards, T. Compost Mixture Calculation Spreadsheet; Cornell Waste Management Institute: Ithaca, NY, USA, 2014; Volume 18, p. 2014. [Google Scholar]
- 2014/955/UE; Decisión de La Comisión, de 18 de Diciembre de 2014, Por La Que Se Modifica La Decisión 2000/532/CE, Sobre La Lista de Residuos, de Conformidad Con La Directiva 2008/98/CE Del Parlamento Europeo y Del Consejo Texto Pertinente a Efectos Del EEE. Publications Office of the EU: Luxembourg, 2014; p. Diario Oficial, L 370. pp. 44–86.
- Martínez-Alemán, S.R.; Hernández-Castillo, F.D.; Aguilar-González, C.N.; Rodríguez-Herrera, R. Extractos de Pulpa de Café: Una Revisión Sobre Antioxidantes Polifenólicos y Su Actividad Antimicrobiana. Investig. Y Cienc. De La Univ. Autónoma De Aguascalientes 2019, 73–79. [Google Scholar] [CrossRef]
- Sadzawka, A.; Carrasco, M.; Grez, R.; Mora, M. Metodos de Analisis de Compost; INIA, Ed.; Serie Actas INIA; Instituto de Investigaciones Agropecuarias: Santiago de Chile, Chile, 2005. [Google Scholar]
- De García, M. Guía Para El Análisis Bromatológico De Muestras De Forrajes; Universidad de Panamà: Panama City, Panama, 2015; p. 55. [Google Scholar]
- Murphy, J.; Riley, J. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Zbytniewski, R.; Buszewski, B. Characterization of Natural Organic Matter (NOM) Derived from Sewage Sludge Compost. Part 2: Multivariate Techniques in the Study of Compost Maturation. Bioresour. Technol. 2005, 96, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Pire, R.; Pereira, A. Propiedades Físicas de Composnentes de Sustratos de Uso Comun En al Horticultura Del Estado Lara, Venezuela. Propuesta Metodológica. Bioagro 2003, 15, 55–64. [Google Scholar]
- Reyes, I.; Valery, A.; Valduz, Z. Phosphate-Solubilizing Microorganisms Isolated from Rhizospheric and Bulk Soils of Colonizer Plants at an Abandoned Rock Phosphate Mine Phosphate-Solubilizing Microorganisms Isolated from Rhizospheric and Bulk Soils of Colonizer Plants at an Abandoned Roc. Plant Soil 2006, 287, 69–75. [Google Scholar] [CrossRef]
- Gerhardt, P.; Murray, R.; Wood, W.; Krieg, N. Methods for General and Molecular Bacteriology|Wageningen University and Research Library Catalog; American Society for Microbiology: Washington, DC, USA, 1994; ISBN 1-55581-048-9. [Google Scholar]
- Di Rienzo, J.; Balzarini, M.; Casanoves, F.; Gonzalez, L.; Tablada, E. InfoStat; Universidad Nacional de Córdoba: Córdoba, Argentina, 2021; p. 336. [Google Scholar]
- D’Hose, T.; Cougnon, M.; Vliegher, A.; Willekens, K.; Bockstaele, E.; Reheul, D. Farm Compost Application: Effects on Crop Performance. Compos. Sci. Util 2013, 20, 49–56. [Google Scholar] [CrossRef]
- van der Gaag, D.J.; van Noort, F.R.; Stapel-Cuijpers, L.H.M.; de Kreij, C.; Termorshuizen, A.J.; van Rijn, E.; Zmora-Nahum, S.; Chen, Y. The Use of Green Waste Compost in Peat-Based Potting Mixtures: Fertilization and Suppressiveness against Soilborne Diseases. Sci. Hortic. 2007, 114, 289–297. [Google Scholar] [CrossRef]
- Mehta, C.M.; Palni, U.; Franke-Whittle, I.H.; Sharma, A.K. Compost: Its Role, Mechanism and Impact on Reducing Soil-Borne Plant Diseases. Waste Manag. 2014, 34, 607–622. [Google Scholar] [CrossRef]
- Jain, M.S.; Paul, S.; Kalamdhad, A.S. Kinetics and Physics during Composting of Various Organic Wastes: Statistical Approach to Interpret Compost Application Feasibility. J. Clean. Prod. 2020, 255, 120324. [Google Scholar] [CrossRef]
- Bahramisharif, A.; Rose, L.E. Efficacy of Biological Agents and Compost on Growth and Resistance of Tomatoes to Late Blight. Planta 2019, 249, 799–813. [Google Scholar] [CrossRef]
- Leifert, C.; Pryce, S.; Lumsden, P.J.; Waites, W.M. Effect of Medium Acidity on Growth and Rooting of Different Plant Species Growing in Vitro. Plant Cell Tiss. Organ. Cult 1992, 30, 171–179. [Google Scholar] [CrossRef]
- Haney, R.L.; Haney, E.B.; Smith, D.R.; Harmel, R.D.; White, M.J. The Soil Health Tool—Theory and Initial Broad-Scale Application. Appl. Soil Ecol. 2018, 125, 162–168. [Google Scholar] [CrossRef]
- de Moraes, M.T.; Debiasi, H.; Franchini, J.C.; Bonetti, J.d.A.; Levien, R.; Schnepf, A.; Leitner, D. Mechanical and Hydric Stress Effects on Maize Root System Development at Different Soil Compaction Levels. Front. Plant Sci. 2019, 10, 1358. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Goyal, D. Soil Application of Fly Ash Based Biofertilizers for Increased Crop Production. Vegetos- Int. J. Plant. Res. 2014, 27, 291. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Woerden Van, F. What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Herndon, VA, USA, 2018; ISBN 978-1-4648-1329-0. [Google Scholar]
- Wang, Z.; Yang, T.; Mei, X.; Wang, N.; Li, X.; Yang, Q.; Dong, C.; Jiang, G.; Lin, J.; Xu, Y.; et al. Bio-Organic Fertilizer Promotes Pear Yield by Shaping the Rhizosphere Microbiome Composition and Functions. Microbiol. Spectr. 2022, 10, e0357222. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers Function as Key Player in Sustainable Agriculture by Improving Soil Fertility, Plant Tolerance and Crop Productivity. Microb. Cell. Fact 2014, 13, 66. [Google Scholar] [CrossRef]
- Liu, B.; Glenn, D.; Buckley, K. Trichoderma communities in soils from organic, sustainable, and conventional farms, and their relation with Southern blight of tomato. Soil Biol. Biochem. 2008, 40, 1124–1136. [Google Scholar] [CrossRef]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M.; Pathology, P. Trichoderma Species—Oportunistic, Avirulent. Plant Symbionts. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Schuster, A.; Schmoll, M. Biology and Biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 2010, 87, 787–799. [Google Scholar] [CrossRef]
- Vinci, G.; Cozzolino, V.; Mazzei, P.; Monda, H.; Spaccini, R.; Piccolo, A. An Alternative to Mineral Phosphorus Fertilizers: The Combined Effects of Trichoderma Harzianum and Compost on Zea Mays, as Revealed by 1H NMR and GC-MS Metabolomics. PLoS ONE 2018, 13, e0209664. [Google Scholar] [CrossRef]
- Priadi, D.; Mulyaningsih, E.S. Effects of Compost Type and Rootstock Length on Fruit and Vegetable Seedlings Growth in the Nursery. Biosaintifika J. Biol. Biol. Educ. 2016, 8, 301–307. [Google Scholar] [CrossRef]
- Lenhart, J.H. Compost as a Soil Amendment for Water Quality Treatment Facilities. In Low Impact Development; American Society of Civil Engineers: Wilmington, NC, USA, 2008; pp. 212–219. [Google Scholar]
- Chaudhuri, P.S.; Paul, T.K.; Dey, A.; Datta, M.; Dey, S.K. Effects of Rubber Leaf Litter Vermicompost on Earthworm Population and Yield of Pineapple (Ananas Comosus) in West Tripura, India. Int. J. Recycl. Org. Waste Agric 2016, 5, 93–103. [Google Scholar] [CrossRef]
- Miyamoto, H.; Shigeta, K.; Suda, W.; Ichihashi, Y.; Nihei, N.; Matsuura, M.; Tsuboi, A.; Tominaga, N.; Aono, M.; Sato, M.; et al. An Agroecological Structure Model of Compost—Soil—Plant Interactions for Sustainable Organic Farming. ISME Commun. 2023, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, M.; Liu, B.P.; Gullino, M.L.; Garibaldi, A. Microbial Enrichment of Compost with Biological Control Agents to Enhance Suppressiveness to Four Soil-Borne Diseases in Greenhouse. J. Plant Dis. Prot. 2011, 118, 45–50. [Google Scholar] [CrossRef]
- Campitelli, P.; Ceppi, S. Effects of Composting Technologies on the Chemical and Physicochemical Properties of Humic Acids. Geoderma 2008, 144, 325–333. [Google Scholar] [CrossRef]
- Bedolla-Rivera, H.I.; Conde-Barajas, E.; Galván-Díaz, S.L.; Gámez-Vázquez, F.P.; Álvarez-Bernal, D.; Xochilt Negrete-Rodríguez, M. de la L. Compost Quality Indexes (CQIs) of Biosolids Using Physicochemical, Biological and Ecophysiological Indicators: C and N Mineralization Dynamics. Agronomy 2022, 12, 2290. [Google Scholar] [CrossRef]
- Bernal, M.P.; Paredes, C.; Sánchez-Monedero, M.A.; Cegarra, J. Maturity and Stability Parameters of Composts Prepared with a Wide Range of Organic Wastes. Bioresour. Technol. 1998, 63, 91–99. [Google Scholar] [CrossRef]
- Watham, L.; Athokpam, H.S.; Chongtham, N.; Devi, K.N.; Singh, N.B.; Singh, N.G.; Sharma, P.T.; Heisnam, P. Phosphorus Status in the Soils of Imphal West District, Manipur (India). Int. J. Curr. Microbiol. App. Sci. 2018, 7, 3871–3877. [Google Scholar] [CrossRef]
- Yang, F.; Li, G.X.; Yang, Q.Y.; Luo, W.H. Chemosphere Effect of Bulking Agents on Maturity and Gaseous Emissions during Kitchen Waste Composting. Chemosphere 2013, 93, 1393–1399. [Google Scholar] [CrossRef]
- Liu, X.; Geng, B.; Zhu, C.; Li, L.; Francis, F. An Improved Vermicomposting System Provides More Efficient Wastewater Use of Dairy Farms Using Eisenia Fetida. Agronomy 2021, 11, 833. [Google Scholar] [CrossRef]
- Wang, X.-X.; Zhao, F.; Zhang, G.; Zhang, Y.; Yang, L. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study. Front. Plant Sci. 2017, 8, 1978. [Google Scholar] [CrossRef] [PubMed]
- Bandera, A. Inorganic Fertilizers (Ground and Foliar Application) Andorganic Fertilizer: Their Effects on the Growthand Yield of Pechay (Brassica Napus L. Subsp. Chinensis Var. Black Behi). Int. J. Agric. Sci. 2020, 6, 38–55. [Google Scholar] [CrossRef]
- Arancon, N.Q.; Edwards, C.A.; Babenko, A.; Cannon, J.; Galvis, P.; Metzger, J.D. Influences of Vermicomposts, Produced by Earthworms and Microorganisms from Cattle Manure, Food Waste and Paper Waste, on the Germination, Growth and Flowering of Petunias in the Greenhouse. Appl. Soil. Ecol. 2008, 39, 91–99. [Google Scholar] [CrossRef]
- He, Z.; Yang, X.; Kahn, B.; Stoffella, P.; Calvert, D. Plant Nutrition Benefits of Phosphorus, Potassium, Calcium, Magnesium, and Micronutrients from Compost Utilization. In Compost Utilization in Horticultural Cropping Systems; CRC Press: Boca Raton, FL, USA, 2001; pp. 307–317. ISBN 9780367397593. [Google Scholar]
Variable | Statistic | F | p-Value |
---|---|---|---|
Substrate | 0.03 | 237.16 | <0.0001 |
Heat treatment | 0.08 | 89.83 | <0.0001 |
T. asperellum | 0.010 | 68.79 | <0.0001 |
Substrate*Heat treatment | 0.65 | 4.04 | 0.0395 |
Substrate*T. asperellum | 0.37 | 12.52 | 0.0006 |
Heat treatment*T. asperellum | 0.06 | 117.42 | <0.0001 |
Heat treatment*Substrate*T. asperellum | 0.08 | 82.82 | <0.0001 |
Treatment | NºTuber Box | Weight Box (g) |
---|---|---|
VHWT | 51.67 ± 0.58 a | 345.2 ± 4.44 c |
VHT | 45 ± 3 ab | 434.3 ± 33.2 b |
CHT | 43.67 ± 4.51 abc | 176.89 ± 3.92 d |
VNHT | 37 ± 4 bcd | 82.27 ± 24.84 ef |
VNHWT | 34.33 ± 3.79 cd | 540.52 ± 36.89 a |
CHWT | 26.67 ± 3.51 de | 193.6 ± 17.06 d |
CNHWT | 23 ± 4 e | 159.1 ± 42.53 de |
CNHT | 5.67 ± 2.52 f | 27.28 ± 8.78 f |
Leaves | Steams | Nº- Tuber | Weight Box | Total Fungi | Azoto- Bacter | Bd | pH | EC | N | P | E4/E6 | OM | Ca++ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | 1 | |||||||||||||
Steams | 0.61 | 1 | ||||||||||||
No tuber | 0.7 | 0.64 | 1 | |||||||||||
Weight box | 0.64 | 0.63 | 0.55 | 1 | ||||||||||
Total fungi | 0.59 | 0.72 | 0.61 | 0.71 | 1 | |||||||||
Azotobacter | 0.53 | 0.35 | 0.54 | 0.7 | 0.69 | 1 | ||||||||
Bd | −0.51 | −0.74 | −0.52 | −0.66 | −0.71 | −0.51 | 1 | |||||||
pH | −0.62 | −0.66 | −0.66 | −0.59 | −0.35 | −0.21 | 0.69 | 1 | ||||||
EC | −0.33 | −0.52 | −0.42 | −0.5 | −0.66 | −0.64 | 0.84 | 0.39 | 1 | |||||
N | 0.63 | 0.55 | 0.4 | 0.56 | 0.34 | 0.16 | −0.59 | −0.72 | −0.24 | 1 | ||||
P | 0.39 | 0.39 | 0.57 | 0.47 | 0.49 | 0.63 | −0.63 | −0.42 | −0.68 | 0.21 | 1 | |||
E4/E6 | −0.62 | −0.7 | −0.62 | −0.68 | −0.45 | −0.32 | 0.76 | 0.9 | 0.46 | −0.85 | −0.47 | 1 | ||
OM | 0.36 | 0.41 | 0.41 | 0.56 | 0.47 | 0.39 | −0.8 | −0.68 | −0.66 | 0.43 | 0.67 | −0.66 | 1 | |
Ca++ | −0.46 | −0.77 | −0.54 | −0.54 | −0.64 | −0.47 | 0.78 | 0.51 | 0.68 | −0.34 | −0.53 | 0.5 | −0.4 | 1 |
Variable | Group a | Group b | Group c | |||
---|---|---|---|---|---|---|
V:H:T * V:H:WT V:NH:WT | C:H:T C:H:WT C:NH:WT | C:H:T V:NH:T | ||||
Min | Max | Min | Max | Min | Max | |
NºTuber_box | 34.33 | 51.67 | 29.67 | 33.67 | 5.67 | 37 |
Nº Leaves/plant | 37.33 | 47.33 | 17 | 28.33 | 14.67 | 20 |
Weight mini tubers box | 345.2 | 540.52 | 149.55 | 196.39 | 27.28 | 82.27 |
E4/E6 | 1.79 | 4.07 | 5.78 | 6.89 | 5.06 | 6.25 |
EC | 1.41 | 2.59 | 3.32 | 3.72 | 1.62 | 3.9 |
OM | 74.14 | 78.6 | 28.46 | 39.35 | 43.07 | 74.55 |
N | 2.53 | 3.76 | 1.16 | 2.36 | 1.79 | 2.07 |
P | 0.17 | 0.29 | 0.05 | 0.09 | 0.02 | 0.28 |
pH | 3.90 | 6.70 | 6.70 | 6.90 | 5.80 | 6.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña, H.; Diánez, F.; Ramírez, B.; Sulbarán, J.; Arias, K.; Huertas, V.; Santos, M. Compost and Vermicompost as Substrates Enriched with Trichoderma asperellum for the Production of Basic Potato Seed in the Venezuelan Andes. Horticulturae 2025, 11, 124. https://doi.org/10.3390/horticulturae11020124
Peña H, Diánez F, Ramírez B, Sulbarán J, Arias K, Huertas V, Santos M. Compost and Vermicompost as Substrates Enriched with Trichoderma asperellum for the Production of Basic Potato Seed in the Venezuelan Andes. Horticulturae. 2025; 11(2):124. https://doi.org/10.3390/horticulturae11020124
Chicago/Turabian StylePeña, Haydee, Fernando Diánez, Beatriz Ramírez, José Sulbarán, Karen Arias, Victoria Huertas, and Mila Santos. 2025. "Compost and Vermicompost as Substrates Enriched with Trichoderma asperellum for the Production of Basic Potato Seed in the Venezuelan Andes" Horticulturae 11, no. 2: 124. https://doi.org/10.3390/horticulturae11020124
APA StylePeña, H., Diánez, F., Ramírez, B., Sulbarán, J., Arias, K., Huertas, V., & Santos, M. (2025). Compost and Vermicompost as Substrates Enriched with Trichoderma asperellum for the Production of Basic Potato Seed in the Venezuelan Andes. Horticulturae, 11(2), 124. https://doi.org/10.3390/horticulturae11020124