The Effect of Extraction Technique on the Yield, Extraction Kinetics and Antioxidant Activity of Black Pepper (Piper nigrum L.) Ethanolic Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Reagents and Chemicals
2.3. Determining of Total Extractive Matter Content (TEM) in the Plant Material
2.4. Extraction Techniques
2.4.1. Maceration and Reflux Extraction
2.4.2. Ultrasonic Extraction
2.4.3. Soxhlet Extraction
2.5. Extraction Kinetics of TEM
2.6. Determination of Total Phenols Content
2.7. Determination of Total Flavonoid Content
2.8. Antioxidant Activity
2.8.1. DPPH Test
2.8.2. ABTS Test
2.8.3. FIC (Ferrous Ion-Chelating) Test
2.8.4. FRAP Test (Ferric Reducing Ability of Plasma)
2.8.5. Ferricyanide Method
2.9. Statistical Analysis
3. Results
3.1. Maceration and Reflux Extraction
3.1.1. Influence of Operating Conditions on the TEM Yield
3.1.2. Influence of Temperature and Extraction Time on the TEM Yield
3.2. The Influence of Extraction Technique on the TEM Yield
3.3. Extraction Kinetics
3.4. Content of Total Phenols and Flavonoids
3.5. Antioxidant Activity
3.5.1. DPPH Assay
3.5.2. ABTS Assay
3.5.3. FIC Assay
3.5.4. FRAP Assay
3.5.5. Ferricyanide Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milenković, A.N.; Stanojević, L.P. Black pepper: Chemical composition and biological activities. Adv. Technol. 2021, 10, 40–50. [Google Scholar] [CrossRef]
- Hossain, M.D.; Paul, B.K.; umar Roy, S.; Saha, G.C.; Begum, F.; Huq, D. Studies on fatty acids composition and some valuable nutrients of Piper nigrum Linn. (Gol Morich). Dhaka Univ. J. Sci. 2014, 62, 65–68. [Google Scholar] [CrossRef]
- Nahak, G.; Sahu, R.K. Phytochemical Evaluation and Antioxidant activity of Piper cubeba and Piper nigrum. J. Appl. Pharm. Sci. 2011, 1, 153. [Google Scholar]
- Zarai, Z.; Boujelbene, E.; Salem, N.B.; Gargouri, Y.; Sayari, A. Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum. LWT-Food Sci. Technol. 2013, 50, 634–641. [Google Scholar] [CrossRef]
- Prashant, A.; Rangaswamy, C.; Yadav, A.K.; Reddy, V.; Sowmya, M.N.; Madhunapantula, S. In vitro anticancer activity of ethanolic extracts of Piper nigrum against colorectal carcinoma cell lines. Int. J. Appl. Basic Med. Res. 2017, 7, 67. [Google Scholar] [CrossRef]
- Nirwane, A.M.; Bapat, A.R. Effect of methanolic extract of Piper nigrum fruits in Ethanol-CCl4 induced hepatotoxicity in Wistar rats. Der. Pharm. Lett. 2012, 4, 795–802. [Google Scholar]
- Tasleem, F.; Azhar, I.; Ali, S.N.; Perveen, S.; Mahmood, Z.A. Analgesic and anti-inflammatory activities of Piper nigrum L. Asian Pac. J. Trop. Med. 2014, 7, S461–S468. [Google Scholar] [CrossRef]
- Feng, Y.; Dunshea, F.R.; Suleria, H.A. Lc-esi-qtof/ms characterization of bioactive compounds from black spices and their potential antioxidant activities. J. Food Sci. Technol. 2020, 57, 4671–4687. [Google Scholar] [CrossRef]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Alhadrami, H.A.A.; Bhandari, A. Quantification of total phenol, flavonoid content and pharmacognostical evaluation including HPTLC fingerprinting for the standardization of Piper nigrum Linn fruits. Asian Pac. J. Trop. Biomed. 2015, 5, 101–107. [Google Scholar] [CrossRef]
- Maestri, D.M.; Nepote, V.; Lamarque, A.L.; Zygadlo, J.A. Natural products as antioxidants. Phytochem. Adv. Res. 2006, 37, 105–135. [Google Scholar]
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Stanojević, L.P.; Stanković, M.Z.; Cakić, M.D.; Nikolić, V.D.; Nikolić, L.B.; Ristić, D.P. The effect of the operation conditions and the extraction techniques on the yield, kinetics and composition of methanol extracts of Hieracium pilosella L. Chem. Ind. 2009, 63, 79–86. [Google Scholar] [CrossRef]
- Ponomarev, V.D. Эkstragirovanie lekarstvennogo sыrья. Medicina 1976, 48–49. [Google Scholar]
- Veljković, V.B.; Milenović, D.M. Extraction of resinoids from St. John’s wort (Hypericum perforatum L): II. Modeling of extraction kinetics. Chem. Ind. 2002, 56, 60–67. [Google Scholar] [CrossRef]
- Stanojević, L.; Stanković, M.; Nikolić, V.; Nikolić, L.; Ristić, D.; Čanadanovic-Brunet, J.; Tumas, V. Antioxidant activity and total phenolic and flavonoid contents of Hieracium pilosella L. extracts. Sensors 2009, 9, 5702–5714. [Google Scholar] [CrossRef]
- Lin, J.Y.; Tang, C.Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Stanojević, L.P.; Stanojević, J.S.; Cvetković, D.J.; Cakić, M.D.; Ilić, D.P. Antioxidant activity of ethanolic extract from cultivated strawberries’ leaves (Fragariae folium). Chem. Ind. 2015, 69, 567–576. [Google Scholar] [CrossRef]
- Stanojević, L.; Zvezdanović, J.; Danilović, B.; Cvetković, D.; Stanojević, J.; Ilić, D.; Cakić, M. The antioxidative and antimicrobial activity of the aqueous earth smoke (Fumaria officinalis L.): Extract. Adv. Technol. 2018, 7, 31–40. [Google Scholar] [CrossRef]
- Dinis, T.C.; Madeira, V.M.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Stanojević, L.P.; Zdravković, A.S.; Stanković, M.Z.; Cakić, M.D.; Nikolić, V.D.; Ilić, D.P. The antioxidant activity of aqueous-ethanolic extracts from nettle leaf (Urtica dioica L.). Savrem. Tehnol. 2013, 2, 51–59. [Google Scholar]
- Oyaizu, M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Stanković, M.Z.; Cakić, M.D.; Cvetković, D.M.; Veljković, V.B. Kinetics of extraction of resinoids from overground parts of sweet clover (Melilotus officinalis L.). J. Serb. Chem. Soc. 1994, 59, 735. [Google Scholar]
- Stanojević, L.P.; Stanković, M.Z.; Cvetković, D.J.; Cakić, M.D.; Ilić, D.P.; Nikolić, V.D.; Stanojević, J.S. The effect of extraction techniques on yield, extraction kinetics, and antioxidant activity of aqueous-methanolic extracts from nettle (Urtica dioica L.) leaves. Sep. Sci. Technol. 2016, 51, 1817–1829. [Google Scholar] [CrossRef]
- Stanojević, L.; Stanković, B.; Cakić, M.; Nikolić, V.; Ilić, D.; Perić, M. The influence of extraction techniques on the yield, kinetics and composition of aqueous extracts from dill fruit (Anethi fructus). Savrem. Tehnol. 2014, 3, 23–29. [Google Scholar] [CrossRef]
- Hidalgo, G.I.; Almajano, M.P. Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef]
- Biesaga, M. Influence of extraction methods on stability of flavonoids. J. Chromatogr. A 2011, 1218, 2505–2512. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef]
- Akbar, P.N.; Jahan, I.A.; Hossain, M.H.; Banik, R.; Nur, H.P.; Hossain, M.T. Antioxidant Capacity Of Piper longum And Piper nigrum Fruits Grown In Bangladesh. World J. Pharm. Res. 2014, 2, 931–941. [Google Scholar]
- Lee, J.G.; Chae, Y.; Shin, Y.; Kim, Y.J. Chemical composition and antioxidant capacity of black pepper pericarp. Appl. Biol. Chem. 2020, 63, 35. [Google Scholar] [CrossRef]
- Andrade, K.S.; Ferreira, S.R.S. Antioxidant activity of black pepper (Piper nigrum L.) oil obtained by super critical CO2. In Proceedings of the III Iberoamerican Conference on Super Critical Fluids, Cartagena de Indias, Colombia, 1–5 April 2013. [Google Scholar]
- Gülçin, İ. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int. J. Food Sci. Nutr. 2005, 56, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Andrade, K.S.; Trivellin, G.; Ferreira, S.R. Piperine-rich extracts obtained by high pressure methods. J. Supercrit. Fluids 2017, 128, 370–377. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchard, N.T.; Hartzfeld, P.W.; Riechel, T.L. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 1998, 46, 1887–1892. [Google Scholar] [CrossRef]
- Olalere, O.A.; Abdurahman, H.N.; Yunus, R.B.M.; Alara, O.R.; Ahmad, M.M.; Zaki, Y.H.; Abdlrhman, H.M. Parameter study, antioxidant activities, morphological and functional characteristics in microwave extraction of medicinal oleoresins from black and white pepper. J. Taibah Univ. Sci. 2018, 12, 730–737. [Google Scholar] [CrossRef]
- Krishna, A.G.; Lokesh, B.R.; Sugasini, D.; Kancheva, V.D. Evaluation of the antiradical and antioxidant properties of extracts from Indian red chili and black pepper by in vitro models. Bulg. Chem. Commun. 2010, 42, 62–69. [Google Scholar]
- Santos, J.S.; Brizola, V.R.A.; Granato, D. High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application. Food Chem. 2017, 214, 515–522. [Google Scholar] [CrossRef]
- Khokhar, S.; Apenten, R.K.O. Iron binding characteristics of phenolic compounds: Some tentative structure–activity relations. Food Chem. 2003, 81, 133–140. [Google Scholar] [CrossRef]
- Sruthi, D.; Zachariah, T.J. In vitro antioxidant activity and cytotoxicity of sequential extracts from selected black pepper (Piper nigrum L.) varieties and Piper species. Int. Food Res. J. 2017, 24, 75–85. [Google Scholar]
- Sunda, W.; Huntsman, S. Effect of pH, light, and temperature on Fe–EDTA chelation and Fe hydrolysis in seawater. Mar. Chem. 2003, 84, 35–47. [Google Scholar] [CrossRef]
- Kittisakulnam, S.; Saetae, D.; Suntornsuk, W. Antioxidant and antibacterial activities of spices traditionally used in fermented meat products. J. Food Process. Preserv. 2017, 41, e13004. [Google Scholar] [CrossRef]
Solvomodule, m/V | Ethanol, % | TEM Yield, g/100 g p.m. * |
---|---|---|
1:15 | 10% | 5.50 ± 0.294 bc |
30% | 4.70 ± 0.431 cd | |
50% | 5.70 ± 0.510 b | |
70% | 8.42 ± 0.038 a | |
96% | 4.25 ± 0.260 d |
Solvomodule, m/V | TEM Yield, g/100 g p.m. * |
---|---|
1:5 | 6.55 ± 0.053 c |
1:10 | 8.40 ± 0.015 b |
1:15 | 8.42 ± 0.038 b |
1:20 | 8.67 ± 0.058 a |
1:25 | 8.67 ± 0.072 a |
Time of Extraction | ||
---|---|---|
120 min | 180 min | |
Temperature (°C) | TEM Yield, g/100 g p.m.* | |
25 | 8.40 ± 0.015 | 9.10 ± 0.058 |
40 | 9.83 ± 0.008 | 10.00 ± 0.252 |
50 | 12.10 ± 0.100 | 12.57 ± 0.173 |
Boiling point | 14.37 ± 0.306 | 14.60 ± 0.300 |
Extraction Technique * | TEM Yield, g/100 g p.m. |
---|---|
Maceration, 180 min | 9.10 ± 0.058 |
Reflux extraction (40 °C), 180 min | 10.00 ± 0.252 |
Reflux extraction (50 °C), 180 min | 12.57 ± 0.173 |
Reflux extraction (boiling point), 180 min | 14.60 ± 0.300 |
Soxhlet extraction, 240 min | 18.77 ± 0.115 |
Ultrasonic extraction (25 °C), 60 min | 9.80 ± 0.200 |
Extraction Technique | FET, min | EL, % | Model A | Model B | ||
---|---|---|---|---|---|---|
b | k·104, min−1 | b | k·103, min−1 | |||
Maceration, 180 min | 90 | 41.60 | 0.367 | 5.30 | 0.362 | 0.95 |
Reflux extraction (40 °C), 180 min | 30 | 41.70 | 0.396 | 6.60 | 0.392 | 1.23 |
Reflux extraction (50 °C), 180 min | 30 | 52.90 | 0.514 | 7.33 | 0.510 | 1.77 |
Reflux extraction (boiling point), 180 min | 30 | 66.30 | 0.657 | 5.00 | 0.655 | 1.69 |
Soxhlet extraction, 240 min | 150 | 85.10 | 0.811 | 5.56 | 0.687 | 7.09 |
Ultrasonic extraction (25 °C), 60 min | 15 | 45.20 | 0.437 | 9.33 | 0.470 | 1.31 |
Extraction Technique * | Total Phenols, mgGAE/g d.e. | Total Flavonoids, mgRE/g d.e. |
---|---|---|
Maceration, 180 min | 69.54 ± 0.680 | 59.66 ± 0.234 |
Reflux extraction (boiling point), 180 min | 79.29 ± 0.393 | 97.56 ± 0.234 |
Ultrasonic extraction (25 °C), 60 min | 85.64 ± 0.393 | 73.15 ± 0.330 |
Soxhlet extraction, 240 min | 74.75 ± 0.393 | 53.26 ± 0.117 |
Sample | EC50, DPPH mg/mL | EC50, ABTS mg/mL | EC50, FIC mg/mL | FRAP Value, mg EFe2+/g d.e. | RP (Fe3+–Fe2+), mg GAE/g d.e. |
---|---|---|---|---|---|
Maceration, 180 min | 0.152 ± 0.001 | 1.730 ± 0.008 | 1.353 ± 0.0006 | 64.67 ± 0.35 | 25.10 ± 0.22 |
Reflux extraction (boiling point), 180 min | 0.112 ± 0.001 | 1.010 ± 0.002 | 1.146 ± 0.0155 | 67.82 ± 0.08 | 27.28 ± 0.22 |
Soxhlet extraction, 240 min | 0.120 ± 0.0007 | 1.110 ± 0.004 | 1.327 ± 0.0099 | 63.72 ± 0.05 | 22.27 ± 0.22 |
Ultrasonic extraction (25 °C), 60 min | 0.142 ± 0.0004 | 1.010 ± 0.005 | 1.646 ± 0.0046 | 66.64 ± 0.05 | 31.20 ± 0.22 |
BHT [18,19] | 0.021 ± 0.001 | 0.081 ± 0.001 | / | 810.92 ± 40.546 | / |
EDTA | / | / | 0.0517 ± 0.0006 | / | / |
Ascorbic acid | / | / | / | / | 176.93 ± 0.333 |
Correlation between total phenolic content and antioxidant activity (R2) | |||||
Total phenols | 0.0448 | 0.6765 | 0.2442 | 0.4337 | 0.6526 |
Total flavonoids | 0.2281 | 0.2341 | 0.1307 | 0.9253 | 0.3020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milenković, A.; Aleksovski, S.; Miteva, K.; Milenković, L.; Stanojević, J.; Nikolić, G.; Ilić, Z.S.; Stanojević, L. The Effect of Extraction Technique on the Yield, Extraction Kinetics and Antioxidant Activity of Black Pepper (Piper nigrum L.) Ethanolic Extracts. Horticulturae 2025, 11, 125. https://doi.org/10.3390/horticulturae11020125
Milenković A, Aleksovski S, Miteva K, Milenković L, Stanojević J, Nikolić G, Ilić ZS, Stanojević L. The Effect of Extraction Technique on the Yield, Extraction Kinetics and Antioxidant Activity of Black Pepper (Piper nigrum L.) Ethanolic Extracts. Horticulturae. 2025; 11(2):125. https://doi.org/10.3390/horticulturae11020125
Chicago/Turabian StyleMilenković, Aleksandra, Slavčo Aleksovski, Karmina Miteva, Lidija Milenković, Jelena Stanojević, Goran Nikolić, Zoran S. Ilić, and Ljiljana Stanojević. 2025. "The Effect of Extraction Technique on the Yield, Extraction Kinetics and Antioxidant Activity of Black Pepper (Piper nigrum L.) Ethanolic Extracts" Horticulturae 11, no. 2: 125. https://doi.org/10.3390/horticulturae11020125
APA StyleMilenković, A., Aleksovski, S., Miteva, K., Milenković, L., Stanojević, J., Nikolić, G., Ilić, Z. S., & Stanojević, L. (2025). The Effect of Extraction Technique on the Yield, Extraction Kinetics and Antioxidant Activity of Black Pepper (Piper nigrum L.) Ethanolic Extracts. Horticulturae, 11(2), 125. https://doi.org/10.3390/horticulturae11020125