Effect of Induced Polyploidy on Morphology, Antioxidant Activity, and Dissolved Sugars in Allium cepa L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Induction of Polyploidy
2.2. Karyotyping
2.3. Extraction (Maceration)
2.4. Antioxidant Capacity Determination
2.5. Dissolved Sugars
2.6. Data Analyses
3. Results
3.1. Survival Rate
3.2. Morphological Parameters
3.3. Chromosome Counting
3.4. Antioxidant Capacity
3.5. Water-Soluble Carbohydrates
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. 2013 Data [Online]. Production/Crops. 2015. Available online: https://www.fao.org/4/i3107e/i3107e00.htm (accessed on 1 May 2015).
- FAO. World Onion Production. Food and Agriculture Organization of the United Nations, 2012; Available online: http://faostat.fao.org (accessed on 27 February 2017).
- Arshad, M.S.; Sohaib, M.; Nadeem, M.; Saeed, F.; Imran, A.; Javed, A.; Amjad, Z.; Batool, S.M. Status and trends of nutraceuticals from onion and onion by-products: A critical review. Cogent Food Agric. 2017, 3, 1280254. [Google Scholar] [CrossRef]
- Slimestad, R.; Fossen, T.; Vågen, I.M. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem. 2007, 55, 10067–10080. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, L.D. CRC Handbook of Ayurvedic Medicinal Plants; CRC Press: Milton, UK, 2018. [Google Scholar]
- Bhaskar, P.; Tailor, A.K.; Sharma, H.P.; Singh, R.K.; Gupta, P.K. Medicinal, nutraceutical values and consumption pattern of onion (Allium cepa) in India: An Overview. Int. J. Curr. Microbiol. Appl. Sci. 2018, 6, 2629–2638. [Google Scholar]
- Bhil, M.M.S.; Bhamare, M.M.B.; Jadhav, M.P.T.; Borse, M.J.C.; Chaudhari, M.V.A. Formulation and evaluation of hair setting gel by using onion oil, baheda. Int. J. All Res. Writings 2020, 3, 91–99. [Google Scholar]
- Ly, T.N.; Chiharu, H.; Makoto, S.; Hiromune, A.; Koji, K.; Ryo, Y. Antioxidative compounds from the outer scales of onion. J. Agric. Food Chem. 2005, 53, 8183–8189. [Google Scholar] [CrossRef]
- Nakano, M.; Nomizu, T.; Mizunashi, K.; Suzuki, M.; Mori, S.; Kuwayama, S.; Hayashi, M.; Umehara, H.; Oka, E.; Kobayashi, H.; et al. Somaclonal variation in Tricyrtis hirta plants regenerated from 1-year-old embryogenic callus cultures. Sci. Hortic. 2006, 110, 366–371. [Google Scholar] [CrossRef]
- Chakraborti, S.P.; Vijayan, K.; Roy, B.N.; Quadri, S.M.H. In vitro induction in tetraploidy in mulberry (Morus alba L). Plant Cell Rep. 1998, 17, 794–803. [Google Scholar] [CrossRef]
- Blakeslee, A.F.; Avery, A.G. Methods of inducing doubling of chromosomes in plants: By treatment with colchicine. J. Hered. 1937, 28, 393–411. [Google Scholar] [CrossRef]
- Kim, Y.; Hahn, E.; Murthy, H.N.; Paek, K. Effect of polyploidy induction on biomass and ginsenoside accumulations in adventitious roots of ginseng. J. Plant Biol. 2004, 47, 356–360. [Google Scholar] [CrossRef]
- Sanguthai, O.; Sanguthai, S.; Kamemoto, H. Chromosome doubling of a Dendrobium hybrid with colchicine in meristem culture. Na Pua Okika O Hawaii Nei 1973, 12, 12–16. [Google Scholar]
- Dhooghe, E.; Van Laere, K.; Eeckhaut, T.; Leus, L.; Van Huylenbroeck, J. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult. 2011, 104, 359–373. [Google Scholar] [CrossRef]
- Ramsey, J.; Schemske, D.W. Pathways, mechanisms, and rates of polyploidy formation in flowering plants. Annu. Rev. Ecol. Syst. 1998, 29, 467–501. [Google Scholar] [CrossRef]
- Planchais, S.; Glab, N.; Inzé, D.; Bergonioux, C. Chemical inhibitors: A tool for plant cell cycle studies. FEBS Lett. 2000, 476, 78–83. [Google Scholar] [CrossRef]
- Sattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The polyploidy and its key role in plant breeding. Planta 2016, 243, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhou, Y.; Zhang, J.; Lu, X.; Zhang, F.; Shen, Q.; Wu, S.; Chen, Y.; Wang, T.; Tang, K. Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway. Biotechnol. Appl. Biochem. 2011, 58, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Abdoli, M.; Moieni, A.; Badi, H.N. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Echinacea purpurea (L.). Acta Physiol. Plant. 2013, 35, 2075–2083. [Google Scholar] [CrossRef]
- Tavan, M.; Mirjalili, M.H.; Karimzadeh, G. In vitro polyploidy induction: Changes in morphological, anatomical and phytochemical characteristics of Thymus persicus (Lamiaceae). Plant Cell Tissue Organ Cult. 2015, 122, 573–583. [Google Scholar] [CrossRef]
- Alessandra, B.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol. 2002, 79, 379–381. [Google Scholar] [CrossRef]
- Maxwell, S.R.J. Prospects for the use of antioxidant therapies. Drugs 1995, 49, 345–361. [Google Scholar] [CrossRef] [PubMed]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef]
- Sanchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Koneru, M.; Sahu, B.D.; Kumar, J.M.; Kuncha, M.; Kadari, A.; Kilari, E.K.; Sistla, R. Fisetin protects liver from binge alcohol-induced toxicity by mechanisms including inhibition of matrix metalloproteinases (MMPs) and oxidative stress. J. Funct. Foods 2016, 22, 588–601. [Google Scholar] [CrossRef]
- Lee, B.K.; Jung, Y.S. Allium cepa extract and quercetin protect neuronal cells from oxidative stress via PKC-epsilon inactivation/ERK1/2 activation. Oxid. Med. Cell. Longev. 2016, 2016, 2495624. [Google Scholar] [CrossRef] [PubMed]
- Bilyk, A.; Cooper, P.L.; Sapers, G.M. Varietal differences in distribution of quercetin and kaempferol in onion (Allium cepa L.) tissue. J. Agric. Food Chem. 1984, 32, 274–276. [Google Scholar] [CrossRef]
- Izawa, H.; Kohara, M.; Aizawa, K.; Suganuma, H.; Inakuma, T.; Watanabe, G.; Taya, K.; Sagai, M. Alleviative effects of quercetin and onion on male reproductive toxicity induced by diesel exhaust particles. Biosci. Biotechnol. Biochem. 2008, 72, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Bystrická, J.; Musilová, J.; Vollmannová, A.; Timoracká, M.; Kavalcová, P. Bioactive components of onion (Allium cepa L.)—A review. Acta Aliment. 2013, 42, 11–22. [Google Scholar] [CrossRef]
- Brodnitz, M.H.; Pollock, C.; Vallon, P. Flavor components of onion oil. J. Agric. Food Chem. 1969, 17, 760–763. [Google Scholar] [CrossRef]
- Lanzotti, V. The analysis of onion and garlic. J. Chromatogr. A 2006, 1112, 3–22. [Google Scholar] [CrossRef]
- O’Donoghue, E.M.; Somerfield, S.D.; Shaw, M.; Bendall, M.; Hedderly, D.; Eason, J.; Sims, I. Evaluation of carbohydrates in Pukekohe Longkeeper and Grano cultivars of Allium cepa. J. Agric. Food Chem. 2004, 52, 5383–5390. [Google Scholar] [CrossRef] [PubMed]
- Lohvinna, H.; Sándor, M.; Wink, M. Effect of Ethanol Solvents on Total Phenolic Content and Antioxidant Properties of Seed Extracts of Fenugreek (Trigonella foenum-graecum L.) Varieties and Determination of Phenolic Composition by HPLC-ESI-MS. Diversity 2022, 14, 7. [Google Scholar] [CrossRef]
- Bagheri, M.; Mansouri, H. Effect of induced polyploidy on some biochemical parameters in Cannabis sativa L. Appl. Biochem. Biotechnol. 2015, 175, 2366–2375. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.J.; Seo, D.Y.; Cho, G.Y.; Lee, M.S.; Moon, Y.J.; Boo, H.O.; Woo, S.H.; Kim, H.H. Effect of colchicine on chromosome doubling in Codonopsis lanceolata. Korean J. Plant Resour. 2016, 29, 347–354. [Google Scholar] [CrossRef]
- Sourour, A.; Ameni, B.; Mejda, C. Efficient production of tetraploid barley (Hordeum vulgare L.) by colchicine treatment of diploid barley. J. Exp. Biol. Agric. Sci. 2014, 2, 113–119. [Google Scholar]
- Pinheiro, A.A.; Pozzobon, M.T.; Do Valle, C.B. Duplication of the chromosome number of diploid Brachiaria brizantha plants using colchicine. Plant Cell Rep. 2000, 19, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Dhakhanamoorthy, D.; Selvaraj, R.; Chidambaram, A. Physical and chemical mutagenesis in Jatropha curcas L. to induce variability in seed germination, growth, and yield traits. Rom. J. Plant Biol. 2010, 55, 113–125. [Google Scholar]
- Pande, S.; Khetmalas, M. Biological effect of sodium azide and colchicine on seed germination and callus induction in Stevia rebaudiana. Asian J. Exp. Biol. Sci. 2012, 3, 93–98. [Google Scholar]
- Jan, T.A.; Kamli, R.; Imitiyaz, M.; Bahadur, S.J.; Ali, A.; Haq, Q.M.R. Dietary flavonoid quercetin and associated health benefits—An overview. Food Rev. Int. 2010, 26, 302–317. [Google Scholar] [CrossRef]
- Gallone, A.; Hunter, A.; Douglas, G.C. Polyploid induction in vitro using colchicine and oryzalin on He-be ‘Oratia Beauty”: Production and characterization of the vegetative traits. Sci. Hortic. 2014, 179, 59–66. [Google Scholar] [CrossRef]
- Padoan, D.; Mossad, A.; Chiancone, B.; Germana, M.A.; Khan, P.S.S.V. Ploidy levels in Citrus clementine affect leaf morphology, stomatal density and water content. Theor. Exp. Plant Phys. 2013, 25, 283–290. [Google Scholar] [CrossRef]
- Singh, V.V.; Jain, J.; Mishra, A.K. Evaluation of anticonvulsant and antioxidant activity of Senna occidentalis seed extracts. J. Drug Deliv. Ther. 2019, 9, 183–187. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Levin, D. The Role of Chromosomal Change in Plant Evolution; Oxford University Press: Oxford, UK; New York, NY, USA, 2002; ISBN 978-019-513-860-3. [Google Scholar]
- Ravandi, E.G.; Rezanejad, F.; Zolala, J.; Dehghan, E. The effects of chromosome-doubling on selected morphological and phytochemical characteristics of Cichorium intybus L. J. Hortic. Sci. Biotechnol. 2015, 88, 701–709. [Google Scholar] [CrossRef]
- Gao, S.L.; Chen, B.J.; Zhu, D.N. In vitro production and identification of autotetraploids of Scutellaria baicalensis. Plant Cell Tissue Organ Cult. 2002, 70, 289–293. [Google Scholar] [CrossRef]
- Singh, B.N.; Singh, B.R.; Singh, R.L.; Prakash, D.; Singh, D.P.; Sarma, B.K.; Upadhyay, G.; Singh, H.B. Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potent antioxidant and antimutagenic activities. Food Chem. Toxicol. 2009, 47, 1161–1167. [Google Scholar] [CrossRef]
- Iannicelli, J.; Guariniello, J.; Tossi, V.E.; Regalado, J.J.; Di Ciaccio, L.; Baren, C.M.V.; Pitta’Alvarez, S.I.; Escand’on, A.S. The “polyploid effect” in the breeding of aromatic and medicinal species. Sci. Hortic. 2020, 260, 108854. [Google Scholar] [CrossRef]
- Grange, S.; Leskovar, D.I.; Pike, L.M.; Cobb, B.G. Seedcoat structure and oxygen-enhanced environments affect germination of triploid watermelon. J. Am. Soc. Hortic. Sci. 2003, 128, 253–259. [Google Scholar] [CrossRef]
- Dhumal, K.; Datir, S.; Pandey, R. Assessment of bulb pungency level in different Indian cultivars of onion (Allium cepa L.). Food Chem. 2007, 100, 1328–1330. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, B.; Tian, J.R.; Chen, M.M.; Zhang, Y.Y.; Zhang, Z.H.; Ma, Y. Comparison of the morphology, growth and development of diploid and autotetraploid ‘Hanfu’ apple trees. Sci. Hortic. 2017, 225, 277–285. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Z.; Wang, L.; Deng, W.; Wei, H.; Liu, P.; Liu, M. Morphological, cytological and nutritional changes of autotetraploid compared to its diploid counterpart in Chinese jujube (Ziziphus jujuba Mill.). Sci. Hortic. 2019, 249, 263–270. [Google Scholar] [CrossRef]
Source of Variation | SS | df | MS | F | p-Value | F crit. |
---|---|---|---|---|---|---|
Between groups | 2487.609 | 2 | 1243.805 | 5.239149 | 0.009653 | 3.238096 |
Within groups | 9258.827 | 39 | 237.4058 | |||
Total | 11,746.44 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abubakar, M.A.; Gennadievna, N.E.; Mikhailovna, S.O.; Mikhailovna, K.E. Effect of Induced Polyploidy on Morphology, Antioxidant Activity, and Dissolved Sugars in Allium cepa L. Horticulturae 2025, 11, 154. https://doi.org/10.3390/horticulturae11020154
Abubakar MA, Gennadievna NE, Mikhailovna SO, Mikhailovna KE. Effect of Induced Polyploidy on Morphology, Antioxidant Activity, and Dissolved Sugars in Allium cepa L. Horticulturae. 2025; 11(2):154. https://doi.org/10.3390/horticulturae11020154
Chicago/Turabian StyleAbubakar, Mujahid Ado, Novitskaya Elena Gennadievna, Son Oksana Mikhailovna, and Kim Ekaterina Mikhailovna. 2025. "Effect of Induced Polyploidy on Morphology, Antioxidant Activity, and Dissolved Sugars in Allium cepa L." Horticulturae 11, no. 2: 154. https://doi.org/10.3390/horticulturae11020154
APA StyleAbubakar, M. A., Gennadievna, N. E., Mikhailovna, S. O., & Mikhailovna, K. E. (2025). Effect of Induced Polyploidy on Morphology, Antioxidant Activity, and Dissolved Sugars in Allium cepa L. Horticulturae, 11(2), 154. https://doi.org/10.3390/horticulturae11020154