Exploring the Grape Agrivoltaic System: Climate Modulation and Vine Benefits in the Puglia Region, Southeastern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. The Environment Monitoring
2.3. Vine Parameters
2.4. Electricity Production
2.5. Light Interception Efficiency and Land Equivalent Ratio
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil Moisture and Temperature
3.2. Microclimate
3.3. Spectral Implications
3.4. Light Interception Efficiency, Bud Fruitfulness, and Productivity of Grapevines
3.5. Electricity Generation
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Grasso, M.; Feola, G. Mediterranean Agriculture under Climate Change: Adaptive Capacity, Adaptation, and Ethics. Reg. Environ. Chang. 2012, 12, 607–618. [Google Scholar] [CrossRef]
- Hoff, H. Vulnerability of Ecosystem Services in the Mediterranean Region to Climate Changes in Combination with Other Pressures. In Regional Assessment of Climate Change in the Mediterranean; Navarra, A., Tubiana, L., Eds.; Advances in Global Change Research; Springer: Dordrecht, The Netherlands, 2013; Volume 51, pp. 9–29. ISBN 978-94-007-5771-4. [Google Scholar]
- Malek, Ž.; Verburg, P.H.; Geijzendorffer, I.R.; Bondeau, A.; Cramer, W. Global Change Effects on Land Management in the Mediterranean Region. Glob. Environ. Chang. 2018, 50, 238–254. [Google Scholar] [CrossRef]
- Dubrovský, M.; Hayes, M.; Duce, P.; Trnka, M.; Svoboda, M.; Zara, P. Multi-GCM Projections of Future Drought and Climate Variability Indicators for the Mediterranean Region. Reg. Environ. Chang. 2014, 14, 1907–1919. [Google Scholar] [CrossRef]
- Bortoluzzi, L.; Casal, S.; Cruz, R.; Peres, A.M.; Baptista, P.; Rodrigues, N. Influence of Interannual Climate Conditions on the Composition of Olive Oil from Centenarian Olive Trees. Agronomy 2023, 13, 2884. [Google Scholar] [CrossRef]
- Carvalho, D.; Pereira, S.C.; Silva, R.; Rocha, A. Aridity and Desertification in the Mediterranean under EURO-CORDEX Future Climate Change Scenarios. Clim. Chang. 2022, 174, 28. [Google Scholar] [CrossRef]
- Newbold, T.; Oppenheimer, P.; Etard, A.; Williams, J.J. Tropical and Mediterranean Biodiversity Is Disproportionately Sensitive to Land-Use and Climate Change. Nat. Ecol. Evol. 2020, 4, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, A.; Garrote, L. Adaptation Strategies for Agricultural Water Management under Climate Change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef]
- Zagaria, C.; Schulp, C.J.E.; Malek, Ž.; Verburg, P.H. Potential for Land and Water Management Adaptations in Mediterranean Croplands under Climate Change. Agric. Syst. 2023, 205, 103586. [Google Scholar] [CrossRef]
- Santillán, D.; Garrote, L.; Iglesias, A.; Sotes, V. Climate Change Risks and Adaptation: New Indicators for Mediterranean Viticulture. Mitig. Adapt. Strat. Glob. Chang. 2020, 25, 881–899. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine (OIV). Available online: https://www.oiv.int/what-we-do/global-report?oiv (accessed on 25 January 2025).
- Santillán, D.; Sotés, V.; Iglesias, A.; Garrote, L. Adapting Viticulture to Climate Change in the Mediterranean Region: Evaluations Accounting for Spatial Differences in the Producers-Climate Interactions. BIO Web Conf. 2019, 12, 01001. [Google Scholar] [CrossRef]
- Cuppari, R.I.; Branscomb, A.; Graham, M.; Negash, F.; Smith, A.K.; Proctor, K.; Rupp, D.; Tilahun Ayalew, A.; Getaneh Tilaye, G.; Higgins, C.W.; et al. Agrivoltaics: Synergies and Trade-Offs in Achieving the Sustainable Development Goals at the Global and Local Scale. Appl. Energy 2024, 362, 122970. [Google Scholar] [CrossRef]
- Waldron, A.; Garrity, D.; Malhi, Y.; Girardin, C.; Miller, D.C.; Seddon, N. Agroforestry Can Enhance Food Security While Meeting Other Sustainable Development Goals. Trop. Conserv. Sci. 2017, 10, 194008291772066. [Google Scholar] [CrossRef]
- Rezgui, F.; Rosati, A.; Lambarraa-Lehnhardt, F.; Paul, C.; Reckling, M. Assessing Mediterranean Agroforestry Systems: Agro-Economic Impacts of Olive Wild Asparagus in Central Italy. Eur. J. Agron. 2024, 152, 127012. [Google Scholar] [CrossRef]
- Gomez-Casanovas, N.; Mwebaze, P.; Khanna, M.; Branham, B.; Time, A.; DeLucia, E.H.; Bernacchi, C.J.; Knapp, A.K.; Hoque, M.J.; Miljkovic, N.; et al. Knowns, uncertainties, and challenges in agrivoltaics to sustainably intensify energy and food production. Cell Rep. Phys. Sci. 2023, 4, 101518. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining Food and Energy Production: Design of an Agrivoltaic System Applied in Arable and Vegetable Farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Warmann, E.; Jenerette, G.D.; Barron-Gafford, G.A. Agrivoltaic System Design Tools for Managing Trade-Offs between Energy Production, Crop Productivity and Water Consumption. Environ. Res. Lett. 2024, 19, 034046. [Google Scholar] [CrossRef]
- Magarelli, A.; Mazzeo, A.; Ferrara, G. Fruit Crop Species with Agrivoltaic Systems: A Critical Review. Agronomy 2024, 14, 722. [Google Scholar] [CrossRef]
- Turnley, J.W.; Grant, A.; Schull, V.Z.; Cammarano, D.; Sesmero, J.; Agrawal, R. The Viability of Photovoltaics on Agricultural Land: Can PV Solve the Food vs Fuel Debate? J. Clean. Prod. 2024, 469, 143191. [Google Scholar] [CrossRef]
- Bellone, Y.; Croci, M.; Impollonia, G.; Nik Zad, A.; Colauzzi, M.; Campana, P.E.; Amaducci, S. Simulation-Based Decision Support for Agrivoltaic Systems. Appl. Energy 2024, 369, 123490. [Google Scholar] [CrossRef]
- Zainali, S.; Qadir, O.; Parlak, S.C.; Lu, S.M.; Avelin, A.; Stridh, B.; Campana, P.E. Computational Fluid Dynamics Modelling of Microclimate for a Vertical Agrivoltaic System. Energy Nexus 2023, 9, 100173. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Wu, X.; Wang, W.; Yang, C.; Xu, G.; Wu, C.; Bao, E. Open-Field Agrivoltaic System Impacts on Photothermal Environment and Light Environment Simulation Analysis in Eastern China. Agronomy 2023, 13, 1820. [Google Scholar] [CrossRef]
- Tekie, S.; Zainali, S.; Zidane, T.E.K.; Ma Lu, S.; Guezgouz, M.; Zhang, J.; Amaducci, S.; Campana, P. Unraveling the Crop Yield Response under Shading Conditions through the Deployment of a Drought Index. Preprint 2024. [Google Scholar] [CrossRef]
- Varo-Martínez, M.; López-Bernal, A.; Fernández De Ahumada, L.M.; López-Luque, R.; Villalobos, F.J. Simulation Model for Electrical and Agricultural Productivity of an Olive Hedgerow Agrivoltaic System. J. Clean. Prod. 2024, 477, 143888. [Google Scholar] [CrossRef]
- Ukwu, U.N.; Muller, O.; Meier-Grüll, M.; Uguru, M.I. Agrivoltaics Shading Enhanced the Microclimate, Photosynthesis, Growth and Yields of Vigna Radiata Genotypes in Tropical Nigeria. Sci. Rep. 2025, 15, 1190. [Google Scholar] [CrossRef]
- Randle-Boggis, R.J.; Barron-Gafford, G.A.; Kimaro, A.A.; Lamanna, C.; Macharia, C.; Maro, J.; Mbele, A.; Hartley, S.E. Harvesting the Sun Twice: Energy, Food and Water Benefits from Agrivoltaics in East Africa. Renew. Sustain. Energy Rev. 2025, 208, 115066. [Google Scholar] [CrossRef]
- Al Mamun, M.A.; Garba, I.I.; Campbell, S.; Dargusch, P.; deVoil, P.; Aziz, A.A. Biomass Production of a Sub-Tropical Grass under Different Photovoltaic Installations Using Different Grazing Strategies. Agric. Syst. 2023, 208, 103662. [Google Scholar] [CrossRef]
- Luo, J.; Luo, Z.; Li, W.; Shi, W.; Sui, X. The Early Effects of an Agrivoltaic System within a Different Crop Cultivation on Soil Quality in Dry–Hot Valley Eco-Fragile Areas. Agronomy 2024, 14, 584. [Google Scholar] [CrossRef]
- Noor, N.F.M.; Reeza, A.A. Effects of Solar Photovoltaic Installation on Microclimate and Soil Properties in UiTM 50MWac Solar Park, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2022, 1059, 012031. [Google Scholar] [CrossRef]
- Juillion, P.; Lopez, G.; Fumey, D.; Lesniak, V.; Génard, M.; Vercambre, G. Shading Apple Trees with an Agrivoltaic System: Impact on Water Relations, Leaf Morphophysiological Characteristics and Yield Determinants. Sci. Hortic. 2022, 306, 111434. [Google Scholar] [CrossRef]
- Dupraz, C. Assessment of the Ground Coverage Ratio of Agrivoltaic Systems as a Proxy for Potential Crop Productivity. Agroforest Syst. 2024, 98, 2679–2696. [Google Scholar] [CrossRef]
- Ferrara, G.; Boselli, M.; Palasciano, M.; Mazzeo, A. Effect of Shading Determined by Photovoltaic Panels Installed above the Vines on the Performance of Cv. Corvina (Vitis vinifera L.). Sci. Hortic. 2023, 308, 111595. [Google Scholar] [CrossRef]
- Fagnano, M.; Fiorentino, N.; Visconti, D.; Baldi, G.M.; Falce, M.; Acutis, M.; Genovese, M.; Di Blasi, M. Effects of a Photovoltaic Plant on Microclimate and Crops’ Growth in a Mediterranean Area. Agronomy 2024, 14, 466. [Google Scholar] [CrossRef]
- Soto-Gómez, D. Integration of Crops, Livestock, and Solar Panels: A Review of Agrivoltaic Systems. Agronomy 2024, 14, 1824. [Google Scholar] [CrossRef]
- Disciglio, G.; Frabboni, L.; Tarantino, A.; Stasi, A. Association between Dynamic Agrivoltaic System and Cultivation: Viability, Yields and Qualitative Assessment of Medical Plants. Sustainability 2023, 15, 16252. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A. Potential and Actual Bud Fruitfulness: A Tool for Predicting and Managing the Yield of Table Grape Varieties. Agronomy 2021, 11, 841. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining Solar Photovoltaic Panels and Food Crops for Optimising Land Use: Towards New Agrivoltaic Schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024.
- Hassanpour Adeh, E.; Selker, J.S.; Higgins, C.W. Remarkable Agrivoltaic Influence on Soil Moisture, Micrometeorology and Water-Use Efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.; Ostle, N.J.; Whitaker, J. Solar Park Microclimate and Vegetation Management Effects on Grassland Carbon Cycling. Environ. Res. Lett. 2016, 11, 074016. [Google Scholar] [CrossRef]
- Choi, C.S.; Macknick, J.; Li, Y.; Bloom, D.; McCall, J.; Ravi, S. Environmental Co-Benefits of Maintaining Native Vegetation With Solar Photovoltaic Infrastructure. Earth’s Future 2023, 11, e2023EF003542. [Google Scholar] [CrossRef]
- Ali, N. Agrivoltaic System Success: A Review of Parameters That Matter. J. Renew. Sustain. Energy 2024, 16, 022703. [Google Scholar] [CrossRef]
- Choi, C.S.; Macknick, J.; McCall, J.; Bertel, R.; Ravi, S. Multi-Year Analysis of Physical Interactions between Solar PV Arrays and Underlying Soil-Plant Complex in Vegetated Utility-Scale Systems. Appl. Energy 2024, 365, 123227. [Google Scholar] [CrossRef]
- Amaducci, S.; Yin, X.; Colauzzi, M. Agrivoltaic Systems to Optimise Land Use for Electric Energy Production. Appl. Energy 2018, 220, 545–561. [Google Scholar] [CrossRef]
- Marrou, H.; Wery, J.; Dufour, L.; Dupraz, C. Productivity and Radiation Use Efficiency of Lettuces Grown in the Partial Shade of Photovoltaic Panels. Eur. J. Agron. 2013, 44, 54–66. [Google Scholar] [CrossRef]
- Şentürk, B.; Oylek, Y.; Kanar, Z.; Çelik, R.; Kurtuluş, G.; Ozden, T. The Impact of Photovoltaic Panels on the Environment and Yield Parameters in an Open Field Agrivoltaic System: A Case Study in Ayaş, Ankara. Preprint 2024. [Google Scholar] [CrossRef]
- Touil, S.; Richa, A.; Fizir, M.; Bingwa, B. Shading Effect of Photovoltaic Panels on Horticulture Crops Production: A Mini Review. Rev. Environ. Sci. Biotechnol. 2021, 20, 281–296. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics Provide Mutual Benefits across the Food–Energy–Water Nexus in Drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Glick, A.; Ali, N.; Bossuyt, J.; Calaf, M.; Cal, R.B. Utility-Scale Solar PV Performance Enhancements through System-Level Modifications. Sci. Rep. 2020, 10, 10505. [Google Scholar] [CrossRef]
- Williams, H.J.; Hashad, K.; Wang, H.; Max Zhang, K. The Potential for Agrivoltaics to Enhance Solar Farm Cooling. Appl. Energy 2023, 332, 120478. [Google Scholar] [CrossRef]
- Rosati, A.; Kyle, P.; Azad, D.; Maggie, G.; Serkan, A.; Kirschten, H.M.; Higgins, C.W. Agroforestry versus Agrivoltaic: Spectral Composition of Transmitted Radiation and Implications for Understory Crops. Agroforest Syst. 2024, 98, 2697–2710. [Google Scholar] [CrossRef]
- Dye, D.G. Spectral Composition and Quanta-to-energy Ratio of Diffuse Photosynthetically Active Radiation under Diverse Cloud Conditions. J. Geophys. Res. 2004, 109, 2003JD004251. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Luo, Y.; Yang, L.; Li, P.; Jin, X.; Jiang, J.; Liu, R.; Gao, X. A Comparative Study on the Surface Radiation Characteristics of Photovoltaic Power Plant in the Gobi Desert. Renew. Energy 2022, 182, 764–771. [Google Scholar] [CrossRef]
- Shepard, L.A.; Higgins, C.W.; Proctor, K.W. Agrivoltaics: Modeling the Relative Importance of Longwave Radiation from Solar Panels. PLoS ONE 2022, 17, e0273119. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Terashima, I.; Fujita, T.; Inoue, T.; Chow, W.S.; Oguchi, R. Green Light Drives Leaf Photosynthesis More Efficiently than Red Light in Strong White Light: Revisiting the Enigmatic Question of Why Leaves Are Green. Plant Cell Physiol. 2009, 50, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Trojak, M.; Skowron, E.; Sobala, T.; Kocurek, M.; Pałyga, J. Effects of Partial Replacement of Red by Green Light in the Growth Spectrum on Photomorphogenesis and Photosynthesis in Tomato Plants. Photosynth. Res. 2022, 151, 295–312. [Google Scholar] [CrossRef] [PubMed]
- Poupard, M.; Gallo, A.; Boulord, R.; Guillem, P.; Rolland, G.; Simonneau, T.; Christophe, A.; Pallas, B. Source-Sink Manipulations through Shading, Crop Load and Water Deficit Affect Plant Morphogenesis and Carbon Sink Priorities Leading to Contrasted Plant Carbon Status in Grapevine. Ann. Bot. 2024, mcae203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Gong, J.; Xiao, C.; Yang, X.; Li, X.; Zhang, Z.; Song, L.; Zhang, W.; Dong, X.; Hu, Y. Bupleurum Chinense and Medicago Sativa Sustain Their Growth in Agrophotovoltaic Systems by Regulating Photosynthetic Mechanisms. Renew. Sustain. Energy Rev. 2024, 189, 114024. [Google Scholar] [CrossRef]
- Jiang, S.; Tang, D.; Zhao, L.; Liang, C.; Cui, N.; Gong, D.; Wang, Y.; Feng, Y.; Hu, X.; Peng, Y. Effects of Different Photovoltaic Shading Levels on Kiwifruit Growth, Yield and Water Productivity under “Agrivoltaic” System in Southwest China. Agric. Water Manag. 2022, 269, 107675. [Google Scholar] [CrossRef]
- Tiffon-Terrade, B.; Simonneau, T.; Boulord, R.; Saurin, N.; Caffarra, A.; Romieu, C.; Veyret, M.; Rolland, G.; Jacquet, O.; Berud, F.; et al. Could Intermittent Shading, as Produced in Agrivoltaics, Mitigate Global Warming Effects on Grapevine? In Proceedings of the IVES Conference Series, GiESCO 2023, Ithaca, NY, USA, 16–21 July 2023. [Google Scholar]
- Tiffon-Terrade, B.; Simonneau, T.; Caffarra, A.; Boulord, R.; Pechier, P.; Saurin, N.; Romieu, C.; Fumey, D.; Christophe, A. Delayed Grape Ripening by Intermittent Shading to Counter Global Warming Depends on Carry-over Effects and Water Deficit Conditions. OENO One 2023, 57, 71–90. [Google Scholar] [CrossRef]
- Willockx, B.; Reher, T.; Lavaert, C.; Herteleer, B.; Van De Poel, B.; Cappelle, J. Design and Evaluation of an Agrivoltaic System for a Pear Orchard. Appl. Energy 2024, 353, 122166. [Google Scholar] [CrossRef]
- Gorjian, S.; Bousi, E.; Özdemir, Ö.E.; Trommsdorff, M.; Kumar, N.M.; Anand, A.; Kant, K.; Chopra, S.S. Progress and Challenges of Crop Production and Electricity Generation in Agrivoltaic Systems Using Semi-Transparent Photovoltaic Technology. Renew. Sustain. Energy Rev. 2022, 158, 112126. [Google Scholar] [CrossRef]
- Shalom, B.A.; Mittelman, G.; Kribus, A.; Vitoshkin, H. Optical and Electrical Performance of an Agrivoltaic Field with Spectral Beam Splitting. Renew. Energy 2023, 219, 119438. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, T.; Zhang, X.; Liu, Y.; Zhao, H.; Li, M.; Liu, W.; Zhu, X.-G. Solar Spectral Splitting for Improved Photosynthetic Yield and Energy Polygeneration. J. Clean. Prod. 2024, 442, 140948. [Google Scholar] [CrossRef]
- Fumey, D.; Lopez, G.; Persello, S.; Juillion, P.; Hitte, V.; Elamri, Y.; Tiffon-Terrade, B.; Christophe, A.; Simonneau, T.; Saurin, N.; et al. Dynamic Agrivoltaics, Climate Protection for Grapevine Driven by Artificial Intelligence. In Proceedings of the GiESCO 2023, International Viticulture and Enology Society, Ithaca, NY, USA, 16–21 July 2023. [Google Scholar]
- Willockx, B.; Lavaert, C.; Cappelle, J. Performance Evaluation of Vertical Bifacial and Single-Axis Tracked Agrivoltaic Systems on Arable Land. Renew. Energy 2023, 217, 119181. [Google Scholar] [CrossRef]
- Reher, T.; Willockx, B.; Schenk, A.; Bisschop, J.; Huyghe, Y.; Nicolaï, B.M.; Martens, J.A.; Diels, J.; Cappelle, J.; Van De Poel, B. Pear (Pyrus communis L. Cv. Conference) Has Shade-Tolerant Features Allowing for Consistent Agrivoltaic Crop Yield 2024. bioRxiv 2024. [Google Scholar] [CrossRef]
- Fattoruso, G.; Toscano, D.; Venturo, A.; Scognamiglio, A.; Fabricino, M.; Di Francia, G. A Spatial Multicriteria Analysis for a Regional Assessment of Eligible Areas for Sustainable Agrivoltaic Systems in Italy. Sustainability 2024, 16, 911. [Google Scholar] [CrossRef]
- Lazo, J.; Trujillo-Baute, E.; Watts, D. Land-Use Dilemma: Evaluating the Transition from Crops to Solar Pv Plants Using a Real Options Approach. Preprint 2024. [Google Scholar] [CrossRef]
Sensor | Parameter | Specification Range |
---|---|---|
TH Sense 2.0 model | Air temperature | Range −25 to +85 °C |
TH Sense 2.0 model | Relative humidity | Range 0 to 100%RH |
DW-7911 | Wind speed | Range 1 to 322 km/h |
PS-005-JB | Soil temperature Soil moisture | Range −20 °C to +50 °C |
PS-005-JB | Range 0% to field saturation |
Treatment | LIE | LER |
---|---|---|
Shade | 0.48 | 3.54 |
Full Sun | 0.94 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magarelli, A.; Mazzeo, A.; Ferrara, G. Exploring the Grape Agrivoltaic System: Climate Modulation and Vine Benefits in the Puglia Region, Southeastern Italy. Horticulturae 2025, 11, 160. https://doi.org/10.3390/horticulturae11020160
Magarelli A, Mazzeo A, Ferrara G. Exploring the Grape Agrivoltaic System: Climate Modulation and Vine Benefits in the Puglia Region, Southeastern Italy. Horticulturae. 2025; 11(2):160. https://doi.org/10.3390/horticulturae11020160
Chicago/Turabian StyleMagarelli, Andrea, Andrea Mazzeo, and Giuseppe Ferrara. 2025. "Exploring the Grape Agrivoltaic System: Climate Modulation and Vine Benefits in the Puglia Region, Southeastern Italy" Horticulturae 11, no. 2: 160. https://doi.org/10.3390/horticulturae11020160
APA StyleMagarelli, A., Mazzeo, A., & Ferrara, G. (2025). Exploring the Grape Agrivoltaic System: Climate Modulation and Vine Benefits in the Puglia Region, Southeastern Italy. Horticulturae, 11(2), 160. https://doi.org/10.3390/horticulturae11020160