Sulphur Dioxide Pads Can Reduce Gray Mold While Maintaining the Quality of Clamshell-Packaged ‘BRS Nubia’ Seeded Table Grapes Grown under Protected Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivar and Materials Used
2.2. Treatments
2.3. Storage and Assessments
2.4. Statistical Analysis
3. Results
3.1. Incidence of Gray Mold (%)
3.2. Mass Loss (%)
3.3. Shattered Berries (%)
3.4. Stem Browning
3.5. Berry Firmness (N)
3.6. TSS, TA, and TSS/TA Ratio
3.7. Color Index (CIRG)
3.8. Anthocyanins Concentration
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 17 March 2020).
- Ritschel, P.S.; Girardi, C.L.; Zanus, M.C.; Fajardo, T.V.M.; Maia, J.D.G.; Souza, R.T.; Naves, R.L.; Camargo, U.A. Novel Brazilian grape cultivars. Acta Hortic. 2015, 1082, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, J.P.; Roberto, S.R.; Colombo, R.C.; Gonçalves, L.S.A.; Koyama, R.; Shahab, M.; Ahmed, S.; de Souza, R.T. Bunch sizing of ‘BRS Nubia’ table grape by inflorescence management, shoot tipping and berry thinning. Sci. Hortic. 2017, 225, 764–770. [Google Scholar] [CrossRef]
- Hashim, A.F.; Youssef, K.; Abd-Elsalam, K.A. Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality. Eur. J. Plant Pathol. 2019, 154, 377–388. [Google Scholar] [CrossRef]
- Youssef, K.; de Oliveira, A.G.; Tischer, C.A.; Hussain, I.; Roberto, S.R. Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. Int. J. Biol. Macromol. 2019, 141, 247–258. [Google Scholar] [CrossRef]
- Kishino, A.A.; Roberto, S.R.; Genta, W. Implantação do pomar. In Viticultura Tropical: O Sistema de Produção de Uvas de Mesas do Paraná, 2nd ed.; Kishino, A.Y., Carvalho, S.L.C., Roberto, S.R., Eds.; Instituto Agronômico do Paraná: Londrina, Brazil, 2019; pp. 161–200. [Google Scholar]
- Domingues, A.R.; Roberto, S.R.; Ahmed, S.; Shahab, M.; Chaves Junior, O.J.; Sumida, C.H.; Souza, R.T. Postharvest techniques to prevent the incidence of botrytis mold of ‘BRS Vitoria’ seedless grape under cold storage. Horticulturae 2018, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Chaves, O.J., Jr.; Youssef, K.; Koyama, R.; Ahmed, S.; Dominguez, A.R.; Mühlbeier, D.T.; Roberto, S.R. Control of gray mold on clamshell-packaged ‘Benitaka’ table grapes using sulphur dioxide pads and perforated liners. Pathogens 2019, 8, 271. [Google Scholar]
- Stammler, G.; Brix, H.D.; Nave, B.; Gold, R.; Schoefl, U. Studies on the biological performance of boscalid and its mode of action. In Modern Fungicides and Antifungal Compounds V, Friedrichroda; Dehne, H.W., Deising, H.B., Gisi, U., Kuck, K.H., Russell, P.E., Lyr, H., Eds.; Deutsche PhytomedizinischeGesellschaft: Braunschweig, Germany, 2008; pp. 45–51. [Google Scholar]
- Romanazzi, G.; Feliziani, E. Botrytis cinerea (Gray Mold). In Post-Harvest Decay; Academic Press: New York, NY, USA, 2014; pp. 131–146. [Google Scholar]
- Zutahy, Y.; Lichter, A.; Kaplunov, T.; Lurie, S. Extended storage of ‘Red Globe’grapes in modified SO2 generating pads. Postharvest Biol. Technol. 2008, 50, 12–17. [Google Scholar] [CrossRef]
- Nelson, K.E.; Ahmedullah, M. Packaging decay-control systems for storage and transit of table grapes for export. Am. J. Enol. Vitic. 1976, 27, 74–79. [Google Scholar]
- Ahmed, S.; Roberto, S.R.; Domingues, A.R.; Shahab, M.; Chaves Junior, O.J.; Sumida, C.H.; Souza, R.T. Effects of different sulfur dioxide pads on botrytis mold in ‘Italia’ table grapes under cold storage. Horticulturae 2018, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Lichter, A.; Zutahy, Y.; Kaplunov, T.; Lurie, S. Evaluation of table grape storage in boxes with sulfur dioxide releasing pads with either an internal plastic liner or external wrap. HortTechnol. 2018, 18, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Roberto, S.R.; Youssef, K.; Colombo, R.C.; Shahab, M.; Chaves Junior, O.J.; Sumida, C.H.; Souza, R.T. Postharvest preservation of the new hybrid seedless grape, ‘BRS Isis’, grown under the double-cropping a year system in a subtropical area. Agronomy 2019, 9, 603. [Google Scholar] [CrossRef] [Green Version]
- Shahab, M.; Roberto, S.R.; Ahmed, S.; Colombo, R.C.; Silvestre, J.P.; Koyama, R.; de Souza, R.T. Anthocyanin accumulation and color development of ‘Benitaka’ table grape subjected to exogenous abscisic acid application at different timings of ripening. Agronomy 2019, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Youssef, K.; Roberto, S.R. Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table grapes. Postharvest Biol. Technol. 2014, 87, 95–102. [Google Scholar] [CrossRef]
- Ngcobo, M.E.K.; Opara, U.L.; Thiart, G.D. Effects of packaging liners on cooling rate and quality attributes of table grape (cv. Regal seedless). Pack. Tech. Sci. 2012, 25, 73–84. [Google Scholar] [CrossRef]
- Lijavetzky, D.; Carbonell-Bejerano, P.; Grimplet, J.; Bravo, G.; Flores, P.; Fenoll, J.; Hellín, P.; Oliveros, J.C.; Martínez-Zapater, J.M. Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS ONE 2012, 7, e39547. [Google Scholar] [CrossRef]
- Carreño, J.; Martinez, A. Proposal of an index for the objective evaluation of the color of red table grapes. Food Res. Int. 1995, 28, 373–377. [Google Scholar] [CrossRef]
- Mustonen, H.M. The efficacy of a range of sulfur dioxide generating pads against Botrytis cinerea infection and on out-turn quality of Calmeria table grapes. Aust. J. Exper. Agric. 1992, 32, 389–393. [Google Scholar] [CrossRef]
- Palou, L.; Crisosto, C.H.; Garner, D.; Basinal, L.M.; Smilanick, J.L.; Zoffoli, J.P. Minimum constant sulfur dioxide emission rates to control gray mold of cold stored table grapes. Am. J. Enol. Vitic. 2002, 52, 110–115. [Google Scholar]
- Henríquez, J.L.; Pinochet, S. Impact of ventilation area of the liner bag, in the performance of SO2 generator pads in boxed table grapes. Acta Hortic. 2016, 1144, 267–272. [Google Scholar] [CrossRef]
- Fernandez-Trujillo, J.P.; Obando-Ulloa, J.M.; Baró, R.; Martinez, J.A. Quality of two table grape cultivars treated with single or dual-phase release SO2 generators. J. App. Bot. Food Qual. 2008, 82, 1–8. [Google Scholar]
- Zoffoli, J.P.; Latorre, B.A.; Naranjo, P. Hairline, a postharvest cracking disorder in table grapes induced by sulfur dioxide. Postharvest Biol. Technol. 2008, 47, 90–97. [Google Scholar] [CrossRef]
- Sortino, G.; Allegra, A.; Passufiume, R.; Gianguzzi, G.; Gullo, G.; Gallota, A. Postharvest application of sulphur dioxide fumigation to improve quality and storage ability of ‘Red Globe’ grape cultivar during long cold storage. Chem. Eng. Trans. 2017, 58, 403–408. [Google Scholar]
- Youssef, K.; Sanzani, S.M.; Myrta, A.; Ippolito, A. Effect of a novel potassium bicarbonate-based formulation against Penicillium decay of oranges. J. Plant Pathol. 2014, 96, 419–424. [Google Scholar]
- Youssef, K.; Abo Rehab, M.A.; El-Ghany, K.M.A. Preliminary investigation of Verticillium wilt on mango trees (Mangifera indica L.) in Egypt. Am. Eurasian J. Sust Agric. 2014, 8, 50–58. [Google Scholar]
- Garganese, F.; Sanzani, S.M.; Di Rella, D.; Schena, L.; Ippolito, A. Pre-and postharvest application of alternative means to control Alternaria Brown spot of citrus. Crop Prot. 2019, 121, 73–79. [Google Scholar] [CrossRef]
- Lachhab, N.; Sanzani, S.M.; Fallanaj, F.; Youssef, K.; Nigro, F.; Boselli, M.; Ippolito, A. Protein hydrolysates as resistance inducers for controlling green mold of citrus fruit. Acta Hortic. 2015, 1065, 1593–1598. [Google Scholar] [CrossRef]
- Youssef, K.; Hashim, A.F.; Margarita, R.; Alghuthaymi, M.A.; Abd-Elsalam, K.A. Fungicidal efficacy of chemically-produced copper nanoparticles against Penicillium digitatum and Fusarium solani on citrus fruit. Philipp. Agric. Sci. 2017, 100, 69–78. [Google Scholar]
- Hussien, A.; Ahmed, Y.; Al-Essawy, A.; Youssef, K. Evaluation of different salt-amended electrolysed water to control postharvest molds of citrus. Trop. Plant Pathol. 2018, 43, 10–20. [Google Scholar] [CrossRef]
- Roberto, S.R.; Youssef, K.; Hashim, A.F.; Ippolito, A. Nanomaterials as alternative control means against postharvest diseases in fruit crops. Nanomaterials 2019, 9, 1752. [Google Scholar] [CrossRef]
- Youssef, K.; Hussien, A. Electrolysed water and salt solutions can reduce green and blue molds while maintain the quality properties of ‘Valencia’ late oranges. Postharvest Biol. Technol. 2020, 159, 111025. [Google Scholar] [CrossRef]
- Genta, W.; Tessmann, D.J.; Roberto, S.R.; Vida, J.B.; Colombo, L.A.; Scapin, C.R.; Ricce, W.S.; Clovis, L.R. Downy mildew management in protected cultivation of table grapes ‘BRS Clara’. Pesq. Agrop. Bras. 2010, 45, 1388–1395. [Google Scholar] [CrossRef] [Green Version]
- Shahab, M.; Roberto, S.R.; Ahmed, S.; Colombo, R.C.; Silvestre, J.P.; Renata, K.; de Souza, R.T. Relationship between anthocyanins and skin color of table grapes treated with abscisic acid at different stages of berry ripening. Sci. Hort. 2020, 259, 108859. [Google Scholar] [CrossRef]
Treatments | Gray Mold Incidence (%) | |||
---|---|---|---|---|
30 Days of CS | 45 Days of CS | 3 Days of SL | 6 Days of SL | |
Slow release—4 g | 0.00 ± 0.00 b z | 0.00 ± 0.00 b | 0.18 ± 0.18 c | 0.60 ± 0.39 b |
Slow release—7 g | 0.83 ± 0.31 ab | 1.84 ± 0.72 a | 3.15 ± 1.26 b | 10.95 ± 1.31a |
Dual release—5 g | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 c | 0.00 ± 0.00 b |
Dual release—8 g | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 c | 0.00 ± 0.00 b |
Control | 1.81 ± 1.09 a | 2.99 ± 0.68 a | 6.72 ± 1.70 a | 9.71 ± 2.96 a |
Treatments | Mass Loss (%) | Shattered Berries (%) | ||
---|---|---|---|---|
45 Days in CS | 6 Days of SL | 45 Days in CS | 6 Days of SL | |
Slow release—4 g | 3.66 ± 0.41 a z | 9.56 ± 1.52 a | 2.48 ± 0.91 ab | 5.16 ± 0.78 b |
Slow release—7 g | 3.84 ± 0.14 a | 9.06 ± 0.58 a | 1.69 ± 0.63 b | 6.12 ± 0.75 b |
Dual release—5 g | 4.01 ± 0.12 a | 7.70 ± 1.14 a | 3.51 ± 0.54 ab | 10.51 ± 0.84 a |
Dual release—8 g | 4.23 ± 1.36 a | 7.69 ± 1.19 a | 5.80 ± 1.82 a | 11.41 ± 1.52 a |
Control | 5.30 ± 1.46 a | 7.44 ± 0.33 a | 4.81 ± 0.71 ab | 11.87 ± 1.17 a |
Treatments | Stem Browning z | Berry Firmness (N) | ||
---|---|---|---|---|
45 Days in CS | 6 Days of SL | 45 Days in CS | 6 Days of SL | |
Slow release—4 g | 2.20 ± 0.14 b y | 2.75 ± 0.70 ab | 12.01 ± 0.21a | 12.27 ± 0.59 a |
Slow release—7 g | 2.05 ± 0.05 b | 2.55 ± 0.21 ab | 11.73 ± 0.85a | 12.06 ± 0.34 a |
Dual release—5 g | 2.00 ± 0.00 b | 2.85 ± 0.13 a | 11.61 ± 0.56a | 12.77 ± 0.69 a |
Dual release—8 g | 2.00 ± 0.00 b | 2.20 ± 0.16 b | 11.33 ± 0.46a | 11.77 ± 0.32 a |
Control | 2.60 ± 0.14 a | 3.05 ± 0.27 a | 11.62 ± 1.01a | 12.74 ± 0.35 a |
Treatments | TSS (°Brix) | TA (% of Tartaric Acid) | TSS/TA | |||
---|---|---|---|---|---|---|
45 Days CS | 6 Days SL | 45 Days CS | 6 Days SL | 45 Days CS | 6 Days SL | |
Slow release—4 g | 16.30 ± 0.23 a z | 16.10 ± 0.08 a | 0.86 ± 0.00 a | 0.83 ± 0.02 a | 18.94 ± 0.27 a | 19.42 ± 0.51 a |
Slow release—7 g | 15.98 ± 0.23 a | 15.93 ± 0.15 a | 0.89 ± 0.05 a | 0.82 ± 0.03 a | 18.06 ± 0.83 a | 19.51 ± 0.76 a |
Dual release—5 g | 16.58 ± 0.19 a | 15.78 ± 0.18 a | 0.88 ± 0.01 a | 0.86 ± 0.01 a | 18.89 ± 0.27 a | 18.31 ± 0.42 a |
Dual release—8 g | 16.20 ± 0.35 a | 15.65 ± 0.10 a | 0.91 ± 0.02 a | 0.86 ± 0.01 a | 17.75 ± 0.70 a | 18.31 ± 0.23 a |
Control | 16.95 ± 0.44 a | 16.15 ± 0.31 a | 0.88 ± 0.02 a | 0.80 ± 0.02 a | 19.23 ± 0.78 a | 20.14 ± 0.83 a |
Treatments | Color Index (CIRG) | |
---|---|---|
45 Days of CS | 6 Days of SL | |
Slow release—4 g | 2.04 ± 0.25 a z | 2.07 ± 0.07 b |
Slow release—7 g | 2.00 ± 0.26 a | 2.13 ± 0.03 b |
Dual release—5 g | 2.16 ± 0.11 a | 3.01 ± 0.55 a |
Dual release—8 g | 1.66 ± 0.37 a | 2.43 ± 0.04 ab |
Control | 2.04 ± 0.04 a | 2.35 ± 0.07 ab |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, K.; Junior, O.J.C.; Mühlbeier, D.T.; Roberto, S.R. Sulphur Dioxide Pads Can Reduce Gray Mold While Maintaining the Quality of Clamshell-Packaged ‘BRS Nubia’ Seeded Table Grapes Grown under Protected Cultivation. Horticulturae 2020, 6, 20. https://doi.org/10.3390/horticulturae6020020
Youssef K, Junior OJC, Mühlbeier DT, Roberto SR. Sulphur Dioxide Pads Can Reduce Gray Mold While Maintaining the Quality of Clamshell-Packaged ‘BRS Nubia’ Seeded Table Grapes Grown under Protected Cultivation. Horticulturae. 2020; 6(2):20. https://doi.org/10.3390/horticulturae6020020
Chicago/Turabian StyleYoussef, Khamis, Osmar Jose Chaves Junior, Débora Thaís Mühlbeier, and Sergio Ruffo Roberto. 2020. "Sulphur Dioxide Pads Can Reduce Gray Mold While Maintaining the Quality of Clamshell-Packaged ‘BRS Nubia’ Seeded Table Grapes Grown under Protected Cultivation" Horticulturae 6, no. 2: 20. https://doi.org/10.3390/horticulturae6020020
APA StyleYoussef, K., Junior, O. J. C., Mühlbeier, D. T., & Roberto, S. R. (2020). Sulphur Dioxide Pads Can Reduce Gray Mold While Maintaining the Quality of Clamshell-Packaged ‘BRS Nubia’ Seeded Table Grapes Grown under Protected Cultivation. Horticulturae, 6(2), 20. https://doi.org/10.3390/horticulturae6020020