Premature Apple Fruit Drop: Associated Fungal Species and Attempted Management Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Disease Survey
2.2. Isolation and Identification of the Causal Agents
2.3. Pathogenicity Test
2.4. Effect of Different Fungicides Against Causal Agents In Vitro
2.5. Field Application of Different Fungicides Against Fruit Drop Disease
2.6. Statistical Analysis
3. Results
3.1. Disease Survey
3.2. Isolation and Identification of the Causal Organisms
3.3. Pathogenicity of the Isolated Fungi
3.4. Effect of Different Fungicides against Causal Agents In Vitro
3.5. Field Application of Different Fungicides Against Fruit Drop Disease
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 10 March 2020).
- Holb, I.J. Fungal Disease Management in Environmentally Friendly Apple Production—A Review. In Climate Change, Intercropping, Pest Control and Beneficial Microorganisms; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2009; Volume 2. [Google Scholar]
- Meier, U. Growth Stages of Mono-and Dicotyledonous Plants, 2nd ed.; BBCH Monograph; Federal Biological Research Centre for Agriculture and Forestry: Berlin, Germany, 2001; 158 p. [Google Scholar]
- Raja, W.H.; UnNabi, S.; Kumawat, K.L.; Sharma, O.C. Pre harvest Fruit Drop: A Severe Problem in Apple. Indian Farmer 2017, 4, 609–614. [Google Scholar]
- Reuveni, M.; Sheglov, D.; Sheglov, N.; Ben-Arie, R.; Prusky, D. Sensivity of Red Delicious apple fruits at various phenologic stages to infection by Alternaria alternata and mouldy core control. Eur. J. Plant Pathol. 2002, 108, 421–427. [Google Scholar] [CrossRef]
- El-Mohamedy, R.S.R.; El-Sayed, H.Z. First Record of Core Rot Disease on Apple Fruit cv. Anna 106 Local Cultivar in Egypt. Int. J. Agric. Technol. 2015, 11, 1371–1380. [Google Scholar]
- Sazo, M.M.; Robinson, T.L. The “Split” Application Strategy for Pre-Harvest Fruit Drop Control in a Super Spindle Apple Orchard in Western NY. New York State Hort. Soc. 2013, 21, 21–24. [Google Scholar]
- Masia, A.; Ventura, M.; Gemma, H.; Sansavini, S. Effect of some plant growth regulator treatments on apple fruit ripening. Plant Growth Reg. 1998, 25, 127–134. [Google Scholar] [CrossRef]
- Youssef, K.; Abo Rehab, M.A.; Abd El-Ghany, K. Preliminary investigation of Verticillium wilt on mango trees (Mangifera indica L.) in Egypt. Am.-Eurasian J. Sustain. Agric. 2014, 8, 50–58. [Google Scholar]
- Abd-Elsalam, K.A.; Youssef, K.; Almoammar, H. First morphogenetic identification of Fusarium solani isolated from orange fruit in Egypt. Phyton 2015, 84, 128–131. [Google Scholar]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi, 4th ed.; Macmillan Publ. Co.: New York, NY, USA, 1986; 218 p. [Google Scholar]
- Khamis, M.A.; Bakry, K.A.; Abd El-Moty, S.A. Improving growth and productivity of guava trees. Minia J. Agric. Res. Dev. 2007, 27, 51–70. [Google Scholar]
- Hussien, A.; Ahmed, Y.; Al-Essawy, A.; Youssef, K. Evaluation of different salt-amended electrolysed water to control postharvest moulds of citrus. Trop. Plant Pathol. 2018, 43, 10–20. [Google Scholar] [CrossRef]
- Lachhab, N.; Sanzani, S.M.; Fallanaj, F.; Youssef, K.; Nigro, F.; Boselli, M.; Ippolito, A. Protein hydrolysates as resistance inducers for controlling green mould of citrus fruit. Acta Hort. 2015, 1065, 1593–1598. [Google Scholar] [CrossRef]
- Youssef, K.; Mustafa, Z.M.M.; Mounir, G.A.; Abo Rehab, M.E.A. Preliminary Studies on Fungal Species Associated with Guava Fruit Drop Disease and Possible Management. Egypt. J. Phytopathol. 2015, 43, 11–23. [Google Scholar]
- Deverall, B.J. Biochemical changes in infection droplets containing spores of Botrytis spp. incubated in the seed cavities of pods of bean (Vicia faba L.). Ann. Appl. Biol. 1967, 59, 375–387. [Google Scholar] [CrossRef]
- Youssef, K.; Hashim, A.F.; Margarita, R.; Alghuthaymi, M.A.; Abd-Elsalam, K.A. Fungicidal efficacy of chemically-produced copper nanoparticles against Penicillium digitatum and Fusarium solani on citrus fruit. Philipp. Agric. Sci. 2017, 100, 69–78. [Google Scholar]
- Hashim, A.F.; Youssef, K.; Abd-Elsalam, K.A. Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality. Eur. J. Plant Pathol. 2019, 154, 377–388. [Google Scholar] [CrossRef]
- Youssef, K.; de Oliveira, A.G.; Tischer, C.A.; Hussain, I.; Roberto, S.R. Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. Int. J. Biol. Macrom. 2019, 141, 247–258. [Google Scholar] [CrossRef]
- Arseneault, M.H.; Cline, J.A. A review of apple preharvest fruit drop and practices for horticultural management. Sci. Hortic. 2016, 211, 40–52. [Google Scholar] [CrossRef]
- Gao, L.L.; Zhang, Q.; Sun, X.Y.; Jiang, L.; Zhang, R.; Sun, G.Y.; Zha, Y.L.; Biggs, A.R. Etiology of moldy core, core browning, and core rot of Fuji apple in China. Plant Dis. 2013, 97, 510–516. [Google Scholar] [CrossRef] [Green Version]
- Combrink, J.C.; Kotzl, J.M.; Wehner, F.C.; Grobbelaar, C.J. Fungi associated with core rot of Starking apples in South Africa. Phytophylactica 1985, 17, 81–83. [Google Scholar]
- Combrink, J.C.; Visagie, T.R.; Grobbelaar, C. Variation in the incidence and occurrence in different production areas of core rot in Starking apples. Deciduous Fruit Grow. 1984, 34, 88–89. [Google Scholar]
- Racskó, J.; Leite, G.B.; Petri, J.L.; Zhongfu, S.; Wang, Y.; Szabó, Z.; Soltész, M.; Nyéki, J. Fruit drop: The role of inner agents and environmental factors in the drop of flowers and fruits. Int. J. Hort. Sci. 2007, 13, 13–23. [Google Scholar] [CrossRef]
- Holb, I.J. The brown rot fungi of fruit crops (Monilinia spp.) I. Important features of their biology (Review). Int. J. Hortic. Sci. 2003, 9, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Holb, I.J. The brown rot fungi of fruit crops (Monilinia spp.) II. Important features of their epidemiology (Review). Int. J. Hortic. Sci. 2004, 10, 17–33. [Google Scholar] [CrossRef]
- Holb, I.J. The brown rot fungi of fruit crops (Monilinia spp.) III. Important features of their disease management (Review). Int. J. Hortic. Sci. 2004, 10, 31–48. [Google Scholar] [CrossRef]
- Belisario, A.; Santori, A.; Potente, G.; Fiorin, A.; Saphy, B.; Reigne, J.L.; Pezzini, C.; Bortolin, E.; Valier, A. Brown Apical Necrosis (BAN): A Fungal Disease Causing Fruit Drop of English Walnut. Acta Hort. 2010, 861, 449–452. [Google Scholar] [CrossRef]
- Bravin, E.; Kilchenmann, A.; Leumann, M. Six hypotheses for profitable apple production based on the economic work-package within the ISAFRUIT Project. J. Hortic. Sci. Biotechnol. 2009, 84, 164–167. [Google Scholar] [CrossRef]
- Alghuthaymi, M.A.; Ali, A.A.; Hashim, A.F.; Abd-Elsalam, A. A rapid method for the detection of Ralstonia solanacerum by isolation DNA from infested potato tubers based on magnetic nanotools. Philipp. Agric. Sci. 2016, 99, 113–118. [Google Scholar]
- Khandaker, M.M.; Idris, N.S.; Ismail, S.Z.; Majrashi, A.; Alebedi, A.; Mat, N. Causes and Prevention of Fruit Drop of Syzygium samarangense (Wax Apple): A Review. Adv. Environ. Biol. 2016, 10, 112–123. [Google Scholar]
- Crane, J.H.; Balerdi, C.F. Guava Growing in the Florida Home Landscape. Available online: https://edis.ifas.ufl.edu/pdffiles/MG/MG04500.pdf (accessed on 25 May 2020).
- Singh, Z.; Malik, A.U.; Davenport, T.L. Fruit drop in mango. Hort. Rev. 2005, 31, 111–153. [Google Scholar]
- Marques, J.P.R.; Amorim, L.; Spósito, M.B.; Appezzato-da-Glória, B. Histopathology of postbloom fruit drop caused by Colletotrichum acutatum in citrus flowers. Eur. J. Plant Pathol. 2013, 135, 783–790. [Google Scholar] [CrossRef]
- Taha, F.S.; Wagdy, S.M.; Hassanein, M.M.M.; Hamed, S.F. Evaluation of the biological activity of sunflower hull extracts. Grasas y Aceites 2012, 63, 184–193. [Google Scholar]
Locations | Disease Incidence (%) | |
---|---|---|
2017 Season | 2018 Season | |
Nubaria region (Beheira Governorate) | 69.7 ± 1.46a z | 75.3 ± 1.13a |
Cairo–Alexandria desert road (Giza Governorate) | 61.5 ± 1.03a | 73.5 ± 1.45b |
Fungus | Nubaria Region (Beheira Governorate) | Cairo–Alexandria Desert Road (Giza Governorate) | Mean (%) |
---|---|---|---|
Alternaria alternata | 62.0 ± 1.15a z | 58.0 ± 2.30a | 60.0 |
Cladosporium cladosporioides | 18.0 ± 2.03b | 20.0 ± 0.88b | 19.0 |
Fusarium semitectum | 12.0 ± 1.16b | 10.0 ± 0.58b | 11.0 |
Penicillium spp. | 8.0 ± 0.67b | 12.0 ± 1.15b | 10.0 |
Pathogen | Dropped Fruits (%) | |
---|---|---|
Petioles | Fruits | |
Alternaria alternata | 62.0 ± 0.88b z | 52.0 ± 2.31b |
Cladosporium cladosporioides | 40.0 ± 1.15c | 30.0 ± 2.91c |
Fusarium semitectum | 22.0 ± 1.45d | 18.0 ± 1.15d |
Penicillium spp. | 8.0 ± 1.15e | 6.0 ± 1.15e |
Mixed fungi | 78.0 ± 0.88a | 62.0 ± 2.30a |
Control | 0.0 ± 0.0f | 0.0 ± 0.0e |
Active Ingredient | Fungal Growth (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
A. alternata | C. cladosporioides | F. semitectum | |||||||
100 | 200 | 400 | 100 | 200 | 400 | 100 | 200 | 400 | |
(mg·L−1) | |||||||||
Pyraclostrobin + boscalid (38% WG) | 51.3 ± 1.33c z | 26.7 ± 0.66c | 0.0 ± 0.0b | 58.7 ± 2.40b | 18.7 ± 0.67b | 0.0 ± 0.0b | 49.3 ± 0.66b | 28.7 ± 0.67b | 0.0 ± 0.0b |
Difenoconazole (25% EC) | 29.3 ± 0.67d | 0.0 ± 0.0d | 0.0 ± 0.0b | 20.7 ± 0.66d | 0.0 ± 0.0c | 0.0 ± 0.0b | 41.3 ± 0.67c | 23.3 ± 0.66c | 0.0 ± 0.0b |
Carbendazim (50% WP) | 58.0 ± 2.0b | 39.3 ± 0.66b | 0.0 ± 0.0b | 27.3 ± 1.3c | 0.0 ± 0.0c | 0.0 ± 0.0b | 18.7 ± 0.66d | 0.0 ± 0.0d | 0.0 ± 0.0b |
Thiophanate methyl (70% WP) | 22.0 ± 1.15e | 0.0 ± 0.0d | 0.0 ± 0.0b | 16.7 ± 0.67d | 0.0 ± 0.0c | 0.0 ± 0.0b | 15.3 ± 0.67e | 0.0 ± 0.0d | 0.0 ± 0.0b |
H2O | 90.0 ± 0.0a | 90.0 ± 0.0a | 90.0 ± 0.0a | 90.0 ± 0.0a | 90.0 ± 0.0a | 90.0 ± 0.0a | 90.0 ± 0.0a | 90.0 ± 0.0a | 90.0 ± 0.0a |
Active Ingredient | Applied Dose | Dropped Fruits (%) | Efficiency (%) |
---|---|---|---|
Pyraclostrobin + boscalid (38% WG) | 30 g·100 L−1 | 12.0 ± 0.63bc z | 70.29 |
Difenoconazole (25% EC) | 50 mL·100 L−1 | 10.6 ± 0.98c | 73.76 |
Carbendazim (50% WP) | 50 g·100 L−1 | 13.6 ± 1.32b | 66.34 |
Thiophanate methyl (70% WP) | 65 g·100 L−1 | 7.4 ± 0.50d | 81.68 |
Control | - | 40.4 ± 0.75a | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, K.; Roberto, S.R. Premature Apple Fruit Drop: Associated Fungal Species and Attempted Management Solutions. Horticulturae 2020, 6, 31. https://doi.org/10.3390/horticulturae6020031
Youssef K, Roberto SR. Premature Apple Fruit Drop: Associated Fungal Species and Attempted Management Solutions. Horticulturae. 2020; 6(2):31. https://doi.org/10.3390/horticulturae6020031
Chicago/Turabian StyleYoussef, Khamis, and Sergio Ruffo Roberto. 2020. "Premature Apple Fruit Drop: Associated Fungal Species and Attempted Management Solutions" Horticulturae 6, no. 2: 31. https://doi.org/10.3390/horticulturae6020031
APA StyleYoussef, K., & Roberto, S. R. (2020). Premature Apple Fruit Drop: Associated Fungal Species and Attempted Management Solutions. Horticulturae, 6(2), 31. https://doi.org/10.3390/horticulturae6020031