Tomato Breeding for Sustainable Crop Systems: High Levels of Zingiberene Providing Resistance to Multiple Arthropods
Abstract
:1. Introduction
2. Material and Methods
2.1. Location
2.2. Tomato Genotypes and Growing Seedlings
2.3. Arthropod Rearing
2.4. Host Selection Bioassays
2.4.1. Tetranychus urticae
2.4.2. Bemisia tabaci
2.4.3. Tuta absoluta
2.5. Data Analysis
3. Results
3.1. Tetranychus Urticae Host Selection
3.2. Bemisia tabaci Host Selection
3.3. Tuta Absoluta Host Selection
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fantke, P.; Jolliet, O. Life cycle human health impacts of 875 pesticides. Int. J. Life Cycle Assess. 2016, 21, 722–733. [Google Scholar] [CrossRef] [Green Version]
- Pang, N.; Fan, X.; Fantke, P.; Zhao, S.; Hu, J. Dynamics and dietary risk assessment of thiamethoxam in wheat, lettuce and tomato using field experiments and computational simulation. Environ. Pollut. 2020, 256, 113285. [Google Scholar] [CrossRef] [PubMed]
- Michelotto, M.D.; Carrega, W.C.; Pirotta, M.Z.; de Godoy, I.J.; Lourencao, A.L.; Martins, A.L.M. Control of thips (‘Enneothips flavens’ Moulton.) with synthetic and biological insecticides in different peanut genotypes. Aust. J. Crop Sci. 2019, 13, 1074. [Google Scholar] [CrossRef]
- Seki, K. Leaf-morphology-assisted selection for resistance to two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in carnations (Dianthus caryophyllus L.). Pest Manag. Sci. 2016, 72, 1926–1933. [Google Scholar] [CrossRef] [PubMed]
- Stout, M.J.; Kurabchew, H.; Leite, G.L.D. Host-Plant Resistance in Tomato. In Sustainable Management of Arthropod Pests of Tomato; Elsevier: Amsterdam, The Netherlands, 2018; pp. 217–236. [Google Scholar]
- Dawood, M.H.; Snyder, J.C. The alcohol and epoxy alcohol of zingiberene, produced in trichomes of wild tomato, are more repellent to spider mites than zingiberene. Front. Plant Sci. 2020, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Maluf, W.R.; de Fátima Silva, V.; das Graças Cardoso, M.; Gomes, L.A.A.; Neto, Á.C.G.; Maciel, G.M.; Nízio, D.A.C. Resistance to the South American tomato pinworm Tuta absoluta in high acylsugar and/or high zingiberene tomato genotypes. Euphytica 2010, 176, 113–123. [Google Scholar] [CrossRef]
- Dias, D.; Resende, J.; Marodin, J.; Matos, R.; Lustosa, I.; Resende, N. Acyl sugars and whitefly (Bemisia tabaci) resistance in segregating populations of tomato genotypes. Genet. Mol. Res. 2016, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lucini, T.; Faria, M.V.; Rohde, C.; Resende, J.T.V.; de Oliveira, J.R.F. Acylsugar and the role of trichomes in tomato genotypes resistance to Tetranychus urticae. Arthropod-Plant Interact. 2015, 9, 45–53. [Google Scholar] [CrossRef]
- Goiana, E.S.; Dias-Pini, N.S.; Muniz, C.R.; Soares, A.A.; Alves, J.C.; Vidal-Neto, F.C.; Bezerra Da Silva, C.S. Dwarf-cashew resistance to whitefly (Aleurodicus cocois) linked to morphological and histochemical characteristics of leaves. Pest Manag. Sci. 2020, 76, 464–471. [Google Scholar] [CrossRef]
- Cherif, A.; Verheggen, F. A review of Tuta absoluta (Lepidoptera: Gelechiidae) host plants and their impact on management strategies. Biotechnol. Agron. Société Environ. 2019, 23, 270–278. [Google Scholar]
- Silva, A.A.D.; Carvalho, R.D.C.; Andrade, M.C.; Zeist, A.R.; Resende, J.T.V.D.; Maluf, W.R. Glandular trichomes that mediate resistance to green peach aphid in tomato genotypes from the cross between S. galapagense and S. lycopersicum. Acta Sci. Agron. 2019, 41, e42704. [Google Scholar] [CrossRef] [Green Version]
- Follett, P.A. Insect-plant interactions: Host selection, herbivory, and plant resistance–an introduction. Entomol. Exp. Appl. 2017, 162, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Lucini, T.; Resende, J.; Oliveira, J.; Scabeni, C.; Zeist, A.; Resende, N. Repellent effects of various cherry tomato accessions on the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Genet. Mol. Res. 2016, 15, 10.4328. [Google Scholar] [CrossRef] [PubMed]
- Sohabi, F.; Nooryazdan, H.; Gharati, B.; Saeidi, Z. Plant resistance to the moth Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato cultivars. Neotrop. Entomol. 2017, 46, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Savi, P.; De Moraes, G.; Junior, A.B.; Melville, C.; Carvalho, R.; LourenÇÃO, A.; Andrade, D. Impact of leaflet trichomes on settlement and oviposition of Tetranychus evansi (Acari: Tetranychidae) in African and South American tomatoes. Syst. Appl. Acarol. 2019, 24, 2559–2576. [Google Scholar]
- Yao, Q.; Peng, Z.; Tong, H.; Yang, F.; Xing, G.; Wang, L.; Zheng, J.; Zhang, Y.; Su, Q. Tomato plant flavonoids increase whitefly resistance and reduce spread of tomato yellow leaf curl virus. J. Econ. Entomol. 2019, 112, 2790–2796. [Google Scholar] [CrossRef]
- Ali, A.; Rakha, M.; Shaheen, F.A.; Srinivasan, R. Resistance of certain wild tomato (Solanum spp.) accessions to Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) based on choice and no-choice bioassays. Fla. Entomol. 2019, 102, 544–548. [Google Scholar] [CrossRef]
- Rakha, M.; Hanson, P.; Ramasamy, S. Identification of resistance to Bemisia tabaci Genn. in closely related wild relatives of cultivated tomato based on trichome type analysis and choice and no-choice assays. Genet. Resour. Crop Evol. 2017, 64, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.; Resende, J.; Maluf, W.; Lucini, T.; Lima Filho, R.; Lima, I.; Nardi, C. Trichomes and allelochemicals in tomato genotypes have antagonistic effects upon behavior and biology of Tetranychus urticae. Front. Plant Sci. 2018, 9, 1132. [Google Scholar] [CrossRef]
- Tissier, A. Glandular trichomes: What comes after expressed sequence tags? Plant J. 2012, 70, 51–68. [Google Scholar] [CrossRef]
- Lima, I.; Resende, J.; Oliveira, J.; Faria, M.; Resende, N.; Lima-Filho, R. Indirect selection of industrial tomato genotypes rich in zingiberene and resistant to Tuta absoluta Meyrick. Genet. Mol. Res. 2015, 14, 15081–15089. [Google Scholar] [CrossRef]
- Zhou, F.; Pichersky, E. More is better: The diversity of terpene metabolism in plants. Curr. Opin. Plant Biol. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Andrade, M.C.; Da Silva, A.A.; Neiva, I.P.; Oliveira, I.R.C.; De Castro, E.M.; Francis, D.M.; Maluf, W.R. Inheritance of type IV glandular trichome density and its association with whitefly resistance from Solanum galapagense accession LA1401. Euphytica 2017, 213, 52. [Google Scholar] [CrossRef]
- Zanin, D.S.; Resende, J.T.; Zeist, A.R.; Oliveira, J.R.; Henschel, J.M.; Lima Filho, R.B. Selection of processing tomato genotypes resistant to two spotted spider mite. Hortic. Bras. 2018, 36, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Quesada-Ocampo, L.; Vargas, A.; Naegele, R.; Francis, D.; Hausbeck, M. Resistance to crown and root rot caused by Phytophthora capsici in a tomato advanced backcross of Solanum habrochaites and Solanum lycopersicum. Plant Dis. 2016, 100, 829–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resende, J.; da Silva, A.; Gabriel, A.; Zeist, A.; Favaro, R.; Nascimento, D.; Zeist, R.; Camargo, C. Resistance to Helicoverpa armigera mediated by zingiberene and glandular trichomes in tomatoes for industrial processing. Genet. Mol. Res. 2018, 17. [Google Scholar] [CrossRef]
- Carter, C.D.; Snyder, J.C. Mite responses in relation to trichomes of Lycopersicon esculentum x L. hirsutum F 2 hybrids. Euphytica 1985, 34, 177–185. [Google Scholar] [CrossRef]
- Zeist, A.R.; da Silva, A.A.; de Resende, J.T.V.; Maluf, W.R.; Gabriel, A.; Zanin, D.S.; Guerra, E.P. Tomato breeding for insect-pest resistance. In Recent Advances in Tomato Breeding and Production; Intech Open: London, UK, 2018. [Google Scholar]
- Heinz, K.M.; Zalom, F.G. Variation in trichome-based resistance to Bemisia argentifolii (Homoptera: Aleyrodidae) oviposition on tomato. J. Econ. Entomol. 1995, 88, 1494–1502. [Google Scholar] [CrossRef]
- Nombela, G.; Beitia, F.; Muñiz, M. Variation in tomato host response to Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to acyl sugar content and presence of the nematode and potato aphid resistance gene Mi. Bull. Entomol. Res. 2000, 90, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Leite, G.; Picanço, M.; Guedes, R.; Zanuncio, J. Role of plant age in the resistance of Lycopersicon hirsutum f. glabratum to the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae). Sci. Hortic. 2001, 89, 103–113. [Google Scholar] [CrossRef]
- De Freitas, J.A.; Maluf, W.R.; das Graças Cardoso, M.; de Oliveira, A.C.B. Seleção de plantas de tomateiro visando à resistência à artrópodes-praga mediada por zingibereno. Acta Sci. Agron. 2000, 22, 919–923. [Google Scholar] [CrossRef]
- Statsoft, I. STATISTICA (Data Analysis Software System); Version 11; Science Open: Berlin, Germany, 2012. [Google Scholar]
- Lin, H.; Kogan, M.; Fischer, D. Induced resistance in soybean to the Mexican bean beetle (Coleoptera: Coccinellidae): Comparisons of inducing factors. Environ. Entomol. 1990, 19, 1852–1857. [Google Scholar] [CrossRef]
- Baldin, E.; Vendramim, J.; Lourenção, A. Resistência de genótipos de tomateiro à mosca-branca Bemisia tabaci (Gennadius) biótipo B (Hemiptera: Aleyrodidae). Neotrop. Entomol. 2005, 34, 435–441. [Google Scholar] [CrossRef]
- Baldin, E.; Toscano, L.; Lima, A.; Lara, F.; Boiça, A., Jr. Preferência para oviposição de Bemisia tabaci biótipo B por genótipos de Cucurbita moschata e Cucurbita maxima. Boletín Sanid. Vegetal. Plagas 2000, 26, 409–413. [Google Scholar]
- Sperotto, R.A.; Grbic, V.; Pappas, M.; Leiss, K.; Kant, M.; Wilson, C.R.; Santamaria, M.E.; Gao, Y. Plant responses to phytophagous mites/thips and search for resistance. Front. Plant Sci. 2019, 10, 866. [Google Scholar] [CrossRef]
- Glas, J.J.; Schimmel, B.C.; Alba, J.M.; Escobar-Bravo, R.; Schuurink, R.C.; Kant, M.R. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int. J. Mol. Sci. 2012, 13, 17077–17103. [Google Scholar] [CrossRef] [Green Version]
- Bleeker, P.M.; Mirabella, R.; Diergaarde, P.J.; VanDoorn, A.; Tissier, A.; Kant, M.R.; Prins, M.; de Vos, M.; Haring, M.A.; Schuurink, R.C. Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc. Natl. Acad. Sci. USA 2012, 109, 20124–20129. [Google Scholar] [CrossRef] [Green Version]
- Saeidi, Z.; Mallik, B.; Kulkarni, R. Inheritance of glandular trichomes and two-spotted spider mite resistance in cross Lycopersicon esculentum ‘‘Nandi’’and L. pennellii ‘‘LA2963’’. Euphytica 2007, 154, 231–238. [Google Scholar] [CrossRef]
- Alba, J.M.; Montserrat, M.; Fernández-Muñoz, R. Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Exp. Appl. Acarol. 2009, 47, 35–47. [Google Scholar] [CrossRef]
- Rodríguez-López, M.; Garzo, E.; Bonani, J.; Fereres, A.; Fernández-Muñoz, R.; Moriones, E. Whitefly resistance traits derived from the wild tomato Solanum pimpinellifolium affect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus. Phytopathology 2011, 101, 1191–1201. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, F.; Carter, C. Inheritance of zingiberene in Lycopersicon. Theor. Appl. Genet. 1993, 87, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Hazari, S.; Karak, C.; Talukdar, S. Study on genetic variability of different tomato (Solanum lycopersicum) cultivars grown under open field condition. IJCS 2018, 6, 1706–1709. [Google Scholar]
- Gonzales-Vigil, E.; Hufnagel, D.E.; Kim, J.; Last, R.L.; Barry, C.S. Evolution of TPS20-related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites. Plant J. 2012, 71, 921–935. [Google Scholar] [CrossRef] [Green Version]
- Zörb, C.; Piepho, H.-P.; Zikeli, S.; Horneburg, B. Heritability and variability of quality parameters of tomatoes in outdoor production. Research 2020, 2020, 6707529. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, B.; Joshi, B.; Shestha, J.; Bhatta, N. Genetic variability, heritability, genetic advance and trait association study for yield and yield components in advanced breeding lines of wheat. Nepal. J. Agric. Sci. 2018, 17, 229. [Google Scholar]
- Aditya, J.; Bhartiya, A. Genetic variability, correlation and path analysis for quantitative characters in rainfed upland rice of Uttarakhand hills. J. Rice Res. 2013, 6, 24–34. [Google Scholar]
- Fernández-Muñoz, R.; Salinas, M.; Álvarez, M.; Cuartero, J.s. Inheritance of resistance to two-spotted spider mite and glandular leaf trichomes in wild tomato Lycopersicon pimpinellifolium (Jusl.) Mill. J. Am. Soc. Hortic. Sci. 2003, 128, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Lima, I.P.; Resende, J.T.; Oliveira, J.R.; Faria, M.V.; Dias, D.M.; Resende, N.C. Selection of tomato genotypes for processing with high zingiberene content, resistant to pests. Hortic. Bras. 2016, 34, 387–391. [Google Scholar] [CrossRef]
- Neiva, I.P.; Andrade Júnior, V.C.d.; Maluf, W.R.; Oliveira, C.M.; Maciel, G.M. Role of allelochemicals and trichome density in the resistance of tomato to whitefly. Ciência Agrotecnol. 2013, 37, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.M.d.; Andrade Júnior, V.C.d.; Maluf, W.R.; Neiva, I.P.; Maciel, G.M. Resistance of tomato strains to the moth Tuta absoluta imparted by allelochemicals and trichome density. Ciência Agrotecnol. 2012, 36, 45–52. [Google Scholar] [CrossRef]
- Neiva, I.P.; Silva, A.A.d.; Resende, J.F.; Carvalho, R.d.C.; Oliveira, A.M.S.d.; Maluf, W.R. Tomato genotype resistance to whitefly mediated by allelochemicals and Mi gene. Chil. J. Agric. Res. 2019, 79, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.B.; Weldegergis, B.T.; Van Loon, J.J.; Bueno, V.H. Qualitative and quantitative differences in herbivore-induced plant volatile blends from tomato plants infested by either Tuta absoluta or Bemisia tabaci. J. Chem. Ecol. 2017, 43, 53–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AL-Bayati, A.S. Breeding for Tomato Resistance to Spider Mite Tetranychus urticae Koch (Acari: Tetranychidae); University of Kentucky: Lexington, KY, USA, 2019. [Google Scholar]
Genotype | Absorbancy (270 nm) | Classification |
---|---|---|
S. lycopersicum cv. Redenção | 0.032 ± 0.01 | Susceptible standard (SS) |
RVTZ 2011-79-117-273 | 0.100 ± 0.05 | Low zingiberene content (LZC) |
RVTZ 2011-79-335-164 | 0.322 ± 0.04 | High zingiberene content (HZC) |
RVTZ 2011-79-185-250 | 0.330 ± 0.07 | High zingiberene content (HZC) |
RVTZ 2011-79-503-143 | 0.809 ± 0.18 | High zingiberene content (HZC) |
S. habrochaites var. hirsutum | 0.946 ± 0.19 | Resistant standard (RS) |
Genotypes | Number of Individuals | Number of Eggs |
---|---|---|
Solanum lycopersicum cv. Redenção | 5.75 ± 0.12 a | 46.6 ± 1.80 a |
RVTZ 2011-79-117-273 LZC | 4.25 ± 0.14 ab | 27.2 ± 1.20 b |
RVTZ 2011-79-503-143 HZC | 3.25 ± 0.15 b | 3.1 ± 0.60 c |
RVTZ 2011-79-335-164 HZC | 3.50 ± 0.14 b | 3.9 ± 0.53 c |
RVTZ 2011-79-185-250 HZC | 3.25 ± 0.30 b | 0.7 ± 0.14 c |
Solanum habrochaites var. hirsutum | 3.75 ± 0.12 b | 1.8 ± 0.18 c |
F-value | 81.9 | 328 |
ANOVA p-value | 0.03 | 0.0001 |
Genotypes | Number of Individuals | Number of Eggs |
---|---|---|
Solanum lycopersicum cv. Redenção | 13.00 ± 0.90 a | 47.10 ± 3.70 a |
RVTZ 2011-79-117-273 LZC | 12.90 ± 1.0 b | 35.30 ± 3.50 b |
RVTZ 2011-79-503-143 HZC | 0.70 ± 0.20 c | 1.45 ± 0.50 c |
RVTZ 2011-79-335-164 HZC | 1.20 ± 0.30 c | 1.80 ± 0.40 c |
RVTZ 2011-79-185-250 HZC | 1.00 ± 0.15 c | 1.75 ± 0.35 c |
Solanum habrochaites var. hirsutum | 1.20 ± 0.30 c | 2.50 ± 0.40 c |
F-value | 683.8 | 177.8 |
ANOVA p-value | 0.0001 | 0.0001 |
Genotypes | Number of Adults | Number of Eggs |
---|---|---|
Solanum lycopersicum cv. Redenção | 1.4 ± 0.15 a | 47.0 ± 1.40 a |
RVTZ 2011-79-117-273 LZC | 1.4 ± 0.15 a | 37.0 ± 1.30 b |
RVTZ 2011-79-503-143 HZC | 0.5 ± 0.16 b | 4.7 ± 0.10 c |
RVTZ 2011-79-335-164 HZC | 1.0 ± 0.2 ab | 8.2 ± 0.30 c |
RVTZ 2011-79-185-250 HZC | 0.6 ± 0.15 b | 9.1 ± 0.20 c |
Solanum habrochaites var. hirsutum | 0.5 ± 0.16 b | 3.6 ± 0.09 c |
F-value | 6.1 | 111.6 |
ANOVA p-value | 0.0001 | 0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.R.F.d.; Resende, J.T.V.d.; Filho, R.B.d.L.; Roberto, S.R.; Silva, P.R.d.; Rech, C.; Nardi, C. Tomato Breeding for Sustainable Crop Systems: High Levels of Zingiberene Providing Resistance to Multiple Arthropods. Horticulturae 2020, 6, 34. https://doi.org/10.3390/horticulturae6020034
Oliveira JRFd, Resende JTVd, Filho RBdL, Roberto SR, Silva PRd, Rech C, Nardi C. Tomato Breeding for Sustainable Crop Systems: High Levels of Zingiberene Providing Resistance to Multiple Arthropods. Horticulturae. 2020; 6(2):34. https://doi.org/10.3390/horticulturae6020034
Chicago/Turabian StyleOliveira, João Ronaldo Freitas de, Juliano Tadeu Vilela de Resende, Renato Barros de Lima Filho, Sergio Ruffo Roberto, Paulo Roberto da Silva, Caroline Rech, and Cristiane Nardi. 2020. "Tomato Breeding for Sustainable Crop Systems: High Levels of Zingiberene Providing Resistance to Multiple Arthropods" Horticulturae 6, no. 2: 34. https://doi.org/10.3390/horticulturae6020034
APA StyleOliveira, J. R. F. d., Resende, J. T. V. d., Filho, R. B. d. L., Roberto, S. R., Silva, P. R. d., Rech, C., & Nardi, C. (2020). Tomato Breeding for Sustainable Crop Systems: High Levels of Zingiberene Providing Resistance to Multiple Arthropods. Horticulturae, 6(2), 34. https://doi.org/10.3390/horticulturae6020034