Growth and Bioactive Compounds of Salvia plebeia R. Br. Grown under Various Ratios of Red and Blue Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Light Treatment
2.2. Growth Characteristics
2.3. Bioactive Compounds
2.3.1. Total Phenolics
2.3.2. Total Flavonoids
2.3.3. Antioxidant Activity
2.4. Statistical Analysis
3. Results and Discussion
3.1. Growth Characterics
3.2. SPAD Value and Photosynthetic Parameters
3.3. Bioactive Compounds
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gu, L.; Weng, X. Antioxidant activity and component of Salvia plebeia R. Br.—A Chinese herb. Food Chem. 2001, 73, 299–305. [Google Scholar] [CrossRef]
- Shin, M.K.; Kim, S.K.; Lee, S.K.; Yang, E.Y.; Lee, H.O.; Baek, S.H. Cytotoxicity and antimicrobial effect of the extract of Salvia plebeia. Korean J. Pharmacogn. 2001, 32, 55–60. [Google Scholar]
- Jin, X.F.; Lu, Y.H.; Wei, D.Z.; Wang, Z.T. Chemical fingerprint and quantitative analysis of Salvia plebeia R.Br. by high-performance liquid chromatography. J. Pharm. Biomed. Anal. 2008, 48, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.B.; He, B.Q.; Sun, J.B.; Zeng, B.; Shi, X.J.; Zhou, Y.; Niu, Y.; Nie, S.Q.; Feng, F.; Liang, Y.; et al. Diterpenoids from Salvia plebeia R. Br. and their antioxidant and anti-inflammatory activities. Molecules 2015, 25, 269–281. [Google Scholar]
- Song, H.W.; Ji, K.Y.; Kim, B.K.; Yang, W.K.; Han, C.K.; Shin, H.J.; Park, Y.C.; Hwang, J.S.; Kang, H.S.; Kim, S.H. Respiratory protective effect of Salvia plebeia R. Br. extracts against ambient particulate matter-induced airway inflammation. Korean J. Med. Crop. Sci. 2017, 25, 269–281. [Google Scholar]
- Choi, S.I.; Kwak, H.Y.; Kim, J.Y.; Choi, J.G.; Lee, J.H. Antiadipogenic effects of Salvia plebeia R. Br. extracts by extraction conditions in 3T3-L1 preadipocytes. Korean J. Med. Crop. Sci. 2015, 23, 245–252. [Google Scholar] [CrossRef]
- Shin, H.J.; Gwak, H.M.; Jang, M.; Park, S.H.; Min, H.J.; Lee, J.M.; Lee, M.Y.; Kim, J.H.; Kim, S.W.; Han, C.K.; et al. Anti-inflammatory activity of three kinds of Salvia and its active compounds. Korean J. Med. Crop. Sci. 2016, 24, 401–407. [Google Scholar] [CrossRef]
- Kim, S.H.; Kwon, C.S.; Lee, J.S.; Son, K.H.; Lim, J.K.; Kim, J.S. Inhibition of carbohydrate-digesting enzyme and amelioration of glucose tolerance by Korean medicinal herbs. J. Food. Sci. Nutr. 2002, 7, 62–66. [Google Scholar] [CrossRef]
- Lim, J.A.; Yun, B.W.; Baek, S.H. Antioxidative activity and nitrite scavenging ability of methanol extract from Salvia plebeia R. Br. Korean J. Med. Crop. Sci. 2007, 15, 183–188. [Google Scholar]
- Costa, A.G.; Chagas, J.H.; Pinto, J.E.B.P.; Bertolucci, S.K.V. Vegetative growth and yield of essential oil of peppermint grown under nets. Pesq. Agropec. Bras. 2012, 47, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.G.; Chagas, J.H.; Bertolucci, S.K.V.; Pinto, J.E.B.P. Shading levels and net type on vegetative growth and essential oil production of peppermint. Hortic. Bras. 2014, 32, 19–199. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 1st ed.; Benjamin/Cummings Publishing Co.: New York, NY, USA, 1991; pp. 179–264. [Google Scholar]
- Macedo, A.F.; Leal-Costa, M.V.; Tavares, E.S.; Lage, C.L.S.; Esquibel, M.A. The effect of light quality on leaf production and development of in vitro-cultured plants of Alternanthera brasiliana Kuntze. Environ. Exp. Bot. 2011, 70, 43–50. [Google Scholar] [CrossRef]
- Lin, K.H.; Huang, M.Y.; Huang, W.D.; Hsu, M.H.; Yang, Z.W.; Yang, C.M. The effect of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitate). Sci. Hortic. 2013, 150, 86–91. [Google Scholar] [CrossRef]
- Pocock, T. Light-emitting diodes and the modulation of specialty crops: Light sensing and signaling networks in plants. HortScience 2015, 50, 1281–1284. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, X.O.; Li, J.; Li, G.; Li, B.; Chen, B.; Shen, H.; Huang, X.; Mo, X.; Wan, X.; Lin, R.; et al. Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell 2011, 23, 2514–2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Wang, W.; Chen, D.; Ji, Q.; Jing, Y.; Wang, H.; Lin, R. Transposase-derived proteins FHU3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by Modulating HEMB1 during deetiolation in Arabidopsis. Plant Cell 2012, 35, 1984–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kami, C.; Lorrain, S.; Hornitschek, P.; Fankhause, C. Light—regulated plant growth and development. Curr. Top. Dev. Biol. 2010, 91, 29–66. [Google Scholar] [PubMed] [Green Version]
- Chao, D.Y.; Lin, H.X. The tricks plants use to reach appropriate light. Sci. Chin. Life Sci. 2010, 53, 916–926. [Google Scholar] [CrossRef]
- Pfündel, E.; Baake, E. A quantitative description of fluorescence excitation spectra in intact greened leaves greened under intermittent light. Photosynth. Res. 1990, 26, 19–28. [Google Scholar] [PubMed]
- Massa, C.D.; Kim, H.H.; Wheeler, T.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2008, 4, 1951–1956. [Google Scholar] [CrossRef]
- Abidi, F.; Girault, T.; Douillet, O.; Cuillemain, G.; Sintes, G.; Laffaire, M.; Leduc, N. Blue light effects on rose photosynthesis and photomorphogenesis. Plant Biol. 2013, 15, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Johkan, M.; Shoji, K.; Goto, F.; Hasida, S.; Yoshihara, T. Blue light emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 2010, 45, 1809–1814. [Google Scholar] [CrossRef] [Green Version]
- Pietik, R.; de Wit, M. Shade avoidance: Phytochrome signaling and other aboveground neighbor detection cues. J. Exp. Bot. 2013, 65, 2815–2824. [Google Scholar]
- Shimizu, H.; Saito, Y.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Light environment optimization for lettuce growth in plant factory. In Proceedings of the 18th IFAC World Congress, Milano, Italy, 28 August–2 September 2011; pp. 605–609. [Google Scholar]
- Wang, H.; Gu, M.; Cui, J.; Shi, K.; Zhou, Y.; Yu, J. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. B Biol. 2009, 96, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Stutte, G.W.; Edney, S.; Skerritt, T. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 2009, 44, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Christie, J.M.; Blackwood, L.; Petersen, J.; Sullivan, S. Plant flavoprotein photoreceptors. Plant Cell Physiol. 2014, 56, 401–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naznin, M.T.; Lefsrud, M.T.; Lefsrud, M.G.; Gravel, V.; Wu, B.S.; Reddy, S. Effect of different ratios of red and blue LED light on lettuce production and phytochemical accumulation. In Proceedings of the ASHS Annual Conference, Nottoway, VA, USA, 4 August 2015; pp. 4–7. [Google Scholar]
- Hernández, R.; Kubota, C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 2016, 121, 66–74. [Google Scholar] [CrossRef]
- Wang, J.; Lu, W.; Tong, X.Y.; Yang, Q.C. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, Y.X. Physiological Response Mechanism of Cucumber Seedlings to Red and Blue Light. Ph.D. Thesis, China Agriculture University, Beijing, China, 2015. [Google Scholar]
- Fukuda, N.; Fujita, M.; Ohta, Y.; Sase, S.; Nishimura, S.; Ezura, H. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci. Hortic. 2008, 115, 176–182. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–157. [Google Scholar]
- Kumaran, A.; Karunakaran, J. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. Food Sci. Technol. 2007, 40, 344–352. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Takamura, H.; Matoba, T.; Terao, J. HPLC method for evaluation of the free radical scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci. Biotechnol. Biochem. 1998, 62, 1201–1204. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Wheeler, R.; Sager, J.; Norikane, J. Photosynthesis of lettuce exposed to different short term light qualities. Environ. Control Biol. 2005, 43, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Folta, K.M.; Childers, K.S. Light as a growth regulator: Controlling plants biology with narrow-bandwidth solid-state lighting systems. HortScience 2008, 43, 1957–1964. [Google Scholar] [CrossRef] [Green Version]
- Rajapakse, N.C.; Kelly, J.W. Regulation of chrysanthemum growth by spectral filters. J. Am. Soc. Hort. Sci. 1995, 120, 78–83. [Google Scholar] [CrossRef]
- McCree, K.J. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meterol. 1972, 10, 443–453. [Google Scholar] [CrossRef]
- Wollaeger, H.M.; Runkle, E.S. Growth of impatiens, petunia, salvia, and tomato seedlings under blue, green, and red light-emitting diodes. HortScience 2014, 49, 734–740. [Google Scholar] [CrossRef]
- Lee, M.O.; Park, S.M.; Cho, E.K.; An, J.H.; Choi, E.Y. Changes of plant growth, leaf morphology and cell elongation of Spinacia oleracea grown under different light-emitting diodes. J. Bio-Environ. Con. 2018, 27, 221–230. [Google Scholar] [CrossRef]
- Lee, J.G.; Oh, S.S.; Cha, S.H.; Jang, Y.A.; Kim, S.Y.; Um, Y.C.; Cheong, S.R. Effects of red/blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J. Bio-Environ. Con. 2010, 19, 351–359. [Google Scholar]
- Son, K.H.; Park, J.H.; Kim, D.I.; Oh, M.M. Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J. Hortic. Sci. Technol. 2012, 30, 664–672. [Google Scholar] [CrossRef]
- Saebo, A.; Krekling, T.; Appelgren, M. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tissue Organ Cult. 1995, 41, 177–185. [Google Scholar] [CrossRef]
- Wu, M.C.; Hou, C.Y.; Jiang, C.M.; Wang, Y.T.; Wang, C.Y.; Chen, H.H.; Chang, H.M. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 2007, 101, 1753–1758. [Google Scholar] [CrossRef]
- Nishimura, T.; Ohyama, K.; Goto, E.; Inagaki, N. Concentrations of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments. Sci. Hortic. 2009, 122, 134–137. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, H.M.; Hwang, S.J. Growth and phytochemical contents of ice plant as affected by light quality in a closed-type plant production system. Korean J. Hortic. Sci. Technol. 2016, 34, 878–885. [Google Scholar]
- Kim, H.M.; Hwang, S.J. The growth and development of ‘Mini Chal’ tomato plug seedlings grown under monochromatic or combined red and blue light-emitting diodes. Korean J. Hortic. Sci. Technol. 2019, 37, 190–205. [Google Scholar]
- Massa, G.; Graham, T.; Haire, T.; Flemming, C.; Newsham, G.; Wheeler, R. Light-emitting diode light transmission through leaf tissue of seven different crops. HortScience 2015, 50, 501–506. [Google Scholar] [CrossRef]
- Munner, S.; Kim, E.J.; Park, J.S.; Lee, J.H. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int. J. Mol. Sci. 2014, 15, 4657–4670. [Google Scholar] [CrossRef] [PubMed]
- Kopesell, D.A.; Sams, C.E. Increase in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J. Am. Soc. Hort. Sci. 2013, 138, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Lefsrud, M.; Kopsell, D.A.; Sams, C.E. Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience 2008, 43, 2243–2244. [Google Scholar] [CrossRef] [Green Version]
- Whitelam, G.C.; Halliday, K.J. Light and Plant Development; Blackwell Publishing Ltd.: Oxford, UK, 2007. [Google Scholar]
- Usami, T.; Mochizuki, N.; Kondo, M.; Nishimura, M.; Nagatani, A. Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. Plant Cell Physiol. 2004, 45, 1798–1808. [Google Scholar] [CrossRef] [PubMed]
- Yorio, N.C.; Goins, C.D.; Kagie, H.R.; Wheeler, R.M.; Sager, J.C. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 2001, 36, 380–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roni, M.Z.K.; Islam, M.S.; Shimasaki, K. Response of Eustoma leaf phenotype and photosynthetic performance to LED light quality. Horticulturae 2017, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 2004, 24, 851–874. [Google Scholar] [CrossRef]
- Crinò, P. Selection of Italian cardoon genotypes as industrial crop for biomass and polyphenol production. Ind. Crop Prod. 2013, 51, 145–151. [Google Scholar]
- Schmidt, S.; Zietz, M.; Schreiner, M.; Rohn, S.; Kroh, L.W.; Krumbein, A. Genotypic and climatic influence on the concentration and composition of flavonoids in kales (Brassica oleracea var. sabellica). Food Chem. 2010, 119, 1293–1299. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, G.; Cao, F.; Zhu, C.; Wang, G.; El-Kassaby, Y.A. Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L.). New For. 2014, 45, 765–776. [Google Scholar] [CrossRef]
- Hernández, I.; Alegre, L.; Munné-Bosch, S. Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol. 2004, 24, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shi, H.; Wu, J.; Cao, F. Alternative partial root-zone irrigation enhances leaf flavonoid accumulation and water efficiency of Ginkgo biloba. New For. 2016, 47, 377–391. [Google Scholar] [CrossRef]
- Kobayashi, K.; Amore, T.; Lazaro, M. Light-emitting diodes (LEDs) for miniature hydroponic lettuce. J. Opt. Photon. 2013, 3, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Hogewonging, S.W.; Trouwborst, G.; Malgaars, H.; Poorter, H.; van Ieperen, W.; Harbinson, J. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combination of red and blue light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kim, H.M.; Kim, H.M.; Jeong, B.R.; Lee, H.J.; Kim, H.J.; Hwang, S.J. Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes. Hort. Environ. Biotechnol. 2018, 59, 529–536. [Google Scholar] [CrossRef]
- Park, S.Y.; Bae, J.H.; Oh, M.M. Manipulation light quality to promote shoot growth and bioactive compound biosynthesis of Crepidiastrum denticulatum (Houtt.) Pak & Kawano cultivated in plant factories. J. Appl. Res. Med. Aromat. Plants 2019, 16, 100237. [Google Scholar]
- Spalholz, H.; Perkins-Veazie, P.; Hernández, R. Impact of sun-simulated white light and varied blue:red spectrums on the growth, morphology, development, and phytochemical content of green- and red-leaf at different growth stages. Sci. Hortic. 2020, 264, 109–195. [Google Scholar] [CrossRef]
- Hernández, R.; Kubota, C. Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Sci. Hortic. 2016, 213, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Yu, Y.J.; Choi, E.Y. Effects of fluorescent light and light-emitting diodes on leaf morphology, growth and antioxidant capacity of Salvia plebeia. Prot. Hort. Plant Fac. 2017, 26, 208–214. [Google Scholar] [CrossRef]
Light Quality z | Fresh Weight (g/plant) | Dry Weight (g/plant) | ||
---|---|---|---|---|
Shoot | Root | Shoot | Root | |
FL | 11.3 c y | 5.8 d | 0.9 d | 0.3 c |
Red | 31.3 a | 21.3 a | 2.8 ab | 1.2 a |
R7B3 | 33.5 a | 11.4 b | 3.0 a | 0.9 ab |
R5B5 | 25.2 ab | 10.4 bc | 2.9 ab | 0.9 ab |
R3B7 | 20.0 b | 6.5 cd | 2.2 bc | 0.5 bc |
Blue | 17.4 bc | 10.4 bc | 1.6 cd | 0.6 bc |
Significance | *** | *** | *** | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.R.; Kim, H.M.; Jeong, H.W.; Hwang, S.J. Growth and Bioactive Compounds of Salvia plebeia R. Br. Grown under Various Ratios of Red and Blue Light. Horticulturae 2020, 6, 35. https://doi.org/10.3390/horticulturae6020035
Lee HR, Kim HM, Jeong HW, Hwang SJ. Growth and Bioactive Compounds of Salvia plebeia R. Br. Grown under Various Ratios of Red and Blue Light. Horticulturae. 2020; 6(2):35. https://doi.org/10.3390/horticulturae6020035
Chicago/Turabian StyleLee, Hye Ri, Hyeon Min Kim, Hyeon Woo Jeong, and Seung Jae Hwang. 2020. "Growth and Bioactive Compounds of Salvia plebeia R. Br. Grown under Various Ratios of Red and Blue Light" Horticulturae 6, no. 2: 35. https://doi.org/10.3390/horticulturae6020035
APA StyleLee, H. R., Kim, H. M., Jeong, H. W., & Hwang, S. J. (2020). Growth and Bioactive Compounds of Salvia plebeia R. Br. Grown under Various Ratios of Red and Blue Light. Horticulturae, 6(2), 35. https://doi.org/10.3390/horticulturae6020035