Nutraceutical and Functional Properties of Peel, Pulp, and Seed Extracts of Six ‘Köhnü’ Grape Clones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Sampling and Location
2.2. Morphological Traits
2.3. Extraction
2.4. Total Phenol Folin-Ciocalteu Assay
2.5. Total Antioxidant Capacity Measurement
2.5.1. DPPH Method
2.5.2. FRAP Method
2.5.3. TEAC Method
2.6. Specific Sugars
2.7. Organic Acids
2.8. Statistical Analysis
3. Results and Discussion
3.1. Morphological Traits
3.2. Total Phenolic Content
3.3. Total Antioxidant Capacity
3.3.1. DPPH Assay
3.3.2. FRAP Assay
3.3.3. TEAC Assay
3.4. Sugar Content
3.5. Organic Acid Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Engin, S.P.; Mert, C. The effects of harvesting time on the physicochemical components of aronia berry. Turk. J. Agric. For. 2020, 44, 361–370. [Google Scholar] [CrossRef]
- Eyduran, S.P.; Akin, M.; Ercisli, S.; Eyduran, E.; Maghradze, D. Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from lgdir province of Eastern Turkey. Biol. Res. 2015, 48, 2. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, A.E.; Didin, O.; Candir, E.; Kaplankiran, M.; Yildiz, E. Effects of rootstocks on storage performance of Nova mandarins. Turk. J. Agric. For. 2019, 43, 307–317. [Google Scholar] [CrossRef]
- Çelik, H.; Köse, B.; Cangi, R. Determination of Fox grape genotypes (Vitis labrusca L.) grown in Northeastern Anatolia. Hort. Sci. 2008, 35, 162–170. [Google Scholar]
- Korkutal, I.; Bahar, E.; Kök, D.; Şahin, N.; Uysal, T.; Özalp, Z.O.; Yaşasın, A.S.; Candar, S.; Alço, T.; Işın, M.A. Collecting genetic materials and isolating DNAs of grapevine (Vitis spp.) as naturally grown in Ganos Mountains (in Turkish with English abstract). Mediterr. Agric. Sci. 2018, 31, 5–15. [Google Scholar]
- Candar, S.; Uysal, T.; Ayaz, A.; Akdemir, U.; Korkutal, I.; Bahar, E. Viticulture tradition in Turkey. Vitic. Stud. 2021, 1, 39–54. [Google Scholar]
- Soylemezoglu, G.; Atak, A.; Boz, Y.; Unal, A.; Saglam, M. Viticulture in Turkey. Chronica Hortic. 2016, 56, 27–31. [Google Scholar]
- Isci, B.; Kacar, E.; Altındisli, A. The effects of some exogenous applications on quality in ‘Crimson Seedless’ grape. Erwerbs-Obstbau 2020, 62, 87–100. [Google Scholar] [CrossRef]
- Kara, Z.; Yazar, K.; Doğan, O.; Vergili, E. Sodium nitroprusside and gibberellin effects on seed germination and seedling development of grapevine (Vitis vinifera L.) cvs. Ekşi Kara and Gök Üzüm. Erwerbs-Obstbau 2020, 62, 61–68. [Google Scholar] [CrossRef]
- Tangolar, S.; Tangolar, S.; Turan, M.; Ateş, F. Determination of phytochemical and mineral contents of seeds from ‘Semillon’and ‘Carignane’ wine grape cultivars grown under different irrigation conditions. Erwerbs-Obstbau 2020, 62, 115–123. [Google Scholar] [CrossRef]
- Kaya, E.D.; Bagci, O. Purification and biochemical characterization of polyphenol oxidase extracted from Kirmizi Kismis grape (Vitis vinifera L.). J. Food Biochem. 2021, 45, e13627. [Google Scholar] [CrossRef]
- Ağaoğlu, Y.S. Scientific and Experimental Viticulture; Kavaklıdere Publication: Ankara, Turkey, 2002; Volume 2. [Google Scholar]
- Hassan, H.A.; Al-Rawi, M.M. Grape seeds proanthocyanidin extract as a hepatic-reno-protective agent against gibberellic acid induced oxidative stress and cellular alterations. Cytotechnology 2013, 65, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhshabadi, H.; Mirzaei, H.; Ghodsvali, A.; Jafari, S.M.; Ziaiifar, A.M.; Farzaneh, V. The effect of microwave pretreatment on some physico-chemical properties and bioactivity of black cumin seeds. Ind. Crops. Prod. 2017, 97, 1–9. [Google Scholar] [CrossRef]
- Farzaneh, V.; Ghodsvali, A.; Bakhshabadi, H.; Dolatabadi, Z.; Farzaneh, F.; Carvalho, I.S.; Sarabandi, K. Screening of the alterations in qualitative characteristics of grape under the impacts of storage and harvest times using artificial neural network. Evol. Syst. 2018, 9, 81–89. [Google Scholar] [CrossRef]
- Yousef, M.I.; Mahdy, M.A.; Abdou, H.M. The potential protective role of grape seed proanthocyanidin extract against the mixture of carboplatin and thalidomide induced hepatotoxicity and cardiotoxicity in male rats. Prev. Med. Commun. Health 2020, 2, 1–7. [Google Scholar] [CrossRef]
- Ali, K.; Maltese, F.; Choi, Y.; Verpoorte, R. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rev. 2010, 9, 357–378. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zhang, Y.; Cao, L.; Lu, J. Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chem. 2010, 119, 1557–1565. [Google Scholar] [CrossRef]
- Costa, E.; Cosme, F.; Jordão, A.M.; Mendes-Faia, A. Anthocyanin profile and antioxidant activity from 24 grape varieties cultivated in two Portuguese wine regions. J. Int. Sci. Vigne Vin 2014, 48, 51–62. [Google Scholar] [CrossRef]
- Pantelić, M.M.; Dabić Zagorac, D.Č.; Davidović, S.M.; Todić, S.R.; Bešlić, Z.S.; Gašić, U.M.; Tešić, Ž.L.; Natić, M.M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chem. 2016, 211, 243–252. [Google Scholar] [CrossRef]
- Kök, D.; Bal, E.; Bahar, E. Physical and biochemical traits of selected grape varieties cultivated in Tekirdağ, Turkey. Int. J. Sustain. Agric. Manag. Inform. 2017, 3, 215–223. [Google Scholar] [CrossRef]
- Karaman, H.T.; Küskü, D.Y.; Söylemezoğlu, G. Phenolic compounds and antioxidant capacities in grape berry skin, seed and stems of six wine grape varieties grown in Turkey. Acta Sci. Pol. Hortorum 2021, 20, 15–25. [Google Scholar] [CrossRef]
- Rombaldi, C.V.; Bergamasqui, M.; Lucchetta, L.; Zanuzo, M.; Silva, J.A. Vineyard yield and grape quality in two different cultivation systems. Rev. Bras. Frutic. 2004, 26, 89–91. [Google Scholar] [CrossRef]
- Pantelić, M.; Dabić Zagorac, D.; Natić, M.; Gasić, U.; Jović, S.; Vujović, D.; Djordjevic, J.P. Impact of clonal variability on phenolics and radical scavenging activity of grapes and wines: A study on the recently developed Merlot and Cabernet Franc clones (Vitis vinifera L.). PLoS ONE 2016, 11, e0163823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Král, M.; Ošťádalová, M.; Pokorná, J.; Tremlová, B.; Rohrerová, E.; Šnirs, M.; Fekete, T. Quality of wine grape cultivars grown in Czech Republic. Erwerbs-Obstbau 2018, 60, 29–35. [Google Scholar] [CrossRef]
- Ferraz da Costa, D.C.; Pereira Rangel, L.; Quarti, J.; Santos, R.A.; Silva, J.L.; Fialho, E. Bioactive compounds and metabolites from grapes and red wine in breast cancer chemoprevention and therapy. Molecules 2020, 25, 3531. [Google Scholar] [CrossRef] [PubMed]
- Mucalo, A.; Maleti’c, E.; Zduni´c, G. Extended harvest date alter flavonoid composition and chromatic characteristics of Plavac Mali (Vitis vinifera L.) grape berries. Foods 2020, 9, 1155. [Google Scholar] [CrossRef]
- Allegro, G.; Pastore, C.; Valentini, G.; Filippetti, I. The evolution of phenolic compounds in Vitis vinifera L. red berries during ripening: Analysis and role on wine sensory—A review. Agronomy 2021, 11, 999. [Google Scholar] [CrossRef]
- Ünal, M.S.; Ergenoglu, F. Viticulture in Malatya and Elazığ provinces and ampelographic characteristics of grape cultivars grown in Malatya province. J. Cukurova Univ. Agric. 2001, 16, 1–8. [Google Scholar]
- Ibáñez, J.; Carreño, J.; Yuste, J.; Martínez-Zapater, J.M. Grapevine breeding and clonal selection programmes in Spain. In Grapevine Breeding Programs for the Wine Industry; Reynolds, A., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 183–209. [Google Scholar]
- Medrano, H.; Tortosa, I.; Montes, E.; Pou, A.; Balda, P.; Bota, J.; Escalona, J.M. Genetic improvement of grapevine (Vitis vinifera L.) water use efficiency: Variability among varieties and clones. In Water Scarcity and Sustainable Agriculture in Semiarid Environment; García-Tejero, I.F., Duran, V.H.I., Eds.; Academic Press: London, UK, 2018; pp. 377–401. [Google Scholar]
- OIV. Organisation Internationale de la Vigne et du Vin. In OIV Descriptor List for Grape Varieties and Vitis Species, 2nd ed.; Organization Intergouvernementale crée par l’Accord Internationa: Paris, France, 2001; Available online: https://www.oiv.int/public/medias/2274/code-2e-edition-finale.pdf (accessed on 15 April 2020).
- Contreras-Calderón, J.; Calderón-Jaimes, L.; Guerra-Hernández, E.; García-Villanova, B. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res. Int. 2011, 44, 2047–2053. [Google Scholar] [CrossRef]
- Krawitzky, M.; Arias, E.; Peiro, J.M.; Negueruela, A.I.; Val, J.; Oria, R. Determination of color, antioxidant activity, and phenolic profile of different fruit tissue of Spanish ‘Verde Doncella’ apple cultivar. Int. J. Food Prop. 2014, 17, 1532–2386. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Melgarejo, P.; Salazar, D.M.; Artes, F. Organic acids and sugars composition of harvested pomegranate fruits. Eur. Food Res. Technol. 2000, 211, 185–190. [Google Scholar] [CrossRef]
- Bevilacqua, A.E.; Califano, A.N. Determination of organic acids in dairy products by high performance liquid chromatography. J. Food Sci. 1989, 54, 1076–1079. [Google Scholar] [CrossRef]
- Keskin, N. Determination of relationships between yield and quality characteristics with some native grape cultivars grown in Elazığ. Turk. J. Appl. Sci. Technol. 2017, 1, 25–30. [Google Scholar]
- Koc, H.; Cocen, E.; Kokargul, R.; Saritepe, Y.; Saglam, H. Phenological, ampelographic and quality properties of ‘Köhnü’ (Vitis vinifera L.) grape cultivar. Agric. Eng. 2021, 372, 16–24. [Google Scholar]
- Dardeniz, A. Effects of cluster tipping on yield and quality of Uslu and Cardinal table grape cultivars. COMU J. Agric. Fac. 2014, 2, 21–26. [Google Scholar]
- Sabir, A.; Tangolar, S.; Buyukalaca, S.; Kafkas, S. Ampelographic and molecular diversity among grapevine (Vitis spp.) cultivars. Czech. J. Genet. Plant Breed. 2009, 45, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Korkutal, I.; Bahar, E.; Ozge, K. The effect of altitude on grape quality. Trakya Univ. Eng. Sci. J. 2012, 13, 17–29. [Google Scholar]
- Yi, O.S.; Meyer, A.S.; Frankel, E.N. Antioxidant activity of grape extracts in a lecithin liposome system. JAOCS 1997, 74, 1301–1307. [Google Scholar] [CrossRef]
- Ruiz-Torralba, A.; Guerra-Hernández, E.J.; García-Villanova, B. Antioxidant capacity, polyphenol content and contribution to dietary intake of 52 fruits sold in Spain. CyTA-J. Food 2018, 16, 1131–1138. [Google Scholar] [CrossRef] [Green Version]
- Revilla, E.; Carrasco, D.; Benito, A.; Arroyo-Garcia, R. Anthocyanin composition of several wild grape accessions. Am. J. Enol. Vitic. 2010, 61, 536–543. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, G.-Y.; Zhao, C.-N.; Feng, X.-L.; Xu, X.-Y.; Cao, S.-Y.; Meng, X.; Li, S.; Gan, R.-Y.; Li, H.-B. Comparison of antioxidant activities of different grape varieties. Molecules 2018, 23, 2432. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Cheng, X.; Gu, H.; Zhou, G.; Xia, H.; Liang, D. Determination of antioxidant compounds and antioxidant activity of six table grapes with red skin. E3S Web Conf. 2020, 145, 01004. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, Y.; Göksel, Z.; Erdogan, S.S.; Özturk, A.; Atak, A.; Ozer, C. Antioxidant activity and phenolic content of seed, skin and pulp parts of 22 grape (Vitis vinifera l.) cultivars (4 common and 18 registered or candidate for registration). J. Food Process. Preserv. 2015, 39, 1682–1691. [Google Scholar] [CrossRef]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Met. 2005, 40, 255–260. [Google Scholar]
- Gokturk-Baydar, N.; Babalik, Z.; Turk, F.H.; Cetin, E.S. Phenolic composition and antioxidant activities of wines and extracts of some grape varieties grown in Turkey. J. Agric. Sci. 2011, 17, 67–76. [Google Scholar]
- Cetin, E.S.; Babalik, Z.; Gokturk Baydar, N. Determination of total carbohydrates, phenolic substance, anthocyanin, β-Caroten and Vitamine C content in berries of grape cultivars. In Proceedings of the IV National Small Fruit Symposium, Antalya, Turkey, 3–5 October 2012; pp. 151–159. [Google Scholar]
- Shiraishi, M.; Shinomiya, R.; Chijiwa, H. Varietal differences in polyphenol contents, antioxidant activities and their correlations in table grape cultivars bred in Japan. Sci. Hortic. 2018, 227, 272–277. [Google Scholar] [CrossRef]
- Sridhari, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef]
- Ivanišová, E.; Terentjeva, M.; Kántor, A.; Frančáková, H.; Kačániová, M. Phytochemical and antioxidant profile of different varieties of grape from the small Carpathians wine region of Slovakia. Erwerbs-Obstbau 2019, 61, 553–559. [Google Scholar] [CrossRef]
- Choi, S.-Y.; Lee, Y.-M.; Lee, P.-J.; Kim, K.-T. Comparison of the antioxidative effects and content of anthocyanin and phenolic compounds in different varieties of Vitis vinifera ethanol extract. Prev. Nutr. Food Sci. 2011, 16, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Fahmi, A.I.; Nagaty, M.A.; El-Shehawi, A.M. Fruit quality of Taif grape (Vitis vinifera L.) cultivars. Am. J. Sci. 2012, 8, 590–599. [Google Scholar]
- Farhadi, K.; Esmaeilzadeh, F.; Hatami, M.; Forough, M.; Molaie, R. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chem. 2016, 199, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Mandić, A.I.; Đilas, S.M.; Čanadanović-Brunet, J.M.; Ćetković, G.S.; Vulić, J.J. Antioxidant activity of white grape seed extracts on DPPH radicals. Acta Period. Technol. 2009, 40, 53–61. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.; Haroutounian, S.A. Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: Evaluation of the antioxidant activities of their extracts. Food Res. Int. 2010, 43, 805–813. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Sochorova, L.; Prusova, B.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Baron, M.; Sochor, J. The Study of Antioxidant Components in Grape Seeds. Molecules 2020, 25, 3736. [Google Scholar] [CrossRef] [PubMed]
- Yegin, A.B.; Uzun, H.I. Some chemical phenolic content and antioxidant activity variations in different parts of grape berry. Derim 2018, 35, 1–10. [Google Scholar]
- Gokturk Baydar, N.; Ozkan, G.; Yasar, S. Evaluation of the antiradical and antioxidant potential of grape extracts. Food Control 2007, 18, 1131–1136. [Google Scholar] [CrossRef]
- Weidner, S.; Rybarczyk, A.; Karamac, M.; Krol, A.; Mostek, A.; Grebosz, J.; Amarowicz, E. Differences in the phenolic composition and antioxidant properties between Vitis coignetiae and Vitis vinifera seeds extracts. Molecules 2013, 18, 3410–3426. [Google Scholar] [CrossRef]
- Petrisor, C.; Chirecanu, C. Organic acids and sugars profile of some grape cultivars affected by grapevine yellows symptoms. Rom. Biotechnol. Lett. 2019, 24, 1027–1033. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Lin, K.; Wang, B.; Shi, X.; Cheng, W. Comparison of sugars, organic acids and aroma components of five table grapes in Xinjiang. IOP Conf. Series: Earth Environ. Sci. 2021, 792, 012029. [Google Scholar] [CrossRef]
- Meng, J.-F.; Xu, T.-F.; Song, C.-Z.; Yu, Y.; Hu, F.; Zhang, L.; Zhang, Z.-W.; Xi, Z.-M. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chem. 2015, 185, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Davies, C. Sugar accumulation in grape berries. Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant. Physiol. 1996, 111, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Li, B.; Forney, C.F.; Xu, W.; Wang, S. Changes in sugar content and relative enzyme activity in grape berry in response to root restriction. Sci. Hortic. 2009, 123, 39–45. [Google Scholar] [CrossRef]
- Zheng, L.; Nie, J.; Yan, Z. Advances in research on sugars, organic acids and their effects on taste of fruits. J. Fruit Sci. 2015, 32, 304–312. [Google Scholar]
- Coelho, E.M.; Padilha, C.V.S.; Miskinis, G.A.; de Sa, A.G.B.; Pereira, G.E.; Azavedo, L.C.; Lima, M.S. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. J. Food Comp. Anal. 2018, 66, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Jediyi, H.; Naamani, K.; Elkoch, A.A.; Dihazi, A.; El Fels, E.A.; Arkize, W. First study on technological maturity and phenols composition during the ripeness of five Vitis vinifera L grape varieties in Morocco. Sci. Hortic. 2019, 246, 390–397. [Google Scholar] [CrossRef]
- Gokturk-Baydar, N. Organic acid, tocopherol and phenolic compositions of some Turkish grape cultivars. Chem. Nat. Compd. 2006, 42, 56–59. [Google Scholar] [CrossRef]
- Farzaneh, V.; Carvalho, I.S. Modelling of microwave assisted extraction (MAE) of anthocyanins (TMA). J. Appl. Res. Med. Aromat. Plants 2017, 6, 92–100. [Google Scholar] [CrossRef]
- Ozkan, G. Phenolic compounds, organic acids, vitamin C and antioxidant capacity in Prunus spinose L. Comptes Rendus de l'Academie Bulgare des Sciences 2019, 72, 267–273. [Google Scholar]
- Bozhuyuk, M.R.; Ercisli, S.; Orhan, E.; Koc, A. Determination of the genetic diversity of walnut (Juglans regia L.) cultivar candidates from Northeastern Turkey using SSR markers. Mitt. Klost. 2020, 70, 269–277. [Google Scholar]
- Gecer, M.K.; Kan, T.; Gundogdu, M.; Ercisli, S.; Ilhan, G.; Sagbas, H.I. Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genet. Resour. Crop. Evol. 2020, 67, 935–945. [Google Scholar] [CrossRef]
- Ozkan, G.; Ercisli, S.; Sagbas, H.I.; Ilhan, G. Diversity on fruits of wild grown European cranberrybush from Coruh valley in Turkey. Erwerbs-Obstbau 2020, 62, 275–279. [Google Scholar] [CrossRef]
- Bujdosó, G.; Cseke, K. The Persian (English) walnut (Juglans regia L.) assortment of Hungary: Nut characteristics and origin. Sci. Hortic. 2021, 283, 110035. [Google Scholar] [CrossRef]
- Bozhuyuk, M.R.; Ercisli, S.; Fidan, H.; Ersoy, N.; Ilhan, G.; Sagbas, H.I. Morphological and biochemical characteristics of selected local chestnut genotypes. Erwerbs-Obstbau 2021, 63, 313–318. [Google Scholar] [CrossRef]
Locations | Clones | Cluster Form | Cluster Weight (g) | Berry Weight (g) | Berry Skin Color | Usage |
---|---|---|---|---|---|---|
Hoşköy | Clone 1 | Winged conical | 388 ± 14 ab | 4.33 ± 0.5 b | Black-Blue | Table, Juice, Wine |
Hoşköy | Clone 2 | Conical | 341 ± 12 cd | 3.92 ± 0.3 e | Black-Blue | Table, Juice, Wine |
Hoşköy | Clone 3 | Irregular winged conical | 394 ± 16 a | 4.45 ± 0.3 a | Black-Blue | Table, Juice, Wine |
Hoşköy | Clone 4 | Conical | 334 ± 11 d | 4.04 ± 0.4 de | Black-Blue | Table, Juice, Wine |
Hoşköy | Clone 5 | Conical | 357 ± 14 c | 4.12 ± 0.3 d | Black-Blue | Table, Juice, Wine |
Hoşköy | Clone 6 | Irregular winged conical | 378 ± 13 b | 4.26 ± 0.4 c | Black-Blue | Table, Juice, Wine |
Clones | Total Phenolic Content (mg GAE/100 g FW) | ||
---|---|---|---|
Peel | Pulp | Seed | |
Clone 1 | 118 ± 6 c | 30.15 ± 0.6 c | 224 ± 11 d |
Clone 2 | 128 ± 8 b | 33.67 ± 0.6 b | 254 ± 14 a |
Clone 3 | 139 ± 7 a | 35.11 ± 0.7 a | 242 ± 10 b |
Clone 4 | 110 ± 5 cd | 29.38 ± 0.4 cd | 212 ± 9 e |
Clone 5 | 96 ± 4 d | 27.73 ± 0.3 d | 193 ± 8 f |
Clone 6 | 133 ± 7 ab | 32.06 ± 0.5 bc | 233 ± 10 c |
Clones | DPPH (μmol Trolox/100 g FW) | ||
---|---|---|---|
Peel | Pulp | Seed | |
Clone 1 | 939 ± 14 b | 229 ± 7 bc | 1432 ± 10 c |
Clone 2 | 958 ± 16 ab | 244 ± 8 b | 1478 ± 11 bc |
Clone 3 | 987 ± 21 a | 269 ± 9 a | 1511 ± 16 b |
Clone 4 | 911 ± 9 c | 221 ± 5 c | 1378 ± 10 bcd |
Clone 5 | 873 ± 8 d | 210 ± 6 c | 1290 ± 11 d |
Clone 6 | 970 ± 10 ab | 255 ± 8 ab | 1622 ± 15 a |
Clones | FRAP (μmol Trolox/100 g FW) | ||
---|---|---|---|
Peel | Pulp | Seed | |
Clone 1 | 3620 ± 37 c | 76 ± 2.3 bc | 40,200 ± 450 b |
Clone 2 | 3805 ± 41 b | 90 ± 3.1 ab | 44,310 ± 386 ab |
Clone 3 | 3911 ± 51 ab | 84 ± 3.3 b | 42,365 ± 515 ab |
Clone 4 | 3470 ± 48 d | 70 ± 1.3 bc | 38,600 ± 313 bc |
Clone 5 | 3389 ± 69 de | 65 ± 2.0 c | 36,548 ± 430 c |
Clone 6 | 4018 ± 60 a | 98 ± 4.3 a | 45,200 ± 538 a |
Clones | TEAC (μmol Trolox/100 g FW) | ||
---|---|---|---|
Skin | Pulp | Seed | |
Clone 1 | 330 ± 11 bc | 51 ± 1.4 bc | 1284 ± 21 bc |
Clone 2 | 348 ± 13 b | 69 ± 1.3 a | 1468 ± 19 a |
Clone 3 | 365 ± 16 a | 63 ± 1.6 ab | 1340 ± 16 b |
Clone 4 | 302 ± 9 d | 47 ± 1.1 bc | 1210 ± 18 bc |
Clone 5 | 286 ± 10 e | 42 ± 1.2 c | 1195 ± 13 c |
Clone 6 | 315 ± 12 c | 55 ± 1.3 b | 1260 ± 14 bc |
Clones | Glucose | Fructose | Sucrose |
---|---|---|---|
Clone 1 | 13.3 ± 0.5 b | 12.8 ± 0.4 ab | 0.07 ± 0.0 NS |
Clone 2 | 13.9 ± 0.4 ab | 13.4 ± 0.4 ab | 0.08 ± 0.0 |
Clone 3 | 14.1 ± 0.5 a | 13.6 ± 0.3 a | 0.05 ± 0.0 |
Clone 4 | 12.8 ± 0.3 b | 12.7 ± 0.4 b | 0.06 ± 0.0 |
Clone 5 | 13.7 ± 0.2 ab | 13.5 ± 0.5 ab | 0.05 ± 0.0 |
Clone 6 | 13.0 ± 0.2 bc | 12.8 ± 0.2 b | 0.07 ± 0.0 |
Clones | Tartaric | Malic | Oxalic |
---|---|---|---|
Clone 1 | 10.67 ± 0.3 ab | 5.34 ± 0.2 bc | 0.24 ± 0.04 NS |
Clone 2 | 11.06 ± 0.4 ab | 5.96 ± 0.3 b | 0.18 ± 0.07 |
Clone 3 | 11.25 ± 0.5 a | 6.44 ± 0.2 a | 0.20 ± 0.05 |
Clone 4 | 10.04 ± 0.3 ab | 5.24 ± 0.3 bc | 0.16 ± 0.03 |
Clone 5 | 10.86 ± 0.2 ab | 6.23 ± 0.2 ab | 0.27 ± 0.08 |
Clone 6 | 10.46 ± 0.2 b | 5.10 ± 0.2 c | 0.15 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kupe, M.; Karatas, N.; Unal, M.S.; Ercisli, S.; Baron, M.; Sochor, J. Nutraceutical and Functional Properties of Peel, Pulp, and Seed Extracts of Six ‘Köhnü’ Grape Clones. Horticulturae 2021, 7, 346. https://doi.org/10.3390/horticulturae7100346
Kupe M, Karatas N, Unal MS, Ercisli S, Baron M, Sochor J. Nutraceutical and Functional Properties of Peel, Pulp, and Seed Extracts of Six ‘Köhnü’ Grape Clones. Horticulturae. 2021; 7(10):346. https://doi.org/10.3390/horticulturae7100346
Chicago/Turabian StyleKupe, Muhammed, Neva Karatas, Mehmet Settar Unal, Sezai Ercisli, Mojmir Baron, and Jiri Sochor. 2021. "Nutraceutical and Functional Properties of Peel, Pulp, and Seed Extracts of Six ‘Köhnü’ Grape Clones" Horticulturae 7, no. 10: 346. https://doi.org/10.3390/horticulturae7100346
APA StyleKupe, M., Karatas, N., Unal, M. S., Ercisli, S., Baron, M., & Sochor, J. (2021). Nutraceutical and Functional Properties of Peel, Pulp, and Seed Extracts of Six ‘Köhnü’ Grape Clones. Horticulturae, 7(10), 346. https://doi.org/10.3390/horticulturae7100346