Effects on Growth and Metabolism of Difference between Day and Night Temperatures (DIF) and Supplementation with Rare Earth Elements (REE) in Micropropagated Dendrobium aphyllum (Roxb.) C. E. Fischer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Culture Conditions
2.2. Growth Parameters
2.3. Chlorophyll Content
2.4. Soluble Protein
2.5. Plasma Membrane Permeability
2.6. Activity of Antioxidant Enzymes
2.7. Polysaccharide Content
2.8. Statistical Analysis
3. Results
3.1. Growth Parameters
3.2. Chlorophyll Content
3.3. Rank Sum
3.4. Permeability of the Plasma Membrane
3.5. Activities of Antioxidant Enzymes
3.6. Total Protein Content
3.7. Polysaccharide Content
3.8. Morphological Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xing, X.; Cui, S.W.; Nie, S.; Phillips, G.O.; Goff, H.D.; Wang, Q. A review of isolation process, structural characteristics, and bioactivities of water-soluble polysaccharides from Dendrobium plants. Bioact. Carbohydr. Diet. Fibre 2013, 1, 131–147. [Google Scholar] [CrossRef]
- Meng, Q.; Fan, H.; Xu, D. Superfine grinding improves the bioaccessibility and antioxidant properties of Dendrobium officinale powders. Int. J. Food Sci. Technol. 2017, 52, 1440–1451. [Google Scholar] [CrossRef]
- Deng, Y.H.; Xu, K.P.; Tan, G.S. Advances in studies on chemical constituents and pharmacological activities of plants of Dendrobium Sw. Chin. Tradit. Herb. Drugs 2002, 25, 677–680. (In Chinese) [Google Scholar]
- Zhao, Y.L.; Wang, S.L.; Li, X.Y. Study on polysaccharides from Dendrobium (Roxb.). Plant Res. Yunnan 1994, 16, 392–396. (In Chinese) [Google Scholar]
- Shao, L.; Huang, W.H.; Zhang, C.F.; Wang, L.; Zhang, M.; Wang, Z.T. Study on chemical constituents of Dendrobium aphyllum (Roxb.). China J. Chin. Mater. Med. 2008, 33, 1693–1695. [Google Scholar]
- Zhang, C.F.; Shao, L.; Huang, W.H.; Wang, L.; Wang, Z.T.; Xu, L.S. Study on chemical constituents of phenolics of Dendrobium aphyllum (Roxb.). China J. Chin. Mater. Med. 2008, 33, 2922–2925. [Google Scholar]
- Liu, H.; Luo, Y.B.; Heinen, J.; Bhat, M.; Liu, Z.J. Eat your orchid and have it too: A potentially new conservation formula for Chinese epiphytic medicinal orchids. Biodiv. Conserv. 2014, 23, 1215–1228. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lin, Y.S.; Liu, D.W.; Xu, H.J.; Liu, T.; Zhao, F.Y. Cerium toxicity, uptake and translocation in Arabidopsis thaliana seedlings. J. Rare Earths 2012, 30, 579–585. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Richter, H.; Sparovek, G.; Schnug, E. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review. J. Plant Nutr. 2004, 27, 183–220. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Li, J.C.; Ge, Z.Q.; WU, J.C. Superoxide anion burst and taxol production induced by Ce4+ in suspension cultures of Taxus cuspidate. J. Mol. Catal. B Enzym. 2002, 18, 251–260. [Google Scholar] [CrossRef]
- Wu, J.Y.; Wang, C.G.; Mei, X.G. Stimulation of taxol production and excretion in Taxus spp cell cultures by rare earth chemical lanthanum. J. Biotechnol. 2001, 85, 67–73. [Google Scholar] [CrossRef]
- Zhang, C.H.; Li, Q.Q.; Zhang, M.X.; Zhang, N.; Li, M.H. Effects of rare earth elements on growth and metabolism of medicinal plants. Acta Pharm. Sin. B 2013, 3, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.A.; Zhao, B.; Wang, X.D.; Yuan, X.F.; Wang, Y.H. Promotion of the growth of Crocus sativus cells and the production of crocin by rare earth elements. Biotechnol. Lett. 2003, 26, 27–30. [Google Scholar] [CrossRef]
- Diatloff, E.; Smith, F.W.; Asher, C.J. Effects of lanthanum and cerium on the growth and mineral nutrition of corn and mungbean. Ann. Bot. 2008, 101, 971–982. [Google Scholar] [CrossRef] [Green Version]
- Olivares, E.; Aguiar, G.; Colonnello, G. Rare earth elements in vascular plants: A review. Interciencia 2011, 36, 331–340. [Google Scholar]
- Huang, G.; Wang, L.; Zhou, Q. Lanthanum (III) regulates the nitrogen assimilation in soybean seedlings under ultraviolet-B radiation. Biol. Trace Elem. Res. 2012, 151, 105–112. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Zhang, G.F.; Wang, Y.; Guo, G. Effect of La(NO3)3 and Ce(NO3)3 on shoot induction and seedling growth of in vitro cultured Anoectochilus roxburghii. J. Plant Biol. 2016, 59, 105–113. [Google Scholar] [CrossRef]
- Fan, Z.B.; Zhang, K.; Wang, F.Y.; Zhao, X.D.; Bai, R.Q.; Liu, B.L. Effects of rare earth elements on growth and determination of secondary metabolites under in vitro conditions in Salvia miltiorrhiza. HortScience 2020, 55, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bielenin, M.; Joustra, M.K. The effect of two day–night temperature regimes and two nutrient solution concentrations on growth of Lavandula angustifolia ‘Munstead’ and Magnolia soulangiana. Sci. Hortic. 2000, 85, 113–121. [Google Scholar] [CrossRef]
- Carvalho, S.M.P.; Heunelink, E.; Cascais, R.; Kooten, O.V. Effect day and night temperature on internode and stem length in Chrysanthemum: Is everything explained in DIF. Ann. Bot. 2002, 90, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Stuerz, S.; Asch, F. Responses of rice growth to day and night temperature and relative air humidity—Dry matter, leaf area, and partitioning. Plants 2019, 8, 521. [Google Scholar] [CrossRef] [Green Version]
- Ohtaka, K.; Yoshida, A.; Kakei, Y.; Fukui, K.; Kojima, M.; Takebayashi, Y.; Yano, K.; Imanishi, S.; Sakakibara, H. Difference between day and night temperatures affects stem elongation in tomato (Solanum lycopersicum) seedlings via regulation of gibberellin and auxin synthesis. Front. Plant Sci. 2020, 11, 577235. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Q.; Li, Y.S.; Li, P.; Zhang, F.M.; Thomas, B.W. Effect of difference between day and night temperature on tomato (Lycopersicon esculentum Mill.) root activity and low molecular weight organic acid secretion. Soil Sci. Plant Nutr. 2016, 62, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.L. Study on the effects of the content of polysaccharides and mechanism under the different temperature between day and night in Dendrobium officinale PLBS. Fujian Agric. For. Univ. 2015, 4, 5–6. [Google Scholar]
- Yan, N.; Ai, J.; Li, S.Y.; Hu, H.; Wang, H. A Method to Promote Photosynthesis and Polysaccharide Accumulation of Dendrobium Officinal. CN Patent No. CN101982062A, 2 March 2011. [Google Scholar]
- Fan, Y.J.; He, X.J.; Zhou, S.D.; Luo, A.X.; He, T.; Chun, Z. Composition analysis and antioxidant activity of polysaccharide from Dendrobium denneanum. Int. J. Biol. Macromol. 2009, 45, 169–173. [Google Scholar] [CrossRef]
- Ng, T.B.; Liu, J.Y.; Wong, J.H.; Ye, X.J.; Sze, S.C.W.; Tong, Y.; Zhang, K.Y. Review of research on Dendrobium, a prized folk medicine. Appl. Microbiol. Biotechnol. 2012, 93, 1795–1803. [Google Scholar] [CrossRef]
- Wang, K.; Pan, L.H.; Zha, X.Q.; Luo, J.P. Effect of rare earth element cerium on cell growth and polysaccharide production in protocorm-like bodies of Dendrobium huoshanense during suspension culture. Food Sci. 2010, 5, 131–136. [Google Scholar]
- Yang, F.; Wei, N.N.; Gao, R.; Piao, X.C.; Lian, M.L. Effect of several medium factors on polysaccharide and alkaloid accumulation in protocorm-like bodies of Dendrobium candidum during bioreactor culture. Acta Physiol. Plant. 2015, 37, 94. [Google Scholar] [CrossRef]
- Jiang, D.Q.; Liu, Z.H.; Shen, H.G.; Liao, C.J. Comparative study on Dendrobium offificinale polysaccharide content at different habitats in Karstic environment. Carsol. Sin. 2007, 26, 226–229. (In Chinese) [Google Scholar]
- Zhu, Y.; Si, J.P.; Guo, B.L.; He, B.W.; Zhang, A.L. Quantitative variation of polysaccharides content in cultivated Dendrobium candidum. China J. Chin. Mater. Med. 2010, 35, 427–430. (In Chinese) [Google Scholar]
- Wang, Z.L.; Shi, H.; Zhang, Z.S. Studies on suspension culture of protocorm-like bodies of Dendrobium candidum and their accumulation of polysaccharides. J. Henan Agric. Sci. 2012, 41, 129–131. (In Chinese) [Google Scholar]
- Qiu, N.W.; Wang, X.S.; Yang, F.B.; Yang, X.G.; Yang, W.; Diao, R.J.; Wang, X.; Cui, J.; Zhou, F. Rapid extraction and precise determination of chlorophyll. Chin. Bull. Bot. 2016, 51, 667–678. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- McClendon, J.F. The permeability and the thickness of the plasma membrane as determined by electric currents of high and low frequency. Protoplasma 1927, 3, 71–81. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Sakran, A.M.; Basalah, M.O.; Ali, H.M. Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. Int. J. Mol. Sci. 2012, 13, 6604–6619. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.Q.; Wang, Y.S.; Lou, Z.P.; Dong, J.D. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 2007, 67, 44–50. [Google Scholar] [CrossRef]
- Wang, Y.S.; Tian, S.P.; Xu, Y.; Qin, G.Z.; Yao, H.J. Changes in the activities of pro- and anti-oxidant enzymes in peach fruit inoculated with Cryptococcus laurentii or Penicillium expansum at 0 or 20 °C. Postharvest Biol. Technol. 2004, 34, 21–28. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Huang, Y.P. Propagation and determining polysaccharide content of Dendrobium officinale Kimura et Migo. Fujian J. TCM 2013, 44, 47–48. (In Chinese) [Google Scholar]
- Chae, S.C.; Son, K.C.; Yun, J.G. Effect of DIF (Difference between day and night temperature) on growth and flag leaf occurrence in Dendrobium nobile Lindle. J. Korean Soc. Hortic. Sci. 1998, 39, 60–65. [Google Scholar]
- Myster, J.; Moe, R.; Junttila, O. Does diurnal temperature fluctuations (DIF) regulate internode lengths mediated through the biosynthetic formation of GA1 in Begonia x hiemalis Fotch? In Proceedings of the Workshop on Environmental Regulation of Plant Morphogenesis, Hannover, Germany, 8–11 September 1993; pp. 123–128. [Google Scholar]
- Shimizu, H. Effect of day and night temperature alternations on plant morphogenesis. Environ. Control Biol. 2007, 45, 259–265. [Google Scholar] [CrossRef]
- Patel, D.; Franklin, K.A. Temperature-regulation of plant architecture. Plant Signal. Behav. 2009, 4, 577–579. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.G.; Oh, H.J.; Jeong, B.R. Growth and anthocyanin concentration of Perilla frutescens var. acuta Kudo as affected by light source and DIF under controlled environment. Hortic. Environ. Biotechnol. 2013, 54, 103–108. [Google Scholar] [CrossRef]
- Matsuda, R.; Ozawa, N.; Fujiwara, K. Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences. Sci. Hortic. 2014, 170, 150–158. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Wang, X.L.; Peng, X.D.; Zhao, X.; Yuan, X.K.; Han, X.J. Effect of difference between day and night temperature on nutrients and dry mass partitioning of tomato in climate chamber. Trans. Chin. Soc. Agric. Eng. 2014, 30, 138–147. [Google Scholar]
- Erwin, J.E.; Heins, R.D.; Moe, R. Temperature and photoperiod effects on Fuchsia × hybrida morphology. J. Am. Soc. Hortic. Sci. 1991, 116, 955–960. [Google Scholar] [CrossRef]
- Erwin, J.E.; Heins, R.D. Thermomorphogenic responses in stem and leaf development. HortScience 1995, 30, 940–949. [Google Scholar] [CrossRef] [Green Version]
- Vågen, I.M.; Moe, R.; Ronglan, E. Diurnal temperature alternations (DIF/drop) affect chlorophyll content and chlorophyll a/chlorophyll b ratio in Melissa officinalis L. and Ocimum basilicum L., but not in Viola x wittrockiana Gams. Sci. Hortic. 2003, 97, 153–162. [Google Scholar] [CrossRef]
- Reynolds, M.P.; Delgado, M.I.B.; Rodriguéz, M.G.; Saavedra, A. Photosynthesis of wheat in a warm, irrigated environment: I: Genetic diversity and crop productivity. Field Crop. Res. 2000, 66, 37–50. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Zhao, X.; Liu, Z.X.; Yang, Z.Q. Effect of difference between day and night temperature on fruit development and yield of tomato. North. Hortic. 2014, 24, 38–42. [Google Scholar] [CrossRef]
- Levitt, J. Responses of Plants to Environmental Stresses. i.e., Chilling, Freezing and High Temperature Stresses, 2nd ed.; Academic Press: New York, NY, USA, 1980; Volume 1. [Google Scholar]
- Peng, X.; Zhou, S.L.; He, J.Y.; Li, D. Influence of rare earth elements on metabolism and related enzyme activity and isozyme expression in Tetrastigma hemsleyanum cell suspension cultures. Biol. Trace Elem. Res. 2013, 152, 82–90. [Google Scholar]
- Bowler, C.; Camp, W.V.; Montagy, M.V.; Inzé, D.; Asada, K. Superoxide dismutase in plants. Crit. Rev. Plant Sci. 1994, 13, 199–218. [Google Scholar] [CrossRef]
- Muneer, S.; Ko, C.H.; Wei, H.; Chen, Y.; Jeong, B.R. Physiological and proteomic investigations to study the response of tomato graft unions under temperature stress. PLoS ONE 2016, 11, e0157439. [Google Scholar] [CrossRef] [Green Version]
- McCree, K.J. An equation for the rate of respiration of white clover plants grown under controlled conditions. In Prediction and Measurement of Photosynthetic Productivity; Šetlík, I., Ed.; Centre for Agricultural Publication and Documentation: Wageningen, The Netherlands, 1970; pp. 221–229. [Google Scholar]
- Bunce, J.A. Response of respiration of soybean leaves grown at ambient and elevated carbon dioxide concentrations to day-to-day variation in light and temperature under field conditions. Ann. Bot. 2005, 95, 1059–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, W.; Sakai, H.; Yagi, K.; Hasegawa, T. Interactions of elevated CO2 and night temperature on rice growth and yield. Agric. For. Meteorol. 2009, 149, 51–58. [Google Scholar] [CrossRef]
- Kanno, K.; Makino, A. Increased grain yield and biomass allocation in rice under cool night temperature. Soil Sci. Plant Nutr. 2010, 56, 412–417. [Google Scholar] [CrossRef]
- Rezaeieh, K.A.P.; Gurbuz, B.; Uyanık, M. Biotic and abiotic stresses mediated changes in secondary metabolites induction of medicinal plants. In Proceedings of the Tıbbı ve Aromatik Bitkiler Sempozyumu Conference, Antalya, Turkey, 4 March 2012; pp. 218–222. [Google Scholar]
- Gabbish, A.A.; Klenwachter, M.; Selmar, D. Influencing the content of secondary metabolites in spice and medicinal plants by deliberately applying drought stress during their cultivation. Jordan J. Biol. Sci. 2015, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Manikonda, P.K.; Abhyanikarn, G.; Rao, K.V.; Reddy, V.D.; Subramanyam, C. Salt stress enhances daidzein production in hairy root cultures of Psoralea corylifolia L. (Fabaceae). Proc. A.P. Akad. Sci. 2009, 13, 35–49. [Google Scholar]
- Mohammadi, H.; Hazrati, S.; Ghorbanpour, M. Tolerance mechanisms of medicinal plants to abiotic stresses. In Plant Life under Changing Environment; Academic Press: Cambridge, MA, USA, 2020; pp. 663–679. [Google Scholar]
- Sharma, A. Gene expression analysis in medicinal plants under abiotic stress conditions. In Plant Metabolites and Regulation under Environmental Stress; Academic Press: Cambridge, MA, USA, 2018; pp. 407–414. [Google Scholar]
- Aghaei, K.; Komatsu, S. Crop and medicinal plants proteomics in response to salt stress. Front. Plant Sci. 2013, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Afrin, S.; Huang, J.-J.; Luo, Z.-Y. JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Sci. Bull. 2015, 60, 1062–1072. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; He, C.; da Silva, J.A.T.; Zhang, G.; Dong, W.; Luo, J.; Duan, J. Molecular cloning and functional analysis of DoUGE related to water-soluble polysaccharides from Dendrobium officinale with enhanced abiotic stress tolerance. Plant Cell Tissue Organ. Cult. 2017, 131, 579–599. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, X.; Jia, Z.; Li, C.; Ma, J.; Zhang, J. The effects of ecological factors on the main medicinal components of Dendrobium officinale under different cultivation modes. Forests 2020, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Diatloff, E.; Smith, F.W.; Asher, C.J. Rare earth elements and plant growth: III. Responses of corn and mungbean to low concentrations of cerium in dilute, continuously flowing nutrient solutions. J. Plant Nutri. 1995, 18, 1987–2003. [Google Scholar] [CrossRef]
- Meehan, B.; Peverill, K.; Skroce, A. The impact of bioavailable rare earth elements in Australia agricultural soils. In Proceedings of the First Workshop on Soil and Plant Analysis, Ballarat, VIC, Australia, 2–4 March 1993; pp. 36–41. [Google Scholar]
- Velasco, J.R.; Domingo, L.E.; Lansangan, A.S.; Sierra, Z.N. Cultural studies on coconut Cadang: Reaction of plants to the rare earths, thallium and certain soil samples. Philipp. J. Coconut Stud. 1979, 4, 1–13. [Google Scholar]
- Abe, S.; Takeda, J. Effects of La3+ on surface charges, dielectrophoresis, and electrofusion of barley protoplasts. Plant Physiol. 1988, 87, 389–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obi, I.; Ichikawa, Y.; Kakutani, T.; Senda, M. Electrophoresis, zeta potential and surface charges of barley mesophyll protoplasts. Plant Cell Physiol. 1989, 30, 129–135. [Google Scholar] [CrossRef] [Green Version]
DIF (°C) (D) (Photo-/Dark-Period Temp.) | REE (R) | Concentration (μM) (C) | New Shoot | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length (mm) | Diameter (mm) | Fresh Weight (g) | No. | No. of Nodes | No. of Leaves | |||||||||
0 (20/20 °C) | Control-0 | 0 | 10.3 | ef z | 1.86 | d–k | 0.29 | g–m | 1.1 | cd | 1.4 | f | 3.1 | fg |
La(NO₃)₃ | 50 | 11.7 | ef | 1.90 | d–k | 0.29 | g–m | 1.0 | cd | 1.4 | f | 4.3 | c–g | |
100 | 15.4 | b–e | 2.29 | a–d | 0.38 | c–g | 1.2 | b–d | 2.1 | c–f | 4.0 | d–g | ||
150 | 14.1 | b–f | 1.70 | g–l | 0.31 | f–l | 1.2 | b–d | 2.4 | a–f | 4.8 | b–g | ||
200 | 12.9 | c–f | 1.80 | e–l | 0.27 | h–m | 1.3 | b–d | 2.4 | a–f | 4.2 | d–g | ||
Ce(NO₃)₃ | 50 | 13.5 | b–f | 2.11 | b–h | 0.26 | i–m | 1.1 | cd | 2.2 | b–f | 3.8 | d–g | |
100 | 17.2 | a–d | 2.55 | ab | 0.39 | c–g | 1.2 | b–d | 2.4 | a–f | 4.2 | d–g | ||
150 | 14.9 | b–e | 2.27 | a–e | 0.33 | e–l | 0.9 | cd | 3.0 | a–d | 4.8 | b–g | ||
200 | 10.5 | ef | 1.87 | d–k | 0.23 | lm | 1.1 | cd | 2.1 | c–f | 4.3 | c–g | ||
Nd(NO₃)₃ | 50 | 12.5 | d–f | 1.76 | f–l | 0.25 | j–m | 1.0 | cd | 2.2 | b–f | 4.6 | b–g | |
100 | 13.9 | b–f | 2.26 | a–e | 0.25 | j–m | 1.1 | cd | 2.1 | c–f | 4.0 | d–g | ||
150 | 14.6 | b–e | 2.18 | b–g | 0.24 | k–m | 1.3 | b–d | 1.8 | d–f | 4.9 | a–g | ||
200 | 14.0 | b–f | 1.81 | e–l | 0.21 | m | 1.1 | cd | 1.8 | d–f | 3.7 | d–g | ||
6 (23/17 °C) | Control-6 | 0 | 10.7 | ef | 1.66 | h–l | 0.34 | e–k | 0.8 | d | 1.6 | ef | 3.6 | d–g |
La(NO₃)₃ | 50 | 13.9 | b–f | 1.86 | d–k | 0.38 | c–g | 1.6 | a–c | 1.8 | d–f | 3.6 | d–g | |
100 | 14.9 | b–e | 2.47 | ab | 0.47 | b–d | 1.9 | ab | 3.1 | a–c | 6.4 | a–c | ||
150 | 13.0 | c–f | 1.97 | c–j | 0.34 | e–j | 1.3 | b–d | 2.6 | a–f | 4.7 | b–g | ||
200 | 13.4 | b–f | 1.93 | c–k | 0.39 | c–g | 1.3 | b–d | 2.4 | a–f | 4.8 | b–g | ||
Ce(NO₃)₃ | 50 | 9.1 | f | 1.68 | h–l | 0.31 | f–m | 1.4 | b–d | 2.4 | a–f | 3.6 | d–g | |
100 | 15.3 | b–e | 2.67 | a | 0.56 | a | 2.1 | a | 3.6 | a | 6.9 | a | ||
150 | 11.6 | ef | 1.77 | f–l | 0.38 | c–g | 1.3 | b–d | 2.7 | a–f | 4.0 | d–g | ||
200 | 14.2 | b–e | 2.00 | c–i | 0.39 | c–g | 1.1 | cd | 2.3 | a–f | 5.4 | a–d | ||
Nd(NO₃)₃ | 50 | 12.8 | c–f | 1.76 | f–l | 0.32 | e–l | 0.9 | cd | 2.8 | a–e | 4.3 | c–g | |
100 | 15.3 | b–e | 2.49 | ab | 0.49 | ab | 1.6 | a–c | 2.7 | a–f | 6.7 | ab | ||
150 | 12.4 | d–f | 2.17 | b–g | 0.34 | e–j | 1.3 | b–d | 2.8 | a–e | 4.6 | b–g | ||
200 | 13.3 | b–f | 2.39 | a–c | 0.35 | e–j | 1.4 | b–d | 2.7 | a–f | 3.2 | e–g | ||
12 (26/14 °C) | Control-12 | 0 | 13.3 | b–f | 1.49 | j–l | 0.37 | d–h | 1.0 | cd | 1.6 | ef | 2.9 | g |
La(NO₃)₃ | 50 | 12.9 | c–f | 1.77 | f–l | 0.40 | b–f | 1.2 | b–d | 2.0 | c–f | 4.3 | c–g | |
100 | 18.1 | ab | 2.23 | a–f | 0.43 | b–e | 1.6 | a–c | 2.8 | a–e | 4.3 | c–g | ||
150 | 12.9 | c–f | 1.85 | d–l | 0.37 | d–h | 1.0 | cd | 2.3 | a–f | 4.3 | c–g | ||
200 | 14.1 | b–e | 1.72 | g–l | 0.38 | c–g | 1.2 | b–d | 2.8 | a–e | 5.7 | a–d | ||
Ce(NO₃)₃ | 50 | 14.4 | b–e | 1.49 | j–l | 0.39 | c–g | 1.2 | b–d | 2.6 | a–f | 4.2 | d–g | |
100 | 20.5 | a | 1.54 | i–l | 0.48 | a–c | 1.2 | b–d | 3.4 | ab | 5.3 | a–e | ||
150 | 17.8 | a–c | 1.46 | kl | 0.38 | c–g | 1.3 | b–d | 2.4 | a–f | 4.1 | d–g | ||
200 | 12.6 | d–f | 1.51 | j–l | 0.36 | e–h | 1.2 | b–d | 2.3 | a–f | 4.8 | b–g | ||
Nd(NO₃)₃ | 50 | 14.6 | b–e | 1.37 | l | 0.36 | e–h | 1.3 | b–d | 1.9 | c–f | 4.0 | d–g | |
100 | 17.2 | a–d | 1.51 | j–l | 0.39 | c–g | 1.1 | cd | 2.3 | a–f | 4.9 | a–g | ||
150 | 17.8 | a–c | 1.71 | g–l | 0.35 | e–j | 1.3 | b–d | 2.4 | a–f | 5.2 | a–f | ||
200 | 17.4 | a–d | 1.66 | h–l | 0.36 | e–i | 1.3 | b–d | 2.7 | a–f | 5.4 | a–d | ||
F-test | D | *** y | *** | *** | *** | * | NS | |||||||
R | NS | NS | *** | NS | NS | NS | ||||||||
C | *** | *** | *** | * | ** | * | ||||||||
D × R | NS | *** | NS | NS | NS | NS | ||||||||
D × C | NS | ** | NS | NS | NS | *** | ||||||||
R × C | NS | * | NS | NS | NS | NS | ||||||||
D × R × C | NS | NS | NS | NS | NS | NS |
DIF (°C) (D) (Photo-/Dark-Period Temp.) | REE (R) | Concentration (μM) (C) | Chlorophyll (mg·g−1) | Chlorophyll a/b | ||||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | Total | ||||||||
0 (20/20 °C) | Control-0 | 0 | 0.79 | bc z | 0.57 | lm | 1.36 | l–n | 1.37 | cd |
La(NO₃)₃ | 50 | 0.62 | f–m | 0.41 | pq | 1.03 | q–s | 1.50 | a | |
100 | 0.56 | l–n | 0.43 | o–q | 0.98 | rs | 1.30 | de | ||
150 | 0.53 | mn | 0.41 | pq | 0.94 | s | 1.27 | e | ||
200 | 0.80 | b | 0.60 | l | 1.40 | k–m | 1.34 | c–e | ||
Ce(NO₃)₃ | 50 | 0.69 | d–g | 0.51 | l–o | 1.20 | n–p | 1.35 | c–e | |
100 | 0.81 | b | 0.55 | l–n | 1.37 | lm | 1.48 | ab | ||
150 | 0.63 | e–l | 0.47 | n–p | 1.10 | p–r | 1.36 | c–e | ||
200 | 0.64 | e–l | 0.48 | m–p | 1.11 | p–r | 1.34 | c–e | ||
Nd(NO₃)₃ | 50 | 0.81 | b | 0.60 | l | 1.42 | j–m | 1.35 | c–e | |
100 | 0.78 | b–d | 0.55 | l–n | 1.33 | m–o | 1.41 | bc | ||
150 | 0.68 | e–j | 0.51 | l–p | 1.18 | 0–q | 1.34 | c–e | ||
200 | 0.45 | n | 0.34 | q | 0.79 | t | 1.33 | c–e | ||
6 (23/17 °C) | Control-6 | 0 | 0.70 | c–g | 1.03 | c–e | 1.72 | b–d | 0.68 | g–j |
La(NO₃)₃ | 50 | 0.98 | a | 0.71 | k | 1.68 | b–e | 1.38 | cd | |
100 | 0.63 | e–l | 0.98 | d–g | 1.60 | d–i | 0.64 | g–k | ||
150 | 0.58 | j–m | 0.89 | g–j | 1.46 | i–m | 0.65 | g–k | ||
200 | 0.61 | f–m | 0.92 | f–i | 1.53 | e–l | 0.66 | g–j | ||
Ce(NO₃)₃ | 50 | 0.59 | g–m | 0.81 | j | 1.41 | k–m | 0.73 | fg | |
100 | 0.67 | e–k | 0.84 | ij | 1.51 | f–l | 0.80 | f | ||
150 | 0.66 | e–k | 1.03 | c–e | 1.69 | b–e | 0.65 | g–k | ||
200 | 0.63 | e–l | 0.89 | g–j | 1.52 | e–l | 0.71 | g–i | ||
Nd(NO₃)₃ | 50 | 0.64 | e–l | 0.94 | e–i | 1.57 | d–k | 0.68 | g–j | |
100 | 0.68 | e–j | 1.00 | d–f | 1.67 | b–g | 0.68 | g–j | ||
150 | 0.64 | e–l | 0.95 | e–h | 1.59 | d–i | 0.68 | g–j | ||
200 | 0.63 | e–l | 0.86 | h–j | 1.49 | h–m | 0.73 | f–h | ||
12 (26/14 °C) | Control-12 | 0 | 0.56 | l–n | 0.87 | h–j | 1.43 | i–m | 0.64 | h–k |
La(NO₃)₃ | 50 | 0.58 | i–m | 0.92 | f–i | 1.50 | g–m | 0.63 | i–k | |
100 | 0.61 | f–m | 0.98 | d–g | 1.59 | d–j | 0.62 | i–k | ||
150 | 0.59 | h–m | 1.10 | bc | 1.69 | b–e | 0.55 | k | ||
200 | 0.57 | k–m | 0.91 | f–j | 1.48 | i–m | 0.63 | i–k | ||
Ce(NO₃)₃ | 50 | 0.64 | e–l | 1.03 | c–e | 1.68 | b–f | 0.62 | i–k | |
100 | 0.71 | c–f | 1.08 | b–d | 1.78 | bc | 0.66 | g–j | ||
150 | 0.62 | e–m | 1.03 | c–e | 1.66 | c–h | 0.60 | jk | ||
200 | 0.68 | e–h | 1.14 | b | 1.82 | a–c | 0.60 | jk | ||
Nd(NO₃)₃ | 50 | 0.68 | e–i | 1.16 | ab | 1.84 | ab | 0.58 | jk | |
100 | 0.60 | g–m | 0.98 | d–g | 1.58 | d–j | 0.61 | jk | ||
150 | 0.73 | b–e | 1.24 | a | 1.97 | a | 0.58 | jk | ||
200 | 0.68 | e–h | 1.16 | ab | 1.84 | ab | 0.59 | jk | ||
F-test | D | NS y | *** | *** | *** | |||||
R | * | *** | *** | *** | ||||||
C | *** | * | *** | *** | ||||||
D × R | *** | * | *** | *** | ||||||
D × C | *** | *** | *** | *** | ||||||
R × C | *** | *** | *** | *** | ||||||
D × R × C | *** | *** | *** | *** |
DIF (°C) (D) (Photo-/Dark-Period Temp.) | REE (R) | Concentration (μM) (C) | Membrane Permeability (%) | Activity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOD (U·mg−1 protein) | POD (Δ470·g−1 FW·min−1) | CAT (Δ240·g−1 FW·min−1) | APX (Δ290·mg−1 FW·min−1) | |||||||||
0 (20/20 °C) | Control-0 | 0 | 12.68 | r z | 45.64 | tu | 0.02 | qr | 0.01 | r | 3.12 | q |
La(NO₃)₃ | 50 | 13.96 | qr | 53.25 | st | 0.15 | h–m | 0.11 | f–i | 3.52 | pq | |
100 | 13.89 | qr | 70.77 | o–q | 0.13 | i–n | 0.11 | f–k | 8.35 | j–o | ||
150 | 16.17 | op | 56.78 | r–t | 0.26 | d–f | 0.23 | b | 14.01 | e–g | ||
200 | 21.41 | k–m | 91.52 | f–k | 0.35 | c | 0.30 | a | 19.74 | cd | ||
Ce(NO₃)₃ | 50 | 12.67 | r | 66.78 | p–r | 0.03 | qr | 0.08 | i–o | 6.27 | m–q | |
100 | 12.59 | r | 59.32 | q–s | 0.02 | r | 0.09 | g–n | 5.41 | n–q | ||
150 | 13.48 | qr | 81.76 | k–o | 0.01 | r | 0.18 | c | 6.89 | l–q | ||
200 | 16.53 | o | 126.28 | a | 0.09 | m–q | 0.18 | c–d | 21.62 | bc | ||
Nd(NO₃)₃ | 50 | 17.74 | no | 40.02 | u | 0.18 | g–k | 0.06 | m–q | 8.75 | j–n | |
100 | 22.16 | j–l | 80.34 | k–o | 0.02 | r | 0.07 | j–p | 8.96 | j–n | ||
150 | 32.56 | de | 88.31 | h–l | 0.01 | r | 0.11 | f–i | 15.25 | ef | ||
200 | 31.88 | e | 104.99 | b–e | 0.20 | f–h | 0.12 | f–h | 16.05 | ef | ||
6 (23/17 °C) | Control-6 | 0 | 17.02 | no | 49.49 | s–u | 0.11 | l–o | 0.04 | o–r | 3.42 | q |
La(NO₃)₃ | 50 | 18.34 | n | 56.77 | r–t | 0.18 | g–j | 0.14 | d–f | 9.02 | j–n | |
100 | 14.88 | pq | 50.41 | s–u | 0.27 | de | 0.13 | e–g | 11.38 | g–j | ||
150 | 17.31 | no | 85.89 | i–m | 0.48 | b | 0.17 | c–e | 7.85 | j–o | ||
200 | 22.55 | i–k | 101.06 | c–h | 0.51 | ab | 0.08 | h–o | 15.77 | ef | ||
Ce(NO₃)₃ | 50 | 25.91 | gh | 59.39 | q–s | 0.12 | j–o | 0.01 | r | 6.55 | m–q | |
100 | 29.17 | f | 71.32 | n–q | 0.11 | l–o | 0.10 | f–l | 7.44 | k–o | ||
150 | 20.61 | lm | 89.55 | g–l | 0.19 | g–j | 0.12 | fg | 13.19 | f–h | ||
200 | 40.65 | a | 114.03 | b | 0.08 | n–r | 0.25 | b | 24.21 | ab | ||
Nd(NO₃)₃ | 50 | 20.11 | m | 54.54 | r–t | 0.19 | g–i | 0.05 | n–r | 6.51 | m–q | |
100 | 21.89 | j–l | 92.28 | e–k | 0.14 | h–n | 0.03 | p–r | 4.72 | o–q | ||
150 | 17.64 | no | 83.42 | j–n | 0.13 | i–n | 0.02 | qr | 10.46 | g–l | ||
200 | 23.39 | h–j | 135.95 | a | 0.10 | l–p | 0.11 | f–j | 26.95 | a | ||
12 (26/14 °C) | Control-12 | 0 | 17.75 | no | 49.59 | s–u | 0.13 | i–n | 0.03 | p–r | 7.27 | l–p |
La(NO₃)₃ | 50 | 23.38 | h–j | 77.41 | l–p | 0.28 | d | 0.09 | g–m | 9.67 | h–m | |
100 | 33.44 | d | 66.88 | p–r | 0.25 | d–g | 0.07 | k–p | 12.93 | f–i | ||
150 | 37.05 | b | 66.30 | p–r | 0.17 | h–l | 0.06 | l–q | 16.04 | ef | ||
200 | 37.94 | b | 73.75 | m–p | 0.55 | ab | 0.24 | b | 19.68 | cd | ||
Ce(NO₃)₃ | 50 | 21.78 | j–l | 106.79 | b–d | 0.03 | qr | 0.09 | g–m | 9.20 | i–n | |
100 | 22.17 | j–l | 103.95 | b–f | 0.03 | p–r | 0.11 | f–k | 14.08 | e–g | ||
150 | 24.29 | h | 95.02 | d–j | 0.05 | o–r | 0.10 | f–l | 16.37 | d–f | ||
200 | 35.17 | c | 95.58 | d–j | 0.19 | g–j | 0.12 | f–h | 22.03 | bc | ||
Nd(NO₃)₃ | 50 | 14.37 | q | 83.69 | i–n | 0.02 | qr | 0.14 | ef | 11.53 | g–j | |
100 | 24.94 | gh | 101.64 | b–g | 0.11 | k–o | 0.14 | d–f | 11.25 | g–k | ||
150 | 24.00 | hi | 109.37 | bc | 0.04 | p–r | 0.23 | b | 11.33 | g–j | ||
200 | 40.69 | a | 96.43 | d–i | 0.21 | e–h | 0.29 | a | 17.17 | d–e | ||
F-test | D | *** y | *** | *** | *** | *** | ||||||
R | *** | *** | *** | *** | NS | |||||||
C | *** | *** | *** | *** | *** | |||||||
D×R | *** | *** | *** | *** | *** | |||||||
D×C | *** | *** | *** | *** | *** | |||||||
R×C | *** | *** | *** | * | *** | |||||||
D×R×C | *** | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Tang, L.; Gao, B.; Jeong, B.R.; Deng, S.; Wei, H. Effects on Growth and Metabolism of Difference between Day and Night Temperatures (DIF) and Supplementation with Rare Earth Elements (REE) in Micropropagated Dendrobium aphyllum (Roxb.) C. E. Fischer. Horticulturae 2021, 7, 425. https://doi.org/10.3390/horticulturae7110425
Liu B, Tang L, Gao B, Jeong BR, Deng S, Wei H. Effects on Growth and Metabolism of Difference between Day and Night Temperatures (DIF) and Supplementation with Rare Earth Elements (REE) in Micropropagated Dendrobium aphyllum (Roxb.) C. E. Fischer. Horticulturae. 2021; 7(11):425. https://doi.org/10.3390/horticulturae7110425
Chicago/Turabian StyleLiu, Boling, Lijun Tang, Bowen Gao, Byoung Ryong Jeong, Shijun Deng, and Hao Wei. 2021. "Effects on Growth and Metabolism of Difference between Day and Night Temperatures (DIF) and Supplementation with Rare Earth Elements (REE) in Micropropagated Dendrobium aphyllum (Roxb.) C. E. Fischer" Horticulturae 7, no. 11: 425. https://doi.org/10.3390/horticulturae7110425
APA StyleLiu, B., Tang, L., Gao, B., Jeong, B. R., Deng, S., & Wei, H. (2021). Effects on Growth and Metabolism of Difference between Day and Night Temperatures (DIF) and Supplementation with Rare Earth Elements (REE) in Micropropagated Dendrobium aphyllum (Roxb.) C. E. Fischer. Horticulturae, 7(11), 425. https://doi.org/10.3390/horticulturae7110425