Elicitation of Medicinal Plants In Vivo—Is It a Realistic Tool? The Effect of Methyl Jasmonate and Salicylic Acid on Lamiaceae Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Plant Material and Treatments
2.2. Chemical Analysis
2.2.1. EO Content
2.2.2. EO Composition
2.2.3. Total Phenolic Content (TPC)
2.2.4. Antioxidant Capacity (AC)
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Essential Oil Content
3.2. Essential Oil Composition
3.3. Total Phenolic Content
3.4. Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tamokou, J.D.D.; Mbaveng, A.T.; Kuete, V. Antimicrobial Activities of African Medicinal Spices and Vegetables; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128094419. [Google Scholar] [CrossRef]
- Karpiński, T.M. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charles, D. Antioxidant Properties of Spices, Herbs and Other Sources; Springer: New York, NY, USA, 2012. [Google Scholar]
- Saxena, D.; Jayant, S.K.; Soni, K.; Neekhra, K. Origanum majorana: A potential herb for functional food. Eur. J. Pharm. Med. Res. 2016, 3, 321–325. [Google Scholar]
- Bina, F.; Rahimi, R. Sweet Marjoram: A Review of Ethnopharmacology, Phytochemistry, and Biological Activities. J. Evid. Based. Complementary Altern. Med. 2017, 22, 175–185. [Google Scholar] [CrossRef]
- Schmidt, E.; Bail, S.; Buchbauer, G.; Stoilova, I.; Krastanov, A.; Stoyanova, A.; Jirovetz, L. Chemical Composition, Olfactory Evaluation and Antioxidant Effects of the Essential oil of Origanum majorana L. from Albania. NPC Nat. Prod. Commun. 2008, 3, 1051–1056. [Google Scholar] [CrossRef] [Green Version]
- Mahendran, G.; Rahman, L.U. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha × piperita L.)—A review. Phyther. Res. 2020, 34, 2088–2139. [Google Scholar] [CrossRef]
- Brown, N.; John, J.A.; Shahidi, F. Polyphenol composition and antioxidant potential of mint leaves. Food Prod. Process. Nutr. 2019, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bodalska, A.; Kowalczyk, A.; Włodarczyk, M.; Fecka, I. Analysis of polyphenolic composition of a herbal medicinal product-peppermint tincture. Molecules 2020, 25, 69. [Google Scholar] [CrossRef] [Green Version]
- Németh-Zámbori, É.; Rajhárt, P.; Inotai, K. Effect of genotype and age on essential oil and total phenolics in hyssop (Hyssopus officinalis L.). Artic. J. Appl. Bot. Food Qual. 2017, 90, 25–30. [Google Scholar] [CrossRef]
- Zawilak, G. The chemical composition of essential hyssop oil depending on plant growth stage. Acta Sci. Pol. Hortorum Cultus 2013, 12, 161–170. [Google Scholar]
- Pushpangadan, P.; George, V. Basil. In Handbook of Herbs and Spices, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 1, pp. 55–72. ISBN 9780857095671. [Google Scholar] [CrossRef]
- Kwee, E.M.; Niemeyer, E.D. Variations in phenolic composition and antioxidant properties among 15 basil (Ocimum basilicum L.) cultivars. Food Chem. 2011, 128, 1044–1050. [Google Scholar] [CrossRef]
- Halder, M.; Sarkar, S.; Jha, S. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng. Life Sci. 2019, 19, 880. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.R.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015, 6, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bücker-Neto, L.; Paiva, A.L.S.; Machado, R.D.; Arenhart, R.A.; Margis-Pinheiro, M. Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol. 2017, 40, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Klessig, D.F.; Choi, H.W.; Dempsey, D.A. Systemic acquired resistance and salicylic acid: Past, present, and future. Mol. Plant-Microbe Interact. 2018, 31, 871–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabi, N.; Singh, S.; Saffeullah, P. Responses of in vitro cell cultures to elicitation: Regulatory role of jasmonic acid and methyl jasmonate: A review. Vitr. Cell. Dev. Biol.-Plant 2021, 57, 341–355. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R. Identification of Essential oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Chicago, IL, USA, 2007. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, A.; Ab, P.; Rahimmalek, M.; Elikaei-Nejhad, L.; Hamedi, B.; Pirbalouti, A.G. Essential oil compositions of summer savory under foliar application of jasmonic acid and salicylic acid Essential oil compositions of summer savory under foliar application of jasmonic acid and salicylic acid. J. Essent. Oil Res. 2014, 26, 342–347. [Google Scholar] [CrossRef]
- Ashrafi, M.; Ghasemi Pirbalouti, A.; Rahimmalek, M.; Hamedi, B. Effect of foliar application of Jasmonic Acid (JA) on essential oil yield and its compositions of Thymus daenensis Celak. J. Med. Herbs 2012, 3, 75–80. [Google Scholar]
- Yadegari, M. Foliar application effects of salicylic acid and jasmonic acid on the essential oil composition of Salvia officinalis. Turkish J. Biochem. 2018, 43, 417–424. [Google Scholar] [CrossRef]
- Fard, F.R.; Omidbaigi, R.; Sharifi, M.; Sefidkon, F. Effect of methyl jasmonate on essential oil content and composition of Agastache foeniculum. J. Med. Plants Res. 2012, 6, 5701–5705. [Google Scholar] [CrossRef]
- Gharib, F.A.E. Effect of Salicylic Acid on the Growth, Metabolic Activities and Oil Content of Basil and Marjoram. Int. J. Agric. Biol. 2006, 8, 485–492. [Google Scholar]
- Gharib, F.A.; Moussa, L.A.; Massoud, O.N. Effect of Compost and Bio-fertilizers on Growth, Yield and Essential Oil of Sweet Marjoram (Majorana hortensis) Plant. Int. J. Agric. Biol. J. Agric. Biol. 2008, 10, 381–388. [Google Scholar]
- Commission, E. Regulation (EC) No 1334/2008 of the european parliament and of the council of 16 December 2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending Council Regulation (EEC) No 1601/91, Regulations (EC). Off. J. Eur. Union 2008, 50, 34–50. [Google Scholar]
- Ahmad, B.; Jaleel, H.; Sadiq, Y.; Khan, M.M.A.; Shabbir, A. Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint. Plant Growth Regul. 2018, 86, 273–286. [Google Scholar] [CrossRef]
- Maffei, M.; Scannerini, S. UV-B Effect on Photomorphogenesis and Essential Oil Composition in Peppermint (Mentha piperita L.). J. Essent. Oil Res. 2000, 12, 523–529. [Google Scholar] [CrossRef]
- Fraternale, D.; Ricci, D.; Epifano, F.; Curini, M. Composition and antifungal activity of two essential oils of hyssop (Hyssopus officinalis L.). J. Essent. Oil Res. 2004, 16, 617–622. [Google Scholar] [CrossRef]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef]
- Gorni, P.H.; Pacheco, A.C.; Silva, J.F.A.; Moreli, R.R.; Spera, K.D.; Silva, R.M.G. Plant elicitation with salicylic acid increases bioactive compounds content and antioxidant activity in the infusion of Achillea millefolium L. Biosci. J. 2019, 35, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Sarrou, E.; Chatzopoulou, P.; Dimassi-Theriou, K.; Therios, I.; Koularmani, A. Effect of melatonin, salicylic acid and gibberellic acid on leaf essential oil and other secondary metabolites of bitter orange young seedlings. J. Essent. Oil Res. 2015, 27, 487–496. [Google Scholar] [CrossRef]
- Da Silva, S.; Barbosa Moreira, C.; Apparecida Esquibel, M.; Aguiar Da, R.; Gil, S.S.; Alberto, C.; Riehl, S.; Sato, A. Effect of salicylic acid on essential oil compounds of Melissa officinalis in vitro plants. Agropecuária Técnica 2014, 35, 178–184. [Google Scholar]
- Pirbalouti, A.; Gorgij, A.; Rahimmalek, M.; Hamedi, B. Phytochemical response of hyssop (Hyssopusofficinalis L.) to foliar application of jasmonic acid. J. Herb. Drugs 2013, 4, 7–14. [Google Scholar]
- Deschamps, C.; Simon, J.E. Terpenoid Essential Oil Metabolism in Basil (Ocimum basilicum L.) Following Elicitation. J. Essent. Oil Res. 2006, 18, 618–621. [Google Scholar] [CrossRef]
- Talebi, M.; Moghaddam, M.; Pirbalouti, A.G. Methyl jasmonate effects on volatile oil compounds and antioxidant activity of leaf extract of two basil cultivars under salinity stress. Acta Physiol. Plant. 2018, 40, 1–11. [Google Scholar] [CrossRef]
- Trettel, J.R.; Gazim, Z.C.; Gonçalves, J.E.; Stracieri, J.; Magalhães, H.M. Effects of copper sulphate (CuSO4) elicitation on the chemical constitution of volatile compounds and the in vitro development of Basil. Sci. Hortic. 2018, 234, 19–26. [Google Scholar] [CrossRef]
- Złotek, U.; Świeca, M.; Jakubczyk, A. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.). Food Chem. 2014, 148, 253–260. [Google Scholar] [CrossRef]
- Nafie, E.; Hathout, T.; Al Mokadem, A.S. Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells. Brazilian J. Plant Physiol. 2011, 23, 161–174. [Google Scholar] [CrossRef] [Green Version]
- Gadzovska, S.; Maury, S.; Delaunay, A.; Spasenoski, M.; Joseph, C.; Hagège, D. Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell. Tissue Organ Cult. 2007, 89, 1–13. [Google Scholar] [CrossRef]
- Złotek, U. Effect Of Jasmonic Acid and yeast extract elicitation on low-molecular antioxidants and antioxidant activity of Marjoram (Origanum majorana L.). Acta Sci. Pol. Technol. Aliment. 2017, 16, 371–377. [Google Scholar] [CrossRef]
- Figueroa Pérez, M.G.; Rocha-Guzmán, N.E.; Mercado-Silva, E.; Loarca-Piña, G.; Reynoso-Camacho, R. Effect of chemical elicitors on peppermint (Mentha piperita) plants and their impact on the metabolite profile and antioxidant capacity of resulting infusions. Food Chem. 2014, 156, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Chen, F.; Wang, X.; Rajapakse, N.C. Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 2006, 54, 2327–2332. [Google Scholar] [CrossRef] [PubMed]
- Bandurska, H.; Stroiński, A.; Kubiś, J. The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiol. Plant. 2003, 25, 279–285. [Google Scholar] [CrossRef]
- Abdi, G.; Shokrpour, M.; Karami, L.; Salami, S.A. Prolonged water deficit stress and methyl jasmonate-mediated changes in metabolite profile, flavonoid concentrations and antioxidant activity in peppermint (Mentha × piperita L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Borsani, O.; Valpuesta, V.; Botella, M.A. Evidence for a Role of Salicylic Acid in the Oxidative Damage Generated by NaCl and Osmotic Stress in Arabidopsis Seedlings. Plant Physiol. 2001, 126, 1024–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aberg, B. Plant growth regulators. XLI. Monosubstituted benzoic acids. Swedish J. Agric. Res. 1981, 11, 93–105. [Google Scholar]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231. [Google Scholar] [CrossRef]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef]
- Wang, S.Y.; Bowman, L.; Ding, M. Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. Food Chem. 2008, 107, 1261–1269. [Google Scholar] [CrossRef]
- Blanch, G.P.; Gómez-Jiménez, M.C.; del Castillo, M.L.R. Exogenous Salicylic Acid Improves Phenolic Content and Antioxidant Activity in Table Grapes. Plant Foods Hum. Nutr. 2020, 75, 177–183. [Google Scholar] [CrossRef]
Species | Taxon | Origin |
---|---|---|
Hyssopus officinalis | population | seed collection in cultivated stand, Meran, Italy |
Origanum majorana | variety ‘Magyar’ | superelite seeds stock of MATE |
Mentha piperita | variety ‘Mexian’ | stolons from mother plantation of MATE |
Ocimum basilicum | variety ‘Genovese’ | gene bank accession of MATE |
Measured Parameter | pH H2O | Humus Content % | Lime Content % | KA | NO2 + NO3-N mg/kg | P2O5 mg/kg | K2O mg/kg | Zn mg/kg | Mg mg/kg | Mn mg/kg |
---|---|---|---|---|---|---|---|---|---|---|
Experimental station soil | 7.82 | 2.84 | 0.34 | 25 | 6.93 | 412.89 | 245.54 | 4.09 | 131.78 | 25.64 |
Plant | 1st Treatment | 2nd Treatment | Harvesting |
---|---|---|---|
Hyssop | 12 June 2020 | 19 June 2020 | 26 June 2020 |
Peppermint | 19 June 2020 | 26 June 2020 | 2 July 2020 |
Marjoram | 26 June 2020 | 2 July 2020 | 10 July 2020 |
Basil | 29 July 2020 | 5 August 2020 | 13 August 2020 |
Elicitors | |||||||
---|---|---|---|---|---|---|---|
Component | RI 1 | 0.1 mM Meja | 2 mM MeJa | 0.1 mM SA | 2 mM SA | C 2 | Sign. 3 |
Sabinene | 976 | 3.42 a | 3.19 a | 4.52 a | 3.77 a | 3.52 a | ns |
β-Myrcene | 995 | 0.76 a | 0.70 a | 1.03 a | 0.86 a | 0.80 a | ns |
α-Terpinene | 1018 | 2.24 a | 2.29 a | 2.87 a | 2.75 a | 2.12 a | ns |
β-Phellandrene | 1029 | 2.18 a | 2.22 a | 2.48 a | 2.19 a | 2.08 a | ns |
γ-Terpinene | 1056 | 4.96 a | 4.83 a | 5.47 a | 5.48 a | 4.30 a | ns |
trans-Sabinene hydrate | 1070 | 7.10 a | 6.99 a | 6.65 a | 7.18 a | 6.57 a | ns |
α-Terpinolene | 1085 | 1.12 a | 1.63 a | 1.29 a | 1.25 a | 0.98 a | ns |
cis-Sabinene hydrate | 1096 | 43.54 ab | 42.74 ab | 37.77 a | 40.99 a | 48.24 b | * |
cis-p-Menth-2-en-1-ol | 1126 | 0.96 a | 1.09 a | 1.07 a | 1.11 a | 0.85 a | ns |
Terpinen-4-ol | 1175 | 14.02 ab | 13.28 ab | 12.67 ab | 14.99 b | 11.62 a | * |
α-Terpineol | 1189 | 4.14 a | 4.56 a | 4.52 a | 4.57 a | 4.70 a | ns |
trans-Sabinene hydrate acetate | 1247 | 2.48 a | 2.76 a | 3.96 a | 3.95 a | 2.47 a | ns |
Linalyl acetate | 1250 | 3.00 a | 3.36 ab | 3.44 ab | 3.51 ab | 4.27 b | ** |
β-Caryophyllene | 1420 | 3.88 b | 3.69 ab | 4.14 b | 3.11 a | 3.22 a | * |
Bicyclogermacrene | 1497 | 3.63 b | 3.63 b | 4.20 b | 2.26 a | 2.89 a | * |
Monoterpenes | 89.91 ab | 89.61 ab | 87.75 a | 92.60 b | 92.52 b | * | |
Sesquiterpenes | 7.51 ab | 7.32 ab | 8.33 b | 5.38 a | 6.11 ab | * | |
Total | 97.42 | 96.92 | 96.08 | 97.98 | 98.63 |
Elicitors | |||||||
---|---|---|---|---|---|---|---|
Component | RI 1 | 0.1 mM Meja | 2 mM MeJa | 0.1 mM SA | 2 mM SA | C 2 | Sign. 3 |
Limonene | 1029 | 5.33 a | 5.23 a | 6.015 a | 6.145 a | 5.51 a | ns |
1,8-Cineol | 1034 | 4.27 a | 3.94 a | 4.70 a | 4.98 a | 4.28 a | ns |
γ-Terpinene | 1056 | 0.90 a | 1.03 a | 0.94 a | 0.88 a | 1.00 a | ns |
Menthone | 1158 | 32.92 a | 35.15 a | 34.12 a | 31.81 a | 35.05 a | ns |
Menthofuran | 1168 | 7.56 a | 7.91 a | 7.52 a | 7.41 a | 7.7 a | ns |
Menthol | 1171 | 30.67 a | 27.73 a | 29.46 a | 31.02 a | 27.79 a | ns |
Pulegone | 1236 | 1.80 ab | 2.06 a | 1.44 ab | 1.12 b | 1.96 a | * |
Piperitone | 1249 | 1.50 a | 1.66 a | 1.60 a | 1.58 a | 1.57 a | ns |
Menthyl acetate | 1291 | 4.56 a | 4.12 a | 3.91 a | 3.98 a | 4.57 a | ns |
Germacrene D | 1482 | 1.49 a | 1.77 a | 1.48 a | 1.68 a | 1.78 a | ns |
Monoterpenes | 89.53 a | 88.85 a | 89.71 a | 88.94 a | 89.45 a | ns | |
Sesquiterpenes | 1.49 a | 1.77 a | 1.48 a | 1.68 a | 1.78 a | ns | |
Total | 91.02 | 90.62 | 91.19 | 90.62 | 91.23 |
Elicitors | |||||||
---|---|---|---|---|---|---|---|
Component | RI 1 | 0.1 mM Meja | 2 mM MeJa | 0.1 mM SA | 2 mM SA | C 2 | Sign. 3 |
Sabinene | 976 | 1.04 a | 1.06 a | 1.05 a | 0.89 a | 0.74 a | ns |
β-Pinene | 981 | 5.20 a | 5.74 a | 5.93 a | 4.47 a | 3.44 a | ns |
β-Myrcene | 995 | 2.56 a | 2.03 a | 1.49 a | 1.65 a | 2.14 a | ns |
β-Phellandrene | 1029 | 14.46 c | 10.61 abc | 5.89 a | 8.12 ab | 12.85 bc | * |
Linalool | 1097 | 1.12 a | 1.05 a | 1.00 a | 0.99 a | 1.10 a | ns |
Benzene <pentyl-> | 1152 | 2.93 b | 3.18 bc | 3.78 c | 3.19 bc | 2.29 a | * |
Pinocarvone | 1166 | 0.18 a | 0.32 b | 0.37 b | 0.63 c | 0.14 a | * |
Isopinocamphon | 1170 | 36.33 b | 37.30 b | 46.36 c | 37.16 b | 29.07 a | * |
β-Bourbonene | 1383 | 0.44 a | 0.35 a | 0.50 a | 0.37 a | 0.32 a | ns |
α-Gurjunene | 1410 | 0.48 a | 0.37 a | 0.52 a | 0.62 a | 0.53 a | ns |
β-Caryophyllene | 1420 | 1.84 a | 1.55 a | 1.90 a | 2.05 a | 1.99 a | ns |
Alloaromadendrene | 1462 | 1.89 a | 1.51 a | 1.97 a | 2.29 a | 2.10 a | ns |
Germacren-D | 1482 | 4.01 a | 3.12 a | 4.38 a | 4.72 a | 4.61 a | ns |
Bicyclogermacrene | 1497 | 4.62 a | 4.02 a | 4.91 a | 5.81 a | 5.46 a | ns |
Elemol | 1553 | 5.75 a | 5.42 a | 5.10 a | 5.68 a | 6.03 a | ns |
Spathulenol | 1584 | 0.51 a | 0.55 a | 0.41 a | 0.54 a | 0.79 a | ns |
Caryophyllene-oxide | 1590 | 0.62 a | 0.83 a | 0.47 a | 0.69 a | 1.06 a | ns |
cis-Isolongifolene | 1611 | 0.70 a | 0.94 a | 0.58 a | 1.01 a | 1.28 a | ns |
γ-eudesmol | 1630 | 1.69 a | 1.77 a | 1.43 a | 1.64 a | 2.73 a | ns |
Tau-muurolol | 1647 | 0.89 a | 1.32 a | 0.70 a | 1.25 a | 2.18 a | ns |
β-eudesmol | 1653 | 1.33 a | 1.52 ab | 0.99 a | 1.31 a | 2.21 b | * |
α-eudesmol | 1656 | 1.60 a | 2.37 a | 1.11 a | 1.57 a | 2.40 a | ns |
β-bisabolol | 1671 | 4.53 ab | 4.22 a | 4.11 b | 5.05 ab | 6.18 b | * |
Monoterpenes | 60.88 b | 58.09 ab | 62.07 b | 53.90 ab | 49.48 a | * | |
Sesquiterpenes | 30.86 b | 29.82 b | 29.03 b | 34.56 ab | 39.83 a | * | |
Total | 94.67 | 91.09 | 94.88 | 91.65 | 91.60 |
Elicitors | |||||||
---|---|---|---|---|---|---|---|
Component | RI 1 | 0.1 mM Meja | 2 mM MeJa | 0.1 mM SA | 2 mM SA | C 2 | Sign. 3 |
1,8-Cineole | 1034 | 6.64 ab | 7.83 ab | 4.78 a | 7.79 ab | 9.33 b | * |
Linalool | 1097 | 50.07 a | 53.58 a | 46.24 a | 51.28 a | 46.74 a | ns |
Camphor | 1144 | 0.56 a | 0.57 a | 0.45 a | 0.24 a | 0.60 a | ns |
α-Terpineol | 1189 | 0.98 a | 1.04 a | 1.10 a | 1.14 a | 1.15 a | ns |
Iso-bornyl acetate | 1281 | 1.55 b | 1.98 c | 1.71 bc | 1.14 a | 1.69 bc | * |
Eugenol | 1361 | 2.94 a | 2.54 a | 3.04 a | 3.19 a | 2.11 a | ns |
β-Elemene | 1391 | 1.00 ab | 0.78 a | 1.20 b | 0.86 ab | 0.75 a | * |
trans-α-Bergamotene | 1437 | 3.52 a | 4.71 b | 7.05 c | 5.40 b | 5.70 b | * |
α-Guaiene | 1439 | 0.91 b | 0.69 ab | 0.92 b | 0.74 ab | 0.64 a | * |
α-Humulene | 1454 | 0.75 b | 0.56 a | 0.71 ab | 0.62 ab | 0.58 a | * |
(+)-epi-Bicyclosesquiphellandrene | 1464 | 0.64 ab | 0.49 a | 0.73 b | 0.59 ab | 0.64 ab | * |
Germacrene D | 1482 | 2.82 ab | 2.30 a | 3.55 b | 2.69 ab | 2.39 a | * |
Bicyclogermacrene | 1497 | 1.08 b | 0.57 a | 1.10 b | 0.80 ab | 0.64 a | ** |
α-Bulnesene | 1506 | 2.87 a | 2.24 a | 2.95 a | 2.48 a | 2.15 a | ns |
cis-γ-Cadinene | 1515 | 3.02 b | 2.18 a | 3.34 b | 2.99 b | 2.93 ab | * |
δ-Cadinene | 1524 | 0.65 ab | 0.51 a | 0.88 b | 0.69 ab | 0.74 ab | ** |
Spathulenol | 1584 | 1.25 b | 0.82 a | 1.01 ab | 0.95 a | 0.91 a | * |
1,10-di-epi-Cubenole | 1621 | 1.30 a | 1.11 a | 1.36 a | 1.18 a | 1.36 a | ns |
Tau-cadinol | 1644 | 9.42 a | 8.01 a | 9.66 a | 9.34 a | 9.34 a | ns |
Monoterpenes | 62.75 ab | 67.54 b | 57.32 a | 64.78 ab | 61.62 ab | * | |
Sesquiterpenes | 29.23 ab | 24.98 a | 34.46 b | 29.32 ab | 28.77 ab | * | |
Total: | 91.97 | 92.67 | 91.78 | 94.10 | 90.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandoudi, W.; Radácsi, P.; Gosztola, B.; Zámboriné Németh, É. Elicitation of Medicinal Plants In Vivo—Is It a Realistic Tool? The Effect of Methyl Jasmonate and Salicylic Acid on Lamiaceae Species. Horticulturae 2022, 8, 5. https://doi.org/10.3390/horticulturae8010005
Kandoudi W, Radácsi P, Gosztola B, Zámboriné Németh É. Elicitation of Medicinal Plants In Vivo—Is It a Realistic Tool? The Effect of Methyl Jasmonate and Salicylic Acid on Lamiaceae Species. Horticulturae. 2022; 8(1):5. https://doi.org/10.3390/horticulturae8010005
Chicago/Turabian StyleKandoudi, Wafae, Péter Radácsi, Beáta Gosztola, and Éva Zámboriné Németh. 2022. "Elicitation of Medicinal Plants In Vivo—Is It a Realistic Tool? The Effect of Methyl Jasmonate and Salicylic Acid on Lamiaceae Species" Horticulturae 8, no. 1: 5. https://doi.org/10.3390/horticulturae8010005
APA StyleKandoudi, W., Radácsi, P., Gosztola, B., & Zámboriné Németh, É. (2022). Elicitation of Medicinal Plants In Vivo—Is It a Realistic Tool? The Effect of Methyl Jasmonate and Salicylic Acid on Lamiaceae Species. Horticulturae, 8(1), 5. https://doi.org/10.3390/horticulturae8010005