Response of Seeds, Oil Yield and Fatty Acids Percentage of Jojoba Shrub Strain EAI to Mycorrhizal Fungi and Moringa Leaves Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Moringa Oleifera Leaves Extract Preparation
2.2. Treatments
2.3. Parameters
2.3.1. Vegetative and Reproductive Measurements
Branch Characteristics
Flowering, Fruiting and Seed Yield
2.3.2. Chemical Analyses of Seed
2.3.3. Chlorophyll a and b
2.3.4. The Macro Elements (N, P and K)
2.4. Statistical Analysis
3. Results
3.1. Growth Parameters
3.2. Flowering and Fruits Set Parameters
3.3. Seeds Yield
3.4. Seeds Chemical Compounds
3.5. Yield of Seeds Oil
3.6. Seeds Fixed Oil Analysis
3.7. Chlorophyll a and b
3.8. Macro Elements (N, P and K)
4. Discussion
4.1. Effect of Arbuscular Mycorrhizal Fungi
4.2. Effect of Moringa Oleifera Extract
4.3. Effect of Combination Treatments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, J.M.; Watson, J.E. Nitrogen fertilization effects on jojoba seed production. Ind. Crops Prod. 2001, 13, 145–154. [Google Scholar] [CrossRef]
- Phillips, S.J.; Patricia, W.C. (Eds.) A Natural History of the Sonoran Desert; University of California Press: Berkeley, CA, USA, 2001; pp. 256–257. ISBN 0-520-21980-5. [Google Scholar]
- Wisniak, J. The Chemistry and Technology of Jojoba Oil; American Oil Chemists’ Society: Champaign, IL, USA, 1987. [Google Scholar]
- US National Research Council. Jojoba: New Crop for Arid Lands, New Material for Industry; National Academy Press: Washington, DC, USA, 1985. [Google Scholar]
- Guardiola, J.L. Fruit set and growth. In Second International Seminar on Citrus; Donadio, L.C., Ed.; University of Bebedouro: Bebedouro, Brazil, 1992; pp. 1–30. [Google Scholar]
- Atteya, A.K.G.; Genaidy, E.A.E.; Zahran, H.A. Chemical constituents and yield of Simmondsia chinensis plants as affected by foliar application of gibberellic acid and zinc sulphate. Biosci. Res. 2018, 15, 1528–1541. [Google Scholar]
- Phiri, C. Influence of Moringa oleifera leaf extracts on germination and early seedling development of major cereals. ABJNA 2010, 1, 774–777. [Google Scholar] [CrossRef]
- Raja, N. Biopesticides and biofertilizers: Ecofriendly sources for sustainable agriculture. J. Biofertil. Biopestici. 2013, 4, e112. [Google Scholar] [CrossRef] [Green Version]
- Hooker, J.E.; Blackke, E. Arbuscular mycorrhizal fungi as components of sustainable soil-plant systems. Crit. Rev. Biotechnol. 1995, 15, 201–212. [Google Scholar] [CrossRef]
- Javaid, A. Allelopathic interactions in mycorrhizal associations. Allelopath. J. 2007, 20, 29–42. [Google Scholar]
- Javaid, A.; Jabeen, K.; Javaid, A. Effect of NPK fertilizers and two types of green manures on growth and mycorrhizal colonization of wheat. Pak. J. Phytopathol. 2007, 19, 132–138. [Google Scholar]
- Javaid, A.; Riaz, T. Mycorrhizal colonization in different varieties of Gladiolus and its relation with plant vegetative and reproductive growth. Int. J. Agric. Biol. 2008, 10, 278–282. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008. [Google Scholar]
- Entry, J.A.; Rygiewicz, P.T.; Watrud, L.S.; Donnelly, P.K. Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Adv. Environ. Res. 2002, 7, 123–138. [Google Scholar] [CrossRef]
- Javaid, A. Arbuscular mycorrhizal mediated nutrition in plants. J. Plant Nutr. 2009, 32, 1595–1618. [Google Scholar] [CrossRef]
- Al-Karaki, G.N. Nursery inoculation of tomato with Arbuscular Mycorrhizal Fungi and subsequent performance under irrigation with saline water. Sci. Hort. 2006, 109, 1–7. [Google Scholar] [CrossRef]
- Davies, F., Jr.; Potter, J.; Linderman, R. Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J. Plant Physiol. 1992, 139, 289–294. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.; Azcon, R. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol. Plantar. 1995, 95, 472–478. [Google Scholar] [CrossRef]
- Auge, R.M.; Moore, J.L.; Cho, K.; Stutz, J.C.; Sylvia, D.M.; Al-Agely, A.K.; Saxton, A.M. Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. J. Plant Physiol. 2003, 160, 1147–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Lozano, J.M.; Collados, C.; Barea, J.M.; Azcon, R. Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol. 2001, 151, 493–502. [Google Scholar] [CrossRef]
- Ortas, I. Effect of selected mycorrhizal inoculation on phosphorus sustainability in sterile and non-sterile soils in the Harran Plain in South Anatolia. J. Plant Nutr. 2003, 26, 1–17. [Google Scholar] [CrossRef]
- Karandashov, V.; Bucher, M. Symbiotic phosphate transport in Arbuscular Mycorrhizas. Trends Shrub Sci. 2005, 10, 22–29. [Google Scholar] [CrossRef]
- Roldan, A.; Díaz-Vivancos, P.; Hernandez, J.A.; Carrasco, L.; Caravaca, F. Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil. J. Plant Physiol. 2008, 165, 715–722. [Google Scholar] [CrossRef]
- Ortas, I.; Lal, R. Long-Term Fertilization Effect on Agronomic Yield and Soil Organic Carbon under Semi-Arid Mediterranean Region. Am. J. Exp. Agric. 2014, 4, 1086–1102. [Google Scholar] [CrossRef]
- Tobar, R.M.; Azcon, R.; Barea, J.M. Improved nitrogen uptake and transport from 15N-labeled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol. 1994, 126, 119–122. [Google Scholar] [CrossRef]
- Igiehon, N.O.; Babalola, O.O.; Cheseto, X.; Torto, B. Effects of rhizobia and Arbuscular Mycorrhizal Fungi on yield, size, distribution and fatty acid of soybean seeds grown under drought stress. Microbiol. Res. 2021, 242, 126640. [Google Scholar] [CrossRef] [PubMed]
- Jabborova, D.; Annapurna, K.; Paul, S.; Kumar, S.; Saad, H.A.; Desouky, S.; Ibrahim, M.F.M.; Elkelish, A. Beneficial features of biochar and Arbuscular Mycorrhiza for improving spinach shrub growth, root morphological traits, physiological properties, and soil enzymatic activities. JoF 2021, 7, 571. [Google Scholar] [CrossRef]
- Jabborova, D.; Wirth, S.; Halwani, M.; Ibrahim, M.F.M.; Azab, I.H.E.; El-Mogy, M.M.; Elkelish, A. Growth response of Ginger (Zingiber Officinale), its physiological properties and soil enzyme activities after biochar application under greenhouse conditions. Horticulturae 2021, 7, 250. [Google Scholar] [CrossRef]
- Zewail, R.M.Y.; Ali, M.; El-Gamal, I.S.H.; Al-Maracy, S.H.A.; Islam, K.R.; Elsadek, M.; Azab, E.; Gobouri, A.A.; ElNahhas, N.; Mohamed, M.H.M.; et al. Interactive Effects of Arbuscular Mycorrhizal Inoculation with Nano Boron, Zinc, and Molybdenum Fertilization on Stevioside Contents of Stevia (Stevia rebaudiana, L.) Shrubs. Horticulturae 2021, 7, 260. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Becker, K. Nutritional value and antinutritional components of whole and ethanol extracted Moringa oleifera leaves. Anim. Feed Sci. Technol. 1996, 63, 211–288. [Google Scholar] [CrossRef]
- Nambiar, V.S.; Rachana, M.; Daniel, M. Polyphenol content of three Indian green leafy vegetables. J. Food Sci. Technol. 2005, 42, 312–315. [Google Scholar]
- Nagar, P.K.; Iyer, R.I.; Sircar, P.K. Cytokinins in developing fruits of Moringa pterigosperma Gaertn. Physiol. Plant. 2006, 55, 45–50. [Google Scholar] [CrossRef]
- Rady, M.M.; Mohamed, G.F. Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci. Hort. 2015, 193, 105–113. [Google Scholar] [CrossRef]
- El-Serafya, R.S.; El-Sheshtawy, A.A. Effect of nitrogen fixing bacteria and moringa leaf extract on fruit yield, estragole content and total phenols of organic fennel. Sci. Hortic. 2020, 265, 109209. [Google Scholar] [CrossRef]
- Prabhu, M.; Kumar, A.R.; Rajamani, K. Influence of different organic substances on growth and herb yield of sacred basil (Ocimum sanctum L.). Indian J. Agric. Res. 2010, 44, 48–52. [Google Scholar]
- Ali, E.F.; Hassan, F.A.S.; Elgimabi, M. Improving the growth, yield and volatile oil content of Pelargonium graveolens L. Herit by foliar application with Moringa leaf extract through motivating physiological and biochemical parameters. S. Afr. J. Bot. 2018, 119, 383–389. [Google Scholar] [CrossRef]
- Ahmad, I.; Tanveer, M.U.; Liaqat, M.; Doleb, J.M. Comparison of corm soaks with preharvest foliar application of moringa leaf extract for improving growth and yield of cut Freesia hybrid. Sci. Hortic. 2019, 254, 21–25. [Google Scholar] [CrossRef]
- Peter, K.V. Handbook of Herbs and Spice 2; Elsevier, Imprint Woodhead Publishing: Cambridge, UK, 2012; pp. 275–302. [Google Scholar]
- Dayananda, B.; Raghavan, A.K.; Khanum, F.; Singh, B.A. In vitro antioxidant and free radical scavenging activity of Glycyrrhiza glabra root extracts. J. Herbal Med. Toxicol. 2010, 4, 97–102. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association Official Analytical Chemist: Arlington, TX, USA, 1995. [Google Scholar]
- Wintermans, J.F.G.M.; Mats, D.E. Spectrophtometeric characteristic of chlorophyll and their pheophytins in ethanol. Biochem. Biophys. Acta. 1965, 109, 448–453. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soil Plant and Water; California University USA: Oakland, CA, USA, 1961. [Google Scholar]
- SAS Institute Inc. SAS/STAT User’s Guide, Release 6.03 Edition; SAS Institute: Cary, NC, USA, 1988. [Google Scholar]
- Wright, D.P.; Scholes, J.D.; Read, D.J. Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ. 1998, 21, 209–216. [Google Scholar] [CrossRef]
- Mandal, S.; Evelin, H.; Giri, B.; Singh, V.P.; Kapoor, R. Arbuscular Mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl. Soil Ecol. 2013, 72, 187–194. [Google Scholar] [CrossRef]
- Djouhou, F.M.C.; Fokou, E.; Nwaga, D. Potential of Moringa oleifera leaf powder and beneficial microorganisms (Mycorrhizal fungi and rhizobia) in modulating plant symbiosis and yield. Sch. J. Agric. Vet. Sci. 2018, 5, 236–243. [Google Scholar]
- Ortas, I. The effect of Mycorrhizal Fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Res. 2012, 125, 35–48. [Google Scholar] [CrossRef]
- Müller, V.; Spanheimer, R.; Santos, H. Stress response by solute accumulation in archaea. Curr. Opin. Microbiol. 2005, 8, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Kyriazakis, I.; Houdijk, J.G. Nutritional control of parasites. Small Rumin. Res. 2006, 62, 79–82. [Google Scholar] [CrossRef]
- Brisibe, E.A.; Umoren, U.E.; Brisibe, F.; Magalhaes, P.M.; Ferreira, J.F.S.; Luthria, D.; Wu, X.; Prior, R.L. Nutritional Characterization and Antioxidant Capacity of Different Tissues of Artemisia annua L. Food Chem. 2009, 115, 1240–1246. [Google Scholar] [CrossRef]
- Adewole, M.B.; Ilesanmi, A.O. Effects of soil amendments on the nutritional quality of okra (Abelmoschus esculentus [L.] Moench). J. Soil Sci. Plant Nutr. 2011, 11, 45–55. [Google Scholar]
- Plenchette, C.; Clermont-Dauphenic, C.; Meynard, J.M.; Fortin, J.A. Managing arbuscular mycorrhizal fungi in cropping systems. Can. J. Plant Sci. 2005, 85, 31–40. [Google Scholar] [CrossRef]
- Van der Heijden, M.G.A.; Streitwolf-Engel, R.; Riedl, R. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist. 2006, 172, 739–752. [Google Scholar] [CrossRef]
- Allen, M.F. Linking water and nutrients through the vadose zone: A fungal interface between the soil and plant systems. Arid Land 2011, 3, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Auge, R.M. Water relations, drought and Vesicular-Arbuscular Mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Khaosaad, T.; García-Garrido, J.M.; Steinkellner, S.; Vierheilig, H. Takeall disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol. Biochem. 2007, 39, 727–734. [Google Scholar] [CrossRef]
- Azcón, R.; Perálvarez, M.C.; Biró, B.; Roldán, A.; Ruíz-Lozano, J.M. Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lingo cellulosic agrowaste. Appl. Soil Ecol. 2009, 41, 168–177. [Google Scholar] [CrossRef]
- Singh, R.V.; Singh, M.P. Response of safflower to moisture regimes, plant population and phosphorus. Indian J. Agron. 1989, 34, 88–91. [Google Scholar]
- Kumari, M.S.; Saritha, J.D. Effect of phosphorus fertilizers on oil seed crops. Agric. Update 2017, 12, 749–754. [Google Scholar] [CrossRef]
- Rezaul, K.; Sabina Yeasmin, A.K.M.; Islam, M.; Sarkar, R. Effect of phosphorus, calcium and boron on the growth and yield of groundnut (Arachis hypogea L.). Internat. J. Bio-Sci. Bio-Technol. 2013, 5, 51–60. [Google Scholar]
- Jones, P.; Sreenivasa, M.N. Response of sunflower to the inoculation of VA mycorrhiza and or phosphate solubilising bacteria in black clayey soil. J. Oilseeds Res. 1993, 10, 86–92. [Google Scholar]
- Mishra, A.; Das, P.; Paikaray, R.K. Performance of sunflower in relation to nitrogen and phosphorus in acid soils of Orissa. J. Oilseeds Res. 1994, 11, 288–290. [Google Scholar]
- Priya, S.R.; Mohammed, M.; Maheswari, J.; Sangeetha, S.P. Influence of NPK fertilizers on productivity and oil yield of groundnut(Arachis hypogaea) and sunflower (Helianthus annuus)in intercropping system under irrigated condition. Internat. J. Agric. Res. 2009, 4, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Atteya, A.K.G.; Albalwa, A.N.; El-Serafy, R.S.; Albalwa, K.; Bayomy, H.M.; Genaidy, E.A.E. Respose of Moringa oleifera seeds and fixed oil production to vermicompost and NPK under calcareous soil conditions. Plants 2021, 10, 1998. [Google Scholar] [CrossRef]
- Giri, B.; Kapoor, R.; Mukerji, K.G. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol. Fertil. Soils 2003, 38, 170–175. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1986; p. 674. [Google Scholar]
- Eman, A.A.; Abd El-moneim, M.M.M.; Abd El Migeed, O.; Ismail, M.M. GA3 and Zinc Sprays for improving yield and fruit quality of washington navel orange trees grown under sandy soil conditions. Res. J. Agric. Biol. Sci. 2007, 3, 498–503. [Google Scholar]
- Abbas, R.N.; Tanveer, A.; Khaliq, A.; Iqbal, A.; Ghaffari, A.R.; Matloob, A.; Maqsood, Q. Maize (Zea mays L.) germination, growth and yield response to foliar application of Moringa oleifera Lam. Leaf extracts. Crop Environ. 2013, 4, 39–45. [Google Scholar]
- Culver, M.; Fanuel, T.; Chiteka, A.Z. Effect of Moringa extract on growth and yield of tomato. Greener J. Agric. Sci. 2012, 2, 207–211. [Google Scholar]
- Hassan, H.M.S.; Abd El-Samee, M.A.S. Growth, yield and nutritional value of Hibiscus sabdariffa L. as influenced by licorice and Moringa aqueous extracts under North Sinai conditions. Zagazig J. Agric. Res. 2015, 42, 1069–1079. [Google Scholar]
- Mervat, A.A.; Shawky, S.M.; Shaker, G.S. Comparative efficacy of some bioagents, plant oil and plant aqueous extracts in controlling Meloidogyne incognita on growth and yield of grapevines. Ann. Agric. Sci. 2012, 57, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Djouhou, F.M.C.; Nwaga, D.; Fokou, E. Comparative Effect of Arbuscular Mycorrhizal Fungi and Biostimulants on the Antioxidant and Nutritional Potential of Moringa oleifera. Nutri. Food Sci. Int. J. 2019, 9, 555758. [Google Scholar] [CrossRef]
- Genaidy, E.A.E.; Atteya, A.K.G.; Adss, I.A.A. Increase the economic value of the jojoba (Simmondsia chinensis) yield using evaluation of distinctive clones grown under the Egyptian environmental conditions. J. Agric. Sci. Technol. 2016, 12, 145–165. [Google Scholar]
Parameters | Texture Class | EC(dSm−1) | Ca++ | Mg++ | Na+ | K+ | HCO3− | Cl− | SO42− |
---|---|---|---|---|---|---|---|---|---|
Values | sandy | 2.28 | 2.15 | 3.75 | 19.57 | 0.35 | 1.13 | 21.21 | 4.57 |
Parameters | pH | EC(dSm−1) | Ca++ | Mg++ | Na+ | K+ | HCO3− | Cl− | SO42− |
---|---|---|---|---|---|---|---|---|---|
Values | 7.44 | 3.43 | 5.34 | 3.66 | 21.72 | 3.25 | 1.96 | 29.22 | 3.23 |
Parameters | Units | Values |
---|---|---|
Vitamin C | mg g−1 FW | 2.63 |
Total phenolic content | mg Gallic g−1 FW | 2.24 |
Total flavonoid content | mg Rutin g−1 FW | 1.22 |
Antioxidant activity determinations IC50 | µg mL−1 | 176 |
N | % | 3.52 |
P2O5 | % | 0.252 |
K2O | % | 2.87 |
Treatments | Arbuscular Mycorrhizal Fungi | Moringa oleifera Leaves Extract |
---|---|---|
Control | Without arbuscular mycorrhizal fungi (0 g L−1) | 0 g L−1 |
T1 | 10 g L−1 | |
T2 | 20 g L−1 | |
T3 | 30 g L−1 | |
T4 | With arbuscular mycorrhizal fungi (20 g L−1) | 0 g L−1 |
T5 | 10 g L−1 | |
T6 | 20 g L−1 | |
T7 | 30 g L−1 |
Treatment | Main Branch Length (cm) | Length of Secondary Branches (cm) | Number of Branched Nodes | |||
---|---|---|---|---|---|---|
1st Season | 2nd Season | 1st Season | 2nd Season | 1st Season | 2nd Season | |
Arbuscular mycorrhizal fungi (g L−1) | ||||||
Control | 84 ± 10 b | 86 ± 10 b | 28.6 ± 5.2 b | 29.5 ± 5.3 b | 2.99 ± 0.30 b | 3.07 ± 0.30 b |
20 | 100 ± 11 a | 103 ± 12 a | 40.2 ± 7.8 a | 41.4 ± 8.0 a | 3.81 ± 0.63 a | 3.92 ± 0.65 a |
Moringa oleifera leaves extract (g L−1) | ||||||
Control | 78 ± 6 d | 80 ± 6 d | 25.3 ± 2.9 d | 26.0 ± 3.0 d | 2.83 ± 0.17 d | 2.92 ± 0.18 d |
10 | 88 ± 12 c | 91 ± 12 c | 33.5 ± 9.0 c | 34.5 ± 9.3 c | 3.19 ± 0.45 c | 3.29 ± 0.47 c |
20 | 97 ± 9 b | 100 ± 9 b | 37.5 ± 6.7 b | 38.6 ± 6.9 b | 3.55 ± 0.51 b | 3.66 ± 0.52 b |
30 | 105 ± 10 a | 108 ± 10 | 41.5 ± 6.9 a | 42.7 ± 7.1 a | 4.02 ± 0.68 a | 4.13 ± 0.70 a |
Combination treatments | ||||||
Control | 72 ± 1 h | 74 ± 1 h | 22.7 ± 0.2 h | 23.3 ± 0.2 h | 2.68 ± 0.03 h | 2.76 ± 0.03 h |
T1 | 77 ± 1g | 80 ± 1 g | 25.2 ± 0.2 g | 26.0 ± 0.2 g | 2.78 ± 0.03 g | 2.86 ± 0.03 g |
T2 | 90 ± 1 e | 92 ± 1 e | 31.4 ± 0.3 e | 32.3 ± 0.3 e | 3.09 ± 0.03 e | 3.18 ± 0.03 e |
T3 | 96 ± 1 d | 99 ± 1 d | 35.2 ± 0.3 d | 36.3 ± 0.3 d | 3.40 ± 0.03 d | 3.50 ± 0.03 d |
T4 | 83 ± 1 f | 86 ± 1 f | 27.9 ± 0.3 f | 28.7 ± 0.3 f | 2.9 9 ± 0.03 f | 3.07 ± 0.03 f |
T5 | 99 ± 1 c | 102 ± 1 c | 41.7 ± 0.4 c | 42.9 ± 0.4 c | 3.61 ± 0.04 c | 3.71 ± 0.04 c |
T6 | 105 ± 1 b | 108 ± 1 b | 43.6 ± 0.4 b | 44.8 ± 0.4 b | 4.02 ± 0.04 b | 4.13 ± 0.04 b |
T7 | 113 ± 1 a | 117 ± 1 a | 47.8 ± 0.5 a | 49.2 ± 0.5 a | 4.64 ± 0.05 a | 4.77 ± 0.05 a |
Treatment | Number of Secondary Branches | Full Bloom Date (Day) | Flowering Percentage (%) | |||
---|---|---|---|---|---|---|
1st Season | 2nd Season | 1st Season | 2nd Season | 1st Season | 2nd Season | |
Arbuscular mycorrhizal fungi (g L−1) | ||||||
Control | 4.38 ± 0.63 b | 4.51 ± 0.65 b | 56.9 ± 4.3 a | 58.6 ± 4.4 a | 46.35 ± 4.11 b | 47.70 ± 4.23 b |
20 | 5.94 ± 1.05 a | 6.11 ± 1.08 a | 49.4 ± 5.3 b | 50.9 ± 5.5 b | 53.30 ± 4.48 a | 54.86 ± 4.61 a |
Moringa oleifera leaves extract (g L−1) | ||||||
Control | 3.97 ± 0.40 d | 4.08 ± 0.41 d | 59.7 ± 2.3 a | 61.48 ± 2.4 a | 43.78 ± 2.85 d | 45.05 ± 2.93 d |
10 | 4.94 ± 1.02 c | 5.09 ± 1.05 c | 54.6 ± 5.7 b | 56.18 ± 5.8 b | 48.93 ± 5.10 c | 50.35 ± 5.24 c |
20 | 5.67 ± 1.02 b | 5.83 ± 1.05 b | 50.5 ± 4.5 c | 51.94 ± 4.7 c | 52.02 ± 3.97 b | 53.53 ± 4.09 b |
30 | 6.06 ± 0.98 a | 6.23 ± 1.01 a | 47.9 ± 4.0 d | 49.29 ± 4.1 d | 54.59 ± 3.42 a | 56.18 ± 3.52 a |
Combination treatments | ||||||
(Control) | 3.61 ± 0.04 h | 3.71 ± 0.04 h | 61.8 ± 0.6 a | 63.6 ± 0.6 a | 41.20 ± 0.40 h | 42.40 ± 0.40 h |
T1 | 4.02 ± 0.04 g | 4.13 ± 0.04 g | 59.7 ± 0.6 b | 61.5 ± 0.6 b | 44.29 ± 0.43 g | 45.58 ± 0.43 g |
T2 | 4.74 ± 0.04 e | 4.88 ± 0.05 e | 54.6 ± 0.5 d | 56.2 ± 0.5 d | 48.41 ± 0.47 e | 49.82 ± 0.47 e |
T3 | 5.16 ± 0.04 d | 5.31 ± 0.05 d | 51.5 ± 0.5 e | 53.0 ± 0.5 e | 51.5 ± 0.50 d | 53.00 ± 0.50 d |
T4 | 4.33 ± 0.04 f | 4.45 ± 0.04 f | 57.7 ± 0.6 c | 59.4 ± 0.6 c | 46.35 ± 0.45 f | 47.70 ± 0.45 f |
T5 | 5.87 ± 0.04 c | 6.04 ± 0.06 c | 49.4 ± 0.5 f | 50.9 ± 0.5 f | 53.56 ± 0.52 c | 55.12 ± 0.52 c |
T6 | 6.59 ± 0.04 b | 6.78 ± 0.06 b | 46.4 ± 0.5 g | 47.7 ± 0.5 g | 55.62 ± 0.54 b | 57.24 ± 0.54 b |
T7 | 6.95 ± 0.07 a | 7.16 ± 0.07 a | 44.3 ± 0.4 h | 45.6 ± 0.4 h | 57.68 ± 0.56 a | 59.36 ± 0.56 a |
Treatment | Final Fruit Set (%) | Seed Yield (g plant−1) | Seed Yield (Kg ha−1) | |||
---|---|---|---|---|---|---|
1st Season | 2nd Season | 1st Season | 2nd Season | 1st Season | 2nd Season | |
Arbuscular mycorrhizal fungi (g L−1) | ||||||
Control | 86.06 ± 1.89 b | 88.56 ± 1.94 b | 2198 ± 180 b | 2262 ± 185 b | 2931 ± 240 b | 3016 ± 247 b |
20 | 89.56 ± 2.80 a | 92.17 ± 2.88 a | 2477 ± 176 a | 2549 ± 181 a | 3303 ± 235 a | 3399 ± 241 a |
Moringa oleifera leaves extract (g L−1) | ||||||
Control | 84.87 ± 1.35 d | 87.34 ± 1.38 d | 2088 ± 134 d | 2149 ± 138 d | 2784 ± 178 d | 2866 ± 184 d |
10 | 87.04 ± 2.27 c | 89.57 ± 2.33 c | 2294 ± 201 c | 2361 ± 207 c | 3059 ± 268 c | 3148 ± 276 c |
20 | 88.73 ± 1.81 b | 91.32 ± 1.85 b | 2434 ± 145 b | 2505 ± 149 b | 3245 ± 193 b | 3340 ± 199 b |
30 | 90.59 ± 2.87 a | 93.23 ± 2.95 a | 2534 ± 137 a | 2608 ± 140 a | 3379 ± 182 a | 3478 ± 187 a |
Combination treatments | ||||||
Control | 83.84 ± 0.81 h | 86.28 ± 0.81 h | 1967 ± 19 h | 2025 ± 19 h | 2623 ± 25 h | 2699 ± 25 h |
T1 | 85.08 ± 0.83 g | 87.56 ± 0.83 g | 2112 ± 21 g | 2173 ± 21 g | 2815 ± 27 g | 2897 ± 27 g |
T2 | 87.24 ± 0.85 e | 89.78 ± 0.85 e | 2303 ± 22 e | 2370 ± 22 e | 3071 ± 30 e | 3160 ± 30 e |
T3 | 88.07 ± 0.86 d | 90.63 ± 0.86 d | 2411 ± 23 d | 2481 ± 23 d | 3215 ± 31 d | 3309 ± 31 d |
T4 | 85.90 ± 0.83 f | 88.40 ± 0.83 f | 2209 ± 21 f | 2274 ± 21 f | 2946 ± 29 f | 3032 ± 29 f |
T5 | 88.99 ± 0.86 c | 91.58 ± 0.86 c | 2477 ± 24 c | 2549 ± 24 c | 3303 ± 32 c | 3399 ± 32 c |
T6 | 90.23 ± 0.88 b | 92.86 ± 0.88 b | 2565 ± 25 b | 2639 ± 25 b | 3420 ± 33 b | 3519 ± 33 b |
T7 | 93.11 ± 0.90 a | 95.82 ± 0.90 a | 2657 ± 26 a | 2735 ± 26 a | 3543 ± 34 a | 3646 ± 34 a |
Treatment | Minerals (%) | Proteins (%) | Carbohydrates (%) | |||
---|---|---|---|---|---|---|
1st Season | 2nd Season | 1st Season | 2nd Season | 1st Season | 2nd Season | |
Arbuscular mycorrhizal fungi (g L−1) | ||||||
Control | 1.22 ± 0.08 b | 1.26 ± 0.08 b | 23.14 ± 1.11 b | 23.81 ± 1.15 b | 23.16 ± 3.94 a | 20.92 ± 4.05 a |
20 | 1.43 ± 0.14 a | 1.47 ± 0.14 a | 25.30 ± 1.54 a | 26.04 ± 1.58 a | 19.93 ± 2.54 b | 17.60 ± 2.61 b |
Moringa oleifera leaves extract (g L−1) | ||||||
Control | 1.18 ± 0.05 d | 1.21 ±0.05 d | 22.27 ± 0.73 d | 22.92 ± 0.75 d | 25.61 ± 1.94 a | 23.45 ± 1.99 a |
10 | 1.30 ± 0.14 c | 1.34 ± 0.14 c | 24.01 ± 1.47 c | 24.71 ± 1.51 c | 21.95 ± 3.91 b | 19.68 ± 4.02 b |
20 | 1.36 ± 0.12 b | 1.40 ± 0.13 b | 25.15 ± 1.25 b | 25.88 ± 1.29 b | 20.28 ± 2.44 c | 17.96 ± 2.50 c |
30 | 1.47 ± 0.14 a | 1.51 ± 0.15 a | 25.45 ± 1.37 a | 26.19 ± 1.41 a | 18.33 ± 1.18 d | 15.95 ± 1.21 d |
Combination treatments | ||||||
Control | 1.13 ± 0.01 h | 1.17 ± 0.01 h | 21.63 ± 0.21 h | 22.26 ± 0.21 h | 27.28 ± 0.71 a | 25.16 ± 0.71 a |
T1 | 1.17 ± 0.01 g | 1.21 ± 0.01 g | 22.68 ± 0.22 g | 23.34 ± 0.22 g | 25.47 ± 0.72 b | 23.30 ± 0.72 b |
T2 | 1.25 ± 0.01 e | 1.28 ± 0.01 e | 24.02 ± 0.23 e | 24.72 ± 0.23 e | 22.41 ± 0.75 d | 20.15 ± 0.75 d |
T3 | 1.34 ± 0.01 d | 1.38 ± 0.01 d | 24.22 ± 0.24 d | 24.92 ± 0.24 d | 17.47 ± 0.80 h | 15.06 ± 0.80 h |
T4 | 1.23 ± 0.01 f | 1.26 ± 0.01 f | 22.92 ± 0.22 f | 23.59 ± 0.22 f | 23.94 ± 0.74 c | 21.73 ± 0.74 c |
T5 | 1.42 ± 0.01 c | 1.46 ± 0.01 c | 25.34 ± 0.25 c | 26.08 ± 0.25 c | 18.43 ± 0.79 f | 16.06 ± 0.79 f |
T6 | 1.47 ± 0.01 b | 1.52 ± 0.01 b | 26.28 ± 0.26 b | 27.04 ± 0.26 b | 18.15 ± 0.79 g | 15.76 ± 0.79 g |
T7 | 1.60 ± 0.02 a | 1.64 ± 0.02 a | 26.68 ± 0.26 a | 27.45 ± 0.26 a | 19.20 ± 0.78 e | 16.84 ± 0.78 e |
Treatment | Oil Percent (%) | Oil Content (mL plant−1) | Oil Yield (l ha−1) | |||
---|---|---|---|---|---|---|
1st Season | 2nd Season | 1st Season | 2nd Season | 1st Season | 2nd Season | |
Arbuscular mycorrhizal fungi (g L−1) | ||||||
Control | 52.48 ± 2.89 b | 54.01 ± 2.97 b | 1158 ± 155 b | 1226 ± 165 b | 1544 ± 207 b | 1635 ± 219 b |
20 | 53.34 ± 1.29 a | 54.89 ± 1.33 a | 1322 ± 109 a | 1400 ± 115 a | 1763 ± 145 a | 1867 ± 154 a |
Moringa oleifera leaves extract (g L−1) | ||||||
Control | 50.93 ± 1.16 d | 52.42 ± 1.19 d | 1065 ± 92 d | 1128 ± 97 d | 1420 ± 122 d | 1504 ± 129 d |
10 | 52.74 ± 2.31 c | 54.28 ± 2.37 c | 1214 ± 159 c | 1286 ± 168 c | 1619 ± 212 c | 1714 ± 224 c |
20 | 53.21 ± 1.08 b | 54.76 ± 1.11 b | 1296 ± 103 b | 1373 ± 108 b | 1729 ± 137 b | 1831 ± 145 b |
30 | 54.75 ± 2.48 a | 56.35 ± 2.55 a | 1385 ± 27 a | 1467 ± 28 a | 1847 ± 36 a | 1956 ± 37 a |
Combination treatments | ||||||
Control | 49.96 ± 0.49 h | 51.41 ± 0.49 h | 983 ± 19 h | 1041 ± 20 h | 1310 ± 25 h | 1388 ± 26 h |
T1 | 50.68 ± 0.49 g | 52.15 ± 0.49 g | 1070 ± 21 g | 1133 ± 21 g | 1427 ± 28 g | 1511 ± 29 g |
T2 | 52.32 ± 0.51 e | 53.85 ± 0.51 e | 1205 ± 23 e | 1276 ± 24 e | 1607 ± 31 e | 1702 ± 32 e |
T3 | 56.98 ± 0.55 a | 58.64 ± 0.55 a | 1374 ± 27 c | 1455 ± 27 c | 1832 ± 36 c | 1940 ± 37 c |
T4 | 51.91 ± 0.50 f | 53.42 ± 0.50 f | 1147 ± 22 f | 1215 ± 23 f | 1529 ± 30 f | 1620 ± 31 f |
T5 | 54.81 ± 0.53 b | 56.40 ± 0.53 b | 1358 ± 26 d | 1438 ± 27 d | 1810 ± 35 d | 1917 ± 36 d |
T6 | 54.11 ± 0.53 c | 55.68 ± 0.53 c | 1388 ± 27 b | 1470 ± 28 b | 1850 ± 36 b | 1960 ± 37 b |
T7 | 52.53 ± 0.51 d | 54.06 ± 0.51 d | 1396 ± 27 a | 1479 ± 28 a | 1861 ± 36 a | 1971 ± 37 a |
Fatty Acids | The Relative Percentage of Fatty Acids (%) | |||||||
---|---|---|---|---|---|---|---|---|
Control | T1 | T2 | T3 | T4 | T5 | T6 | T7 | |
Myristic Acid (C14:0) | 0.77 ± 0.01 | 0.52 ± 0.01 | 1.05 ± 0.01 | - | 0.89 ± 0.01 | 1.55 ± 0.02 | 1.77 ± 0.02 | 2.09 ± 0.02 |
Myristoleic Acid (C14:1) | 1.4 ± 0.01 | - | 1.23 ± 0.01 | 1.13 ± 0.01 | - | - | 0.67 ± 0.01 | 0.35 ± 0.00 |
PalmiticAcic (C16:0) | 1.29 ± 0.01 | 1.17 ± 0.01 | 1.43 ± 0.01 | 1.56 ± 0.02 | 1.33 ± 0.01 | 1.61 ± 0.02 | 1.69 ± 0.02 | 1.86 ± 0.02 |
Oleic acid (C18:1) | 14.58 ± 0.18 | 14.44 ± 0.17 | 13.52 ± 0.16 | 13.05 ± 0.15 | 13.93 ± 0.16 | 12.68 ± 0.15 | 12.03 ± 0.14 | 12.53 ± 0.14 |
Linoleic acid (C18:2) | 2.17 ± 0.02 | 2.25 ± 0.02 | 1.96 ± 0.02 | 1.94 ± 0.02 | 2.09 ± 0.02 | 1.72 ± 0.02 | 1.45 ± 0.01 | 1.32 ± 0.01 |
Gadoleic acid (C20:1) | 51.84 ± 0.30 | 52.29 ± 0.58 | 49.49 ± 0.56 | 48.21 ± 0.54 | 50.96 ± 0.57 | 48.64 ± 0.53 | 49.56 ± 0.52 | 48.58 ± 0.51 |
Erucic acid (C22:1) | 13.7 ± 0.14 | 14.03 ± 0.14 | 13.25 ± 0.14 | 14.62 ± 0.13 | 15.28 ± 0.14 | 13.99 ± 0.12 | 13.23 ± 0.12 | 12.68 ± 0.11 |
Nervonic acid (C24:1) | 12.19 ± 0.20 | 12.78 ± 0.19 | 11.7 ± 0.18 | 11.31 ± 0.18 | 12.10 ± 0.19 | 12.91 ± 0.17 | 12.42 ± 0.16 | 12.53 ± 0.15 |
Total % | 97.94 | 97.48 | 93.63 | 91.82 | 96.58 | 93.1 | 92.82 | 91.94 |
Saturated fatty acids | 2.06 | 1.69 | 2.48 | 1.56 | 2.22 | 3.16 | 3.46 | 3.95 |
Unsaturated fatty acids | 95.88 | 95.79 | 91.15 | 90.26 | 94.36 | 89.94 | 89.36 | 87.99 |
Treatment | Chlorophyll a (mg g−1) | Chlorophyll b (mg g−1) | ||
---|---|---|---|---|
1st Season | 2nd Season | 1st Season | 2nd Season | |
Arbuscular mycorrhizal fungi (g L−1) | ||||
Control | 0.862 ± 0.027 b | 0.887 ± 0.028 b | 0.405 ± 0.013 b | 0.417 ± 0.013b |
20 | 0.919 ± 0.036 a | 0.945 ± 0.037 a | 0.432 ± 0.017 a | 0.444 ± 0.018a |
Moringa oleifera leaves extract (g L−1) | ||||
Control | 0.846 ± 0.025 d | 0.871 ± 0.026 d | 0.398 ± 0.012 d | 0.409 ± 0.012 d |
10 | 0.882 ± 0.030 c | 0.907 ± 0.031 c | 0.414 ± 0.014 c | 0.426 ± 0.015 c |
20 | 0.908 ± 0.034 b | 0.934 ± 0.035 b | 0.427 ± 0.016 b | 0.439 ± 0.017 b |
30 | 0.924 ± 0.039 a | 0.951 ± 0.040 a | 0.434 ± 0.018 a | 0.447 ± 0.019 a |
Combination treatments | ||||
(Control) | 0.824 ± 0.008 h | 0.848 ± 0.008 h | 0.387 ± 0.004 h | 0.399 ± 0.004 h |
T1 | 0.855 ± 0.008 g | 0.880 ± 0.008 g | 0.402 ± 0.004 g | 0.414 ± 0.004 g |
T2 | 0.878 ± 0.009 e | 0.903 ± 0.009 e | 0.412 ± 0.004 e | 0.424 ± 0.004 e |
T3 | 0.890 ± 0.009 d | 0.916 ± 0.009 d | 0.418 ± 0.004 d | 0.430 ± 0.004 d |
T4 | 0.868 ± 0.008 f | 0.894 ± 0.008 f | 0.408 ± 0.004 f | 0.420 ± 0.004 f |
T5 | 0.908 ± 0.009 c | 0.935 ± 0.009 c | 0.427 ± 0.004 c | 0.439 ± 0.004 c |
T6 | 0.938 ± 0.009 b | 0.966 ± 0.009 b | 0.441 ± 0.004 b | 0.454 ± 0.004 b |
T7 | 0.959 ± 0.009 a | 0.987 ± 0.009 a | 0.451 ± 0.004 a | 0.464 ± 0.004 a |
Treatment | N (%) | P2O5 (%) | K2O (%) | |||
---|---|---|---|---|---|---|
1st Season | 2nd Season | 1st Season | 2nd Season | 1st Season | 2nd Season | |
Arbuscular mycorrhizal fungi (g L−1) | ||||||
Control | 2.742 ± 0.122 b | 2.822 ± 0.125 b | 0.379 ± 0.013 b | 0.390 ± 0.013 b | 2.665 ± 0.062 b | 2.743 ± 0.064 b |
20 | 2.917 ± 0.085 a | 3.002 ± 0.087 a | 0.425 ± 0.041 a | 0.437 ± 0.042 a | 2.758 ± 0.065 a | 2.838 ± 0.066 a |
Moringa oleifera leaves extract (g L−1) | ||||||
Control | 2.683 ± 0.121 d | 2.761 ± 0.124 d | 0.372 ± 0.009 d | 0.383 ± 0.009 d | 2.632 ± 0.046 d | 2.708 ± 0.047 d |
10 | 2.807 ± 0.121 c | 2.889 ± 0.124 c | 0.388 ± 0.017 c | 0.400 ± 0.018 c | 2.688 ± 0.072 c | 2.767 ± 0.073 c |
20 | 2.905 ± 0.083 b | 2.989 ± 0.085 b | 0.408 ± 0.027 b | 0.420 ±0.028 b | 2.750 ± 0.051 b | 2.830 ± 0.052 b |
30 | 2.925 ± 0.072 a | 3.010 ± 0.074 a | 0.440 ± 0.048 a | 0.453 ± 0.049 a | 2.776 ± 0.056 a | 2.857 ± 0.058 a |
Combination treatments | ||||||
Control | 2.575 ± 0.025 h | 2.650 ± 0.025 h | 0.365 ± 0.004 h | 0.375 ± 0.004 h | 2.596 ± 0.025 h | 2.671 ± 0.025 h |
T1 | 2.699 ± 0.026 g | 2.777 ± 0.026 g | 0.373 ± 0.004 g | 0.384 ± 0.004 g | 2.627 ± 0.026 g | 2.703 ± 0.026 g |
T2 | 2.833 ± 0.028 e | 2.915 ± 0.028 e | 0.383 ± 0.004 e | 0.394 ± 0.004 e | 2.709 ± 0.026 e | 2.788 ± 0.026 e |
T3 | 2.863 ± 0.028 d | 2.947 ± 0.028 d | 0.397 ± 0.004 d | 0.408 ± 0.004 d | 2.730 ± 0.027 d | 2.809 ± 0.027 d |
T4 | 2.791 ± 0.027 f | 2.873 ± 0.027 f | 0.379 ± 0.004 f | 0.390 ± 0.004 f | 2.668 ± 0.026 f | 2.745 ± 0.026 f |
T5 | 2.915 ± 0.028 c | 3.000 ± 0.028 c | 0.404 ± 0.004 c | 0.416 ± 0.004 c | 2.750 ± 0.027 c | 2.830 ± 0.027 c |
T6 | 2.977 ± 0.029 b | 3.063 ± 0.029 b | 0.433 ± 0.004 b | 0.445 ± 0.004 b | 2.791 ± 0.027 b | 2.873 ± 0.027 b |
T7 | 2.987 ± 0.029 a | 3.074 ± 0.029 a | 0.484 ± 0.005 a | 0.498 ± 0.005 a | 2.822 ± 0.027 a | 2.904 ± 0.027 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atteya, A.K.G.; Sami, R.; Al-Mushhin, A.A.M.; Ismail, K.A.; Genaidy, E.A.E. Response of Seeds, Oil Yield and Fatty Acids Percentage of Jojoba Shrub Strain EAI to Mycorrhizal Fungi and Moringa Leaves Extract. Horticulturae 2021, 7, 395. https://doi.org/10.3390/horticulturae7100395
Atteya AKG, Sami R, Al-Mushhin AAM, Ismail KA, Genaidy EAE. Response of Seeds, Oil Yield and Fatty Acids Percentage of Jojoba Shrub Strain EAI to Mycorrhizal Fungi and Moringa Leaves Extract. Horticulturae. 2021; 7(10):395. https://doi.org/10.3390/horticulturae7100395
Chicago/Turabian StyleAtteya, Amira K. G., Rokayya Sami, Amina A. M. Al-Mushhin, Khadiga Ahmed Ismail, and Esmail A. E. Genaidy. 2021. "Response of Seeds, Oil Yield and Fatty Acids Percentage of Jojoba Shrub Strain EAI to Mycorrhizal Fungi and Moringa Leaves Extract" Horticulturae 7, no. 10: 395. https://doi.org/10.3390/horticulturae7100395
APA StyleAtteya, A. K. G., Sami, R., Al-Mushhin, A. A. M., Ismail, K. A., & Genaidy, E. A. E. (2021). Response of Seeds, Oil Yield and Fatty Acids Percentage of Jojoba Shrub Strain EAI to Mycorrhizal Fungi and Moringa Leaves Extract. Horticulturae, 7(10), 395. https://doi.org/10.3390/horticulturae7100395